Neutronic Modeling of the Whole Core Gas-Cooled Microreactor (GCMR)
Contacts: Ahmed Abdelhameed (aabdelhameed.at.anl.gov), Yinbin Miao (ymiao.at.anl.gov), Nicolas Stauff (nstauff.at.anl.gov)
GCMR Core Description
The GCMR model, developed at ANL, serves as a modeling experiment to explore design options considered by microreactor vendors, encompassing features like control drums, hydride metal, and TRISO fuel. This horizontal gas-cooled microreactor system boasts a thermal power of 20 MW and an approximate lifespan of 9.5 years. Its power conversion cycle utilizes a Brayton cycle, circulating high-temperature (650°C-850°C) and high-pressure (7 MPa) helium coolant. Surrounding the core are BeO radial and axial neutron reflectors, with twelve control drums positioned in the reflector encircling the core. These control rods, containing 96%-enriched B4C, are inserted into holes within the middle core assemblies. Displayed in Figure 1 and Figure 2 are radial and axial views of the core, which is relatively compact, measuring 2.42 m in diameter and 2.40 m in length.

Figure 1: Radial View of the GCMR core

Figure 2: Axial view of the GCMR core
The core comprises three types of fuel assemblies: Assembly A in the inner region, Assembly B in the middle, and Assembly C in the outer core region. Each fuel assembly incorporates TRISO fuel blocks containing 19.75 wt% of LEU fuel and Yttrium hydride moderator pins encased in FeCrAl envelopes. Additionally, burnable poison blocks, composed of Gd2O3 particles with a 25% packing fraction distributed axially, and Helium coolant channels are integrated. Assembly A's detailed design is provided in Figure 3, while Figure 4 illustrates the design differences among the three assemblies. Assemblies B and C are nearly identical, except for the presence of a central shutdown rod location in assembly B. Each of assemblies B and C is equipped with 6 burnable poison rods, 6 moderator pins, and 48 fuel rods. In contrast, Assembly A contains 12 burnable poison rods and 42 fuel rods. The key design parameters of the GCMR core comprise of:

Figure 3: GCMR assembly of Type A

Figure 4: Design of the three types of fuel assemblies in the core
Parameter (unit) | Value |
---|---|
Reactor Power (MWth) | 20.0 |
Core diameter (cm) | 242.0 |
Core height (cm) | 240.0 |
Active height (cm) | 200.0 |
Different radial core zones | 3 |
Number of control drums | 12 |
Lattice pitch (cm) | 20.8 |
Pin pitch (cm) | 2.0 |
TRISO fuel compact radius (cm) | 0.85 |
Moderator compact radius (cm) | 0.75 |
Cr coating thickness (cm) | 0.007 |
FeCrAl envelope thickness (cm) | 0.05 |
Burnable poison compact radius (cm) | 0.25 |
Coolant compact radius (cm) | 0.6 |
Control compact radius (cm) | 0.95 |
Fuel | TRISO, 40% packing fraction |
Coolant | He |
Moderator (Coating, Envelope) | YH1.8 (Cr, FeCrAl) |
Burnable poison absorber | Gd2O3 particles, 25% packing fraction |
Control rod | B4C (96% B-10 enrichment) |
Mesh
MOOSE's Reactor Module (Shemon et al., 2023) was used to create the mesh structure for the entire core of the GC-MR reactor. This tool was particularly useful in addressing intricate modeling prerequisites for the microreactor core such as fuel assemblies exhibiting different designs, distinct axial loading configurations of the burnable absorbers within the core, and modeling intricacies of control drum designs. The transition of the mesh from a 2D to a 3D structure, along with the incorporation of distinct axial regions, was made notably straightforward by employing the AdvancedExtruderGenerator. The tool's adaptability became especially useful when altering the mesh element size to examine the trade-off between accuracy and computational cost through coarser mesh. Figure 5 illustrates a depiction of the 3-D GCMR, detailing both the axial and radial discretization.

Figure 5: Detailed 3-D GCMR core mesh
#####################################################################################################
# Whole-core mesh for a Gas-cooled Microreactor
# If using or referring to this model, please cite as explained in
# https://mooseframework.inl.gov/virtual_test_bed/citing.html
#####################################################################################################
[Mesh]
[YH_pin]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.693 0.7 0.75'
ring_intervals = '2 1 1'
ring_block_ids = '101 100 102 103'
[]
[Coolant_hole]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.6'
ring_intervals = '2'
ring_block_ids = '201 200'
[]
[Control_hole]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.95'
ring_intervals = '2'
ring_block_ids = '301 300'
[]
[TRISO_fuel_in]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.85'
ring_intervals = '2'
ring_block_ids = '401 400'
[]
[TRISO_fuel_mid]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.85'
ring_intervals = '2'
ring_block_ids = '4001 4000'
[]
[TRISO_fuel_out]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.85'
ring_intervals = '2'
ring_block_ids = '40001 40000'
[]
[Poison_LBP0]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.25'
ring_intervals = '2'
ring_block_ids = '501 500'
[]
[Poison_LBP1]
type = PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals = 1
background_block_ids = '10'
polygon_size = 1
polygon_size_style ='apothem'
ring_radii = '0.25'
ring_intervals = '2'
ring_block_ids = '5001 5000'
[]
[centralFA]
type = PatternedHexMeshGenerator
inputs = 'YH_pin Coolant_hole TRISO_fuel_in Poison_LBP0'
# 0 1 2 3
hexagon_size = 10.4
pattern =
'3 1 2 2 1 3;
1 0 2 1 2 0 1;
2 2 1 2 2 1 2 2;
2 1 2 3 1 3 2 1 2;
1 2 2 1 2 2 1 2 2 1;
3 0 1 3 2 1 2 3 1 0 3;
1 2 2 1 2 2 1 2 2 1;
2 1 2 3 1 3 2 1 2;
2 2 1 2 2 1 2 2;
1 0 2 1 2 0 1;
3 1 2 2 1 3'
background_block_id = 10
background_intervals = 1
[]
[Innercore]
type = PatternedHexMeshGenerator
inputs = 'YH_pin Coolant_hole TRISO_fuel_in Poison_LBP0'
# 0 1 2 3
hexagon_size = 10.4
pattern =
'3 1 2 2 1 3;
1 0 2 1 2 0 1;
2 2 1 2 2 1 2 2;
2 1 2 3 1 3 2 1 2;
1 2 2 1 2 2 1 2 2 1;
3 0 1 3 2 1 2 3 1 0 3;
1 2 2 1 2 2 1 2 2 1;
2 1 2 3 1 3 2 1 2;
2 2 1 2 2 1 2 2;
1 0 2 1 2 0 1;
3 1 2 2 1 3'
background_block_id = 10
background_intervals = 1
[]
[dummy]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
num_sectors_per_side= '2 2 2 2 2 2'
hexagon_size = 10.4
background_intervals = 1
background_block_ids = '700'
[]
[Outercore]
type = PatternedHexMeshGenerator
inputs = 'YH_pin Coolant_hole Control_hole Poison_LBP1 TRISO_fuel_mid'
# 0 1 2 3 4
hexagon_size = 10.4
pattern =
'4 1 4 4 1 4;
1 0 4 1 4 0 1;
4 4 1 4 4 1 4 4;
4 1 4 3 1 3 4 1 4;
1 4 4 1 4 4 1 4 4 1;
4 0 1 3 4 2 4 3 1 0 4;
1 4 4 1 4 4 1 4 4 1;
4 1 4 3 1 3 4 1 4;
4 4 1 4 4 1 4 4;
1 0 4 1 4 0 1;
4 1 4 4 1 4'
background_block_id = 10
background_intervals = 1
[]
[Outercore2]
type = PatternedHexMeshGenerator
inputs = 'YH_pin Coolant_hole Control_hole Poison_LBP1 TRISO_fuel_mid'
# 0 1 2 3 4
hexagon_size = 10.4
pattern =
'4 1 4 4 1 4;
1 0 4 1 4 0 1;
4 4 1 4 4 1 4 4;
4 1 4 3 1 3 4 1 4;
1 4 4 1 4 4 1 4 4 1;
4 0 1 3 4 2 4 3 1 0 4;
1 4 4 1 4 4 1 4 4 1;
4 1 4 3 1 3 4 1 4;
4 4 1 4 4 1 4 4;
1 0 4 1 4 0 1;
4 1 4 4 1 4'
background_block_id = 10
background_intervals = 1
[]
[Innercore2]
type = PatternedHexMeshGenerator
inputs = 'YH_pin Coolant_hole Poison_LBP1 TRISO_fuel_out'
# 0 1 2 3
hexagon_size = 10.4
pattern =
'3 1 3 3 1 3;
1 0 3 1 3 0 1;
3 3 1 3 3 1 3 3;
3 1 3 2 1 2 3 1 3;
1 3 3 1 3 3 1 3 3 1;
3 0 1 2 3 1 3 2 1 0 3;
1 3 3 1 3 3 1 3 3 1;
3 1 3 2 1 2 3 1 3;
3 3 1 3 3 1 3 3;
1 0 3 1 3 0 1;
3 1 3 3 1 3'
background_block_id = 10
background_intervals = 1
[]
[cd0_12]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2'
sides_to_adapt = '3 4'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_12]
type = AzimuthalBlockSplitGenerator
input = cd0_12
start_angle = 45
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_6]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2'
sides_to_adapt = '0 1'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_6]
type = AzimuthalBlockSplitGenerator
input = cd0_6
start_angle = 225
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_9]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 Innercore2'
sides_to_adapt = '0 5 4'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_9]
type = AzimuthalBlockSplitGenerator
input = cd0_9
start_angle = 135
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_3]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 Innercore2'
sides_to_adapt = '1 2 3'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_3]
type = AzimuthalBlockSplitGenerator
input = cd0_3
start_angle = 315
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_1]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 Innercore2'
sides_to_adapt = '2 3 4'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_1]
type = AzimuthalBlockSplitGenerator
input = cd0_1
start_angle = 15
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_2]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2'
sides_to_adapt = '2 3'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_2]
type = AzimuthalBlockSplitGenerator
input = cd0_2
start_angle = 345
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_4]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 '
sides_to_adapt = '1 2'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_4]
type = AzimuthalBlockSplitGenerator
input = cd0_4
start_angle = 285
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_5]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 Innercore2'
sides_to_adapt = '0 1 2'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_5]
type = AzimuthalBlockSplitGenerator
input = cd0_5
start_angle = 255
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_7]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = ' Innercore2 Innercore2 Innercore2'
sides_to_adapt = '0 1 5'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_7]
type = AzimuthalBlockSplitGenerator
input = cd0_7
start_angle = 195
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_8]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 '
sides_to_adapt = '0 5'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_8]
type = AzimuthalBlockSplitGenerator
input = cd0_8
start_angle = 165
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_10]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Innercore2 Innercore2 '
sides_to_adapt = ' 4 5'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_10]
type = AzimuthalBlockSplitGenerator
input = cd0_10
start_angle = 105
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[cd0_11]
type =HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
meshes_to_adapt_to = 'Outercore Outercore Outercore'
sides_to_adapt = '3 4 5'
num_sectors_per_side= '4 4 4 4 4 4'
hexagon_size = 10.4
background_intervals = 2
background_block_ids = 604
ring_radii = '9 10'
ring_intervals = '1 1'
ring_block_ids = '600 602'
is_control_drum = true
[]
[cd_11]
type = AzimuthalBlockSplitGenerator
input = cd0_11
start_angle = 75
angle_range = 90
old_blocks = 602
new_block_ids = 603
[]
[core]
type = PatternedHexMeshGenerator
inputs = 'Innercore Innercore2 Outercore dummy cd_1 cd_2 cd_3 cd_4 cd_5 cd_6 cd_7 cd_8 cd_9 cd_10 cd_11 cd_12 Outercore2 centralFA'
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pattern_boundary = none
generate_core_metadata = true
#external_boundary_id = 9000
#external_boundary_name = side
pattern =
'3 3 3 15 3 3 3;
3 14 1 1 1 1 4 3;
3 1 1 16 16 16 1 1 3;
13 1 16 2 2 2 2 16 1 5;
3 1 16 2 0 0 0 2 16 1 3;
3 1 16 2 0 0 0 0 2 16 1 3;
3 12 1 2 0 0 17 0 0 2 1 6 3;
3 1 16 2 0 0 0 0 2 16 1 3;
3 1 16 2 0 0 0 2 16 1 3;
11 1 16 2 2 2 2 16 1 7;
3 1 1 16 16 16 1 1 3;
3 10 1 1 1 1 8 3;
3 3 3 9 3 3 3'
rotate_angle = 0
[]
[del_dummy]
type = BlockDeletionGenerator
block = '700 '
input = core
new_boundary = 10000
[]
[ADD_outer_shield]
type = PeripheralRingMeshGenerator
input = del_dummy
peripheral_layer_num = 2
peripheral_ring_radius = 120.1
input_mesh_external_boundary = 10000
peripheral_ring_block_id = 250
#peripheral_ring_block_name = outer_shield
[]
[del_1]
type = PlaneDeletionGenerator
point = '0 0 0'
normal = '10 17.32 0'
input = ADD_outer_shield
new_boundary = 147
[]
[del_2]
type = PlaneDeletionGenerator
point = '0 0 0'
normal = '10 -17.32 0'
input = del_1
new_boundary = 147
[]
[extrude]
type = AdvancedExtruderGenerator
input = del_2
heights = '20 40 40 40 40 40 20'
num_layers ='2 4 4 4 4 4 2'
subdomain_swaps = '10 1000 500 1000 501 1003 5001 1003 5000 1000 400 1000 401 1003 4000 1000 4001 1003 40000 1000 40001 1003 101 1003 100 1000 102 1000 103 1000 301 1003 300 1000;
500 19000 501 19003 5001 19900 5000 19903;
500 29000 501 29003 5001 29900 5000 29903;
500 39000 501 39003 5001 39900 5000 39903;
500 49000 501 49003 5001 49900 5000 49903;
500 59000 501 59003 5001 59900 5000 59903;
10 1000 500 1000 501 1003 5001 1003 5000 1000 400 1000 401 1003 4000 1000 4001 1003 40000 1000 40001 1003 101 1003 100 1000 102 1000 103 1000 301 1773 300 1777'
direction = '0 0 1'
top_boundary = 2000
bottom_boundary = 3000
[]
[rename_blocks]
type = RenameBlockGenerator
old_block = ' 10 100 101 102 103 200 201 400 401 4000 4001 40000 40001 300 301 600 602 603 604 1000 1003 19000 29000 39000 49000 59000 19003 29003 39003 49003 59003 19900 29900 39900 49900 59900 19903 29903 39903 49903 59903 1777 1773 250'
new_block = 'monolith moderator moderator_tri Cr FECRAL coolant coolant_tri Fuel_in Fuel_tri_in Fuel_mid Fuel_tri_mid Fuel_out Fuel_tri_out Control_hole Control_hole_tri CD_Radial1 CD_Radial2 CD_poison CD_coolant reflector_quad reflector_tri BP0_1 BP0_2 BP0_3 BP0_4 BP0_5 BP0_tr_1 BP0_tr_2 BP0_tr_3 BP0_tr_4 BP0_tr_5 BP1_1 BP1_2 BP1_3 BP1_4 BP1_5 BP1_tr_1 BP1_tr_2 BP1_tr_3 BP1_tr_4 BP1_tr_5 Control_ref Control_ref_tri Rad_ref'
input = extrude
[]
[rename_sidesets]
type = RenameBoundaryGenerator
input = rename_blocks
old_boundary = '2000 3000 10000 147 '
new_boundary = 'top_boundary bottom_boundary side cut_surf'
[]
[scale] # unit convert from cm to m
type = TransformGenerator
input = rename_sidesets
transform = SCALE
vector_value = '1e-2 1e-2 1e-2'
[]
[]
(microreactors/gcmr/core/MESH/Griffin_mesh.i)Cross-Section Generation Using Serpent Code
The first step is to generate homogenized multi-group cross-sections using Serpent-2. The specific version used for this work is Serpent 2.1.32**. The generated cross-sections are then converted into an XML-format file for compatibility with Griffin.
%------------------------------------------------------------------------------------------
% ANL GCMR Serpent (Version 2.1.32) Model Input
% If using or referring to this model, please cite as explained in
% https://mooseframework.inl.gov/virtual_test_bed/citing.html
% Contacts: Ahmed Abdelhameed (aabdelhameed.at.anl.gov), Nicolas Stauff (nstauff.at.anl.gov)
% -----------------------------------------------------------------------------------------
set title "ANL GC MicroReactor"
surf inf inf
pbed 700 33 "PART_U900_PF40_R85.inp"
pbed 701 33 "PART_U901_PF40_R85.inp"
pbed 702 33 "PART_U902_PF40_R85.inp"
pbed 754 33 "PART_U954_PF25_R25.inp"
pbed 764 33 "PART_U964_PF25_R25.inp"
% infinite cells defining material universes
cell 51 802 moderator -inf
cell 52 33 matrix_pin -inf
cell 53 803 matrix -inf
cell 54 804 coolant -inf
cell 55 805 Refl -inf
cell 56 806 shell_mod -inf
cell 57 807 coolant -inf
cell 58 809 boron_ctr -inf
cell 59 810 Cr -inf
cell 155 811 Refl -inf
% Fuel region
particle 900
fuel0 2.1250e-02
buffer 3.1250e-02
PyC1 3.5250e-02
SiC 3.8750e-02
PyC2 4.2750e-02
matrix_pin
particle 901
fuel1 2.1250e-02
buffer 3.1250e-02
PyC1 3.5250e-02
SiC 3.8750e-02
PyC2 4.2750e-02
matrix_pin
particle 902
fuel2 2.1250e-02
buffer 3.1250e-02
PyC1 3.5250e-02
SiC 3.8750e-02
PyC2 4.2750e-02
matrix_pin
cell i110 3 fill 700 -1 95l -95lu1 % fuel compact
cell i111 3 fill 700 -1 95lu1 -95lu2 % fuel compact
cell i112 3 fill 700 -1 95lu2 -95lu3 % fuel compact
cell i113 3 fill 700 -1 95lu3 -95lu4 % fuel compact
cell i114 3 fill 700 -1 95lu4 -95u % fuel compact
cell i12 3 fill 803 1 95l -95u
cell i13 3 fill 805 95u
cell i14 3 fill 805 -95l
cell m110 5 fill 701 -1 95l -95lu1 % fuel compact
cell m111 5 fill 701 -1 95lu1 -95lu2 % fuel compact
cell m112 5 fill 701 -1 95lu2 -95lu3 % fuel compact
cell m113 5 fill 701 -1 95lu3 -95lu4 % fuel compact
cell m114 5 fill 701 -1 95lu4 -95u % fuel compact
cell m12 5 fill 803 1 95l -95u
cell m13 5 fill 805 95u
cell m14 5 fill 805 -95l
cell o110 8 fill 702 -1 95l -95lu1 % fuel compact
cell o111 8 fill 702 -1 95lu1 -95lu2 % fuel compact
cell o112 8 fill 702 -1 95lu2 -95lu3 % fuel compact
cell o113 8 fill 702 -1 95lu3 -95lu4 % fuel compact
cell o114 8 fill 702 -1 95lu4 -95u % fuel compact
cell o12 8 fill 803 1 95l -95u
cell o13 8 fill 805 95u
cell o14 8 fill 805 -95l
% Coolant channel:
cell 20 6 fill 807 -7
cell 21 6 fill 803 7 95l -95u
cell 22 6 fill 805 7 95u
cell 23 6 fill 805 7 -95l
% Central control pin
cell 29 7 fill 805 -9 -95l
cell 30 7 fill 804 -9 95l -97l
cell 31 7 fill 809 -9 97l
cell 32 7 fill 805 9 95u
cell 33 7 fill 805 9 -95l
cell 34 7 fill 803 9 95l -95u
cell m29 27 fill 805 -9 -95l
cell m30 27 fill 804 -9 95l -97lh
cell m31 27 fill 809 -9 97lh
cell m32 27 fill 805 9 95u
cell m33 27 fill 805 9 -95l
cell m34 27 fill 803 9 95l -95u
particle 952
Gd_bpI1 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 954
Gd_bpI2 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 955
Gd_bpI3 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 961
Gd_bpO1 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 963
Gd_bpO2 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 964
Gd_bpO3 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
particle 965
Gd_bpO3 0.0100 % kernel at 100 microns
buffer 0.0118 % graphite at 18 microns
PyC1 0.0141 % different graphite at 23 microns
matrix_pin
cell i150 2 fill 754 -2 95l -95lu1 % burnable compact
cell i151 2 fill 754 -2 95lu1 -95lu2 % burnable compact
cell i152 2 fill 754 -2 95lu2 -95lu3 % burnable compact
cell i153 2 fill 754 -2 95lu3 -95lu4 % burnable compact
cell i154 2 fill 754 -2 95lu4 -95u % burnable compact
cell i16 2 fill 803 2 95l -95u
cell i17 2 fill 805 95u
cell i18 2 fill 805 -95l
cell o150 9 fill 764 -2 95l -95lu1 % burnable compact
cell o151 9 fill 764 -2 95lu1 -95lu2 % burnable compact
cell o152 9 fill 764 -2 95lu2 -95lu3 % burnable compact
cell o153 9 fill 764 -2 95lu3 -95lu4 % burnable compact
cell o154 9 fill 764 -2 95lu4 -95u % burnable compact
cell o16 9 fill 803 2 95l -95u
cell o17 9 fill 805 95u
cell o18 9 fill 805 -95l
% plain graphite region
cell 36 1 fill 803 95l -95u
cell 37 1 fill 805 95u
cell 38 1 fill 805 -95l
% Moderator region:
cell 40 4 fill 802 -3 95l -95u % 0.95 cm pin
cell 41a 4 fill 810 3 -4 95l -95u % 0.05 cm coating
cell 41b 4 fill 806 4 -5 95l -95u % 0.05 cm shell
cell 42 4 fill 803 5 95l -95u
cell 43 4 fill 806 -5 96l -95l % 0.05 cm shell
cell 44 4 fill 806 -5 95u -96u % 0.05 cm shell
cell 45 4 fill 805 5 96l -95l % 0.05 cm shell
cell 46 4 fill 805 5 95u -96u % 0.05 cm shell
cell 47 4 fill 805 96u
cell 48 4 fill 805 -96l
% --- cylinders
surf 1 cyl 0.0 0.0 0.850 0.000000 240
surf 2 cyl 0.0 0.0 0.250 0.000000 240
surf 3 cyl 0.0 0.0 0.693 0.000000 240
surf 4 cyl 0.0 0.0 0.700 0.000000 240
surf 5 cyl 0.0 0.0 0.750 0.000000 240
surf 7 cyl 0.0 0.0 0.600 0.000000 240
surf 9 cyl 0.0 0.0 0.950 0.000000 240
% --- axial dimensions
surf 95l pz 20
surf 95lu1 pz 60.0
surf 95lu2 pz 100.0
surf 95lu3 pz 140.0
surf 95lu4 pz 180.0
surf 95u pz 220
surf 96l pz 19.95
surf 96u pz 220.05
surf 97l pz 220
surf 97lh pz 220
% --- hexprism assembly
surf 30 hexxprism 0.0 0.0 10.4000 0 240
% --- Assembly lattice
lat 26 3 0.0 0.0 13 13 2.000000 % regular fuel assembly with rods - central
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 3 6 3 3 6 3 1
1 1 1 1 1 6 4 3 6 3 4 6 1
1 1 1 1 3 3 6 3 3 6 3 3 1
1 1 1 3 6 3 2 6 2 3 6 3 1
1 1 6 3 3 6 3 3 6 3 3 6 1
1 3 4 6 2 3 6 3 2 6 4 3 1
1 6 3 3 6 3 3 6 3 3 6 1 1
1 3 6 3 2 6 2 3 6 3 1 1 1
1 3 3 6 3 3 6 3 3 1 1 1 1
1 6 4 3 6 3 4 6 1 1 1 1 1
1 3 6 3 3 6 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
cell 67 19 fill 26 -30
cell 167 19 fill 803 30
lat 13 3 0.0 0.0 13 13 2.000000 % regular fuel assembly - inner
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 6 3 3 6 2 1
1 1 1 1 1 6 4 3 6 3 4 6 1
1 1 1 1 3 3 6 3 3 6 3 3 1
1 1 1 3 6 3 2 6 2 3 6 3 1
1 1 6 3 3 6 3 3 6 3 3 6 1
1 2 4 6 2 3 6 3 2 6 4 2 1
1 6 3 3 6 3 3 6 3 3 6 1 1
1 3 6 3 2 6 2 3 6 3 1 1 1
1 3 3 6 3 3 6 3 3 1 1 1 1
1 6 4 3 6 3 4 6 1 1 1 1 1
1 2 6 3 3 6 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
cell 60 14 fill 13 -30
cell 160 14 fill 803 30
lat 10 3 0.0 0.0 13 13 2.000000 % regular fuel assembly with rods - middle
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 5 6 5 5 6 5 1
1 1 1 1 1 6 4 5 6 5 4 6 1
1 1 1 1 5 5 6 5 5 6 5 5 1
1 1 1 5 6 5 2 6 2 5 6 5 1
1 1 6 5 5 6 5 5 6 5 5 6 1
1 5 4 6 2 5 7 5 2 6 4 5 1
1 6 5 5 6 5 5 6 5 5 6 1 1
1 5 6 5 2 6 2 5 6 5 1 1 1
1 5 5 6 5 5 6 5 5 1 1 1 1
1 6 4 5 6 5 4 6 1 1 1 1 1
1 5 6 5 5 6 5 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
cell 61 15 fill 10 -30
cell 161 15 fill 803 30
lat 12 3 0.0 0.0 13 13 2.000000 % regular fuel assembly with rods - middle core - 2nd type of CR
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 5 6 5 5 6 5 1
1 1 1 1 1 6 4 5 6 5 4 6 1
1 1 1 1 5 5 6 5 5 6 5 5 1
1 1 1 5 6 5 2 6 2 5 6 5 1
1 1 6 5 5 6 5 5 6 5 5 6 1
1 5 4 6 2 5 27 5 2 6 4 5 1
1 6 5 5 6 5 5 6 5 5 6 1 1
1 5 6 5 2 6 2 5 6 5 1 1 1
1 5 5 6 5 5 6 5 5 1 1 1 1
1 6 4 5 6 5 4 6 1 1 1 1 1
1 5 6 5 5 6 5 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
cell 66 25 fill 12 -30
cell 166 25 fill 803 30
lat 11 3 0.0 0.0 13 13 2.000000 % regular fuel assembly without rod and burnable poisons - outer core
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 8 6 8 8 6 8 1
1 1 1 1 1 6 4 8 6 8 4 6 1
1 1 1 1 8 8 6 8 8 6 8 8 1
1 1 1 8 6 8 2 6 2 8 6 8 1
1 1 6 8 8 6 8 8 6 8 8 6 1
1 8 4 6 2 8 6 8 2 6 4 8 1
1 6 8 8 6 8 8 6 8 8 6 1 1
1 8 6 8 2 6 2 8 6 8 1 1 1
1 8 8 6 8 8 6 8 8 1 1 1 1
1 6 4 8 6 8 4 6 1 1 1 1 1
1 8 6 8 8 6 8 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
cell 62 16 fill 11 -30
cell 162 16 fill 803 30
% control drum region (currently plain)
cell 164 17 fill 807 -30
cell 165 17 fill 811 30
% reflector region
cell 63 18 fill 811 -30
cell 163 18 fill 811 30
lat 50 2 0.0 0.0 17 17 20.8
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18 18 18 17 18 18 18 18 18
18 18 18 18 18 18 18 18 17 16 16 16 16 17 18 18 18
18 18 18 18 18 18 18 16 16 15 15 15 16 16 18 18 18
18 18 18 18 18 17 16 15 25 25 25 25 15 16 17 18 18
18 18 18 18 18 16 15 25 14 14 14 25 15 16 18 18 18
18 18 18 18 16 15 25 14 14 14 14 25 15 16 18 18 18
18 18 18 17 16 25 14 14 14 14 14 25 16 17 18 18 18
18 18 18 16 15 25 14 14 14 14 25 15 16 18 18 18 18
18 18 18 16 15 25 14 14 14 25 15 16 18 18 18 18 18
18 18 17 16 15 25 25 25 25 15 16 17 18 18 18 18 18
18 18 18 16 16 15 15 15 16 16 18 18 18 18 18 18 18
18 18 18 17 16 16 16 16 17 18 18 18 18 18 18 18 18
18 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
surf 11 cyl 0.0 0.0 121 0.0 240
cell 170 0 fill 50 -11
% -----------DRUMS DEFINITTION---------------------------------------------------------------------------------------
731 732 733 734 735 736 737 738 739 740 741 742
cell 180 0 fill 731 -731
cell 181 0 fill 732 -732
cell 182 0 fill 733 -733
cell 183 0 fill 734 -734
cell 184 0 fill 735 -735
cell 185 0 fill 736 -736
cell 186 0 fill 737 -737
cell 187 0 fill 738 -738
cell 188 0 fill 739 -739
cell 189 0 fill 740 -740
cell 190 0 fill 741 -741
cell 191 0 fill 742 -742
surf 731 cyl 104.0000 0.00 10.0000 0.00 240.00
surf 831 cyl 104.0000 0.00 9.0000 0.00 240.00
surf 771 plane 1.0000 0.00 0.0 110.36
surf 871 plane 1.0000 -0.00 0.0 97.64
cell 801 731 fill 811 -731 -771
cell 802 731 fill 809 831 -731 771
cell 803 731 fill 811 -831 771
surf 732 cyl 52.0000 90.07 10.0000 0.00 240.00
surf 832 cyl 52.0000 90.07 9.0000 0.00 240.00
surf 772 plane 1.0000 1.73 0.0 220.73
surf 872 plane 1.0000 1.73 0.0 195.27
cell 806 732 fill 811 -732 -772
cell 807 732 fill 809 832 -732 772
cell 808 732 fill 811 -832 772
surf 733 cyl -52.0000 90.07 10.0000 0.00 240.00
surf 833 cyl -52.0000 90.07 9.0000 0.00 240.00
surf 773 plane 1.0000 -1.73 0.0 -220.73
surf 873 plane 1.0000 -1.73 0.0 -195.27
cell 811 733 fill 811 -733 773
cell 812 733 fill 809 833 -733 -773
cell 813 733 fill 811 -833 -773
surf 734 cyl -104.0000 0.00 10.0000 0.00 240.00
surf 834 cyl -104.0000 0.00 9.0000 0.00 240.00
surf 774 plane 1.0000 -0.00 0.0 -110.36
surf 874 plane 1.0000 0.00 0.0 -97.64
cell 816 734 fill 811 -734 774
cell 817 734 fill 809 834 -734 -774
cell 818 734 fill 811 -834 -774
surf 735 cyl -52.0000 -90.07 10.0000 0.00 240.00
surf 835 cyl -52.0000 -90.07 9.0000 0.00 240.00
surf 775 plane 1.0000 1.73 0.0 -220.73
surf 875 plane 1.0000 1.73 0.0 -195.27
cell 821 735 fill 811 -735 775
cell 822 735 fill 809 835 -735 -775
cell 823 735 fill 811 -835 -775
surf 736 cyl 52.0000 -90.07 10.0000 0.00 240.00
surf 836 cyl 52.0000 -90.07 9.0000 0.00 240.00
surf 776 plane 1.0000 -1.73 0.0 220.73
surf 876 plane 1.0000 -1.73 0.0 195.27
cell 826 736 fill 811 -736 -776
cell 827 736 fill 809 836 -736 776
cell 828 736 fill 811 -836 776
surf 737 cyl 93.6000 54.04 10.0000 0.00 240.00
surf 837 cyl 93.6000 54.04 9.0000 0.00 240.00
surf 777 plane 1.0000 0.58 0.0 132.15
surf 877 plane 1.0000 0.58 0.0 117.45
cell 831 737 fill 811 -737 -777
cell 832 737 fill 809 837 -737 777
cell 833 737 fill 811 -837 777
surf 738 cyl 0.0000 108.08 10.0000 0.00 240.00
surf 838 cyl 0.0000 108.08 9.0000 0.00 240.00
surf 778 plane 0.0000 1.00 0.0 114.44
surf 878 plane 1.0000 895647891448936.75 0.0 91101729311334400.00
cell 836 738 fill 811 -738 -778
cell 837 738 fill 809 838 -738 778
cell 838 738 fill 811 -838 778
surf 739 cyl -93.6000 54.04 10.0000 0.00 240.00
surf 839 cyl -93.6000 54.04 9.0000 0.00 240.00
surf 779 plane 1.0000 -0.58 0.0 -132.15
surf 879 plane 1.0000 -0.58 0.0 -117.45
cell 841 739 fill 811 -739 779
cell 842 739 fill 809 839 -739 -779
cell 843 739 fill 811 -839 -779
surf 740 cyl -93.6000 -54.04 10.0000 0.00 240.00
surf 840 cyl -93.6000 -54.04 9.0000 0.00 240.00
surf 780 plane 1.0000 0.58 0.0 -132.15
surf 880 plane 1.0000 0.58 0.0 -117.45
cell 846 740 fill 811 -740 780
cell 847 740 fill 809 840 -740 -780
cell 848 740 fill 811 -840 -780
surf 741 cyl -0.0000 -108.08 10.0000 0.00 240.00
surf 841 cyl -0.0000 -108.08 9.0000 0.00 240.00
surf 781 plane 1.0000 895647891448936.75 0.0 -102501465868115968.00
surf 881 plane 1.0000 895647891448936.38 0.0 -91101729311334368.00
cell 851 741 fill 811 -741 781
cell 852 741 fill 809 841 -741 -781
cell 853 741 fill 811 -841 -781
surf 742 cyl 93.6000 -54.04 10.0000 0.00 240.00
surf 842 cyl 93.6000 -54.04 9.0000 0.00 240.00
surf 782 plane 1.0000 -0.58 0.0 132.15
surf 882 plane 1.0000 -0.58 0.0 117.45
cell 856 742 fill 811 -742 -782
cell 857 742 fill 809 842 -742 782
cell 858 742 fill 811 -842 782
cell 171 0 outside 11
set ures 1
% -----------------------------------------------------------------------------------
% Material data:
% materials
mat fuel0 -10.7440 burn 1 tmp 725.0 rgb 200 0 0
92235.01c 6.8794e-02
92238.01c 2.7604e-01
6012.01c 1.3793e-01
8016.01c 5.1724e-01
mat fuel1 -10.7440 burn 1 tmp 725.0 rgb 230 0 0
92235.01c 6.8794e-02
92238.01c 2.7604e-01
6012.01c 1.3793e-01
8016.01c 5.1724e-01
mat fuel2 -10.7440 burn 1 tmp 725.0 rgb 255 0 0
92235.01c 6.8794e-02
92238.01c 2.7604e-01
6012.01c 1.3793e-01
8016.01c 5.1724e-01
mat Gd_bpI1 -7.0395 burn 1 tmp 725.0 rgb 0 0 200
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat Gd_bpI2 -7.0395 burn 1 tmp 725.0 rgb 0 0 250
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat Gd_bpI3 -7.0395 burn 1 tmp 725.0 rgb 0 0 200
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat Gd_bpO1 -7.0395 burn 1 tmp 725.0 rgb 0 0 250
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat Gd_bpO2 -7.0395 burn 1 tmp 725.0 rgb 0 0 200
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat Gd_bpO3 -7.0395 burn 1 tmp 725.0 rgb 0 0 250
64152.01c 2.43139E-05
64154.01c 2.61576E-04
64155.01c 1.76435E-03
64156.01c 2.42465E-03
64157.01c 1.84189E-03
64158.01c 2.90497E-03
64160.01c 2.52445E-03
8016.01c 3.52386E-02
mat boron_ctr -2.4700 tmp 725.0 rgb 0 0 250 % highly enriched B4C
5010.01c 0.768
5011.01c 0.032
6012.01c 0.20
mat coolant -3.6500e-03 tmp 725.0 rgb 0 0 100
2004.01c 1.0
mat shell_mod -7.0550 tmp 725.0 rgb 33 233 133 % density at 900K - FeCrAl
24050.01c 8.6800E-03
24052.01c 1.6762E-01
24053.01c 1.8980E-02
24054.01c 4.7200E-03
26054.01c 4.3790E-02
26056.01c 6.9249E-01
26057.01c 1.6610E-02
26058.01c 2.1140E-03
13027.01c 4.5000E-02
% --- Carbon buffer layer:
mat buffer -1.0400 moder grph 6012 tmp 725.0 rgb 0 200 200
6012.01c 1.0
% --- Pyrolytic carbon layer:
mat PyC1 -1.8820 moder grph 6012 tmp 725.0 rgb 0 200 200
6012.01c 1.0
% --- Pyrolytic carbon layer:
mat PyC2 -1.8820 moder grph 6012 tmp 725.0 rgb 0 200 200
6012.01c 1.0
% --- Silicon carbide layer:
mat SiC -3.1710 tmp 725.0 rgb 0 100 0
14028.01c 0.4611
14029.01c 0.0234
14030.01c 0.0154
6012.01c 0.5
mat Nb -8.4132 tmp 725.0 rgb 100 0 100 % Nobium
41093.01c -0.99
40090.01c -5.132E-03
40091.01c -1.107E-03
40092.01c -1.674E-03
40094.01c -1.660E-03
40096.01c -2.618E-04
mat Cr -7.1900 tmp 725.0 rgb 100 0 200 % Chromium
24050.01c -4.345e-2
24052.01c -83.789e-2
24053.01c -9.501e-2
24054.01c -2.365e-2
% --- Graphite matrix:
mat matrix_pin -1.8060 moder grph 6012 tmp 725.0 rgb 220 220 220
6012.01c 1
mat matrix -1.8060 moder grph 6012 tmp 725.0 rgb 200 200 200
6012.01c 0.9999997
5010.01c 0.0000003
mat moderator -4.0850 moder h-yh2 1001 moder y-yh2 39089 tmp 725.0 rgb 73 64 171
39089.01c 0.357142857
1001.01c 0.642857143
mat Refl -2.7987 moder beo 4009 tmp 725.0 rgb 100 220 200 % GREY
4009.01c 0.5
8016.01c 0.5
% -----------------------------------------------------------------------------
therm grph grph.84t
therm beo be-beo.84t
therm h-yh2 h-yh2.84t
therm y-yh2 y-yh2.84t
% Calculation parameters:
% -----------------------------------------------------------------------------
% --- Geometry plot:
plot 3 10000 10000 120.0
plot 2 10000 10000 0.2
% --- Libraries:
% Add your own libraries here
set acelib "sss_endfb8_serpent_yan.xsdir" % ACE library for cross-sections
set declib "sss_endfb7.dec" % Decay library
set nfylib "sss_endfb7.nfy" % Neutron fission yield library
% --- Boundary conditions:
set bc 1
% --- Power density
set power 20000000.0 % W
% --- Histories:
set pop 10000 300 30
set xenon 1
set gcu 700 701 702 754 764 802 803 804 805 806 807 809 810 811
set nfg 11 8.00000e-08 1.80000e-07 6.25000e-07 1.30000e-06 4.00000e-06
1.48730e-04 9.11800e-03 1.83000e-01 5.00000e-01 1.35300e+00
% -----------------------------------------------------------------------------
(microreactors/gcmr/core/Serpent_Model/serpent_input.i)Note on LFS files linked to Serpent Model
Git Large File Storage (LFS) is used for the following files:
PART_U901_PF40_R85
PART_U902_PF40_R85
PART_U903_PF40_R85
PART_U904_PF40_R85
These files define the distribution, and radius of the TRISO and burnable poison particles considering specific packing fraction. Make sure to install git lfs, then fetch and pull these files to be able to run the Serpent inputs.
Griffin Model
Griffin utilizes the cross-sections in the XML-format file in conjunction with the mesh file. The 3D whole-core mesh is constructed using MOOSE's Reactor module, ensuring consistency between geometric representations in the mesh file and Serpent-2. Griffin solves the neutron transport equation using discontinuous finite element (DFEM) with SN transport and CMFD acceleration, employing on-the-fly coarse mesh generation for CMFD.
Note: Efforts were dedicated to simplifying the 3D whole-core GC-MR mesh to reduce computational demands. Special attention was given to avoid too coarse mesh sizes, particularly in critical regions such as the radial reflector and control drum areas, ensuring proper convergence of DFEM-SN with CMFD.
#####################################################################################################
# Griffin steady state Model of whole-core Gas-cooled Microreactor
# DFEM-SN with CMFD acceleration
# If using or referring to this model, please cite as explained in
# https://mooseframework.inl.gov/virtual_test_bed/citing.html
#####################################################################################################
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'mesh/Griffin_mesh_in.e'
[]
[fmg_id]
type = SubdomainExtraElementIDGenerator
input = fmg
subdomains = '10 100 101 102 103 200 201 400 401 4000 4001 40000 40001 300 301 600 602 603 604 1000 1003 19000 29000 39000 49000 59000 19003 29003 39003 49003 59003 19900 29900 39900 49900 59900 19903 29903 39903 49903 59903 1777 1773 250'
extra_element_id_names = 'material_id'
extra_element_ids = '803 802 802 810 806 807 807 700 700 701 701 702 702 807 807 811 811 809 807 805 805 764 764 764 764 764 764 764 764 764 764 754 754 754 754 754 754 754 754 754 754 809 809 811'
[]
[coarse_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -1.21
xmax = 1.21
ymin = -1.21
ymax = 1.21
zmin = 0.0
zmax = 2.4
[]
[assign_coarse_id]
type = CoarseMeshExtraElementIDGenerator
input = fmg_id
coarse_mesh = coarse_mesh
extra_element_id_name = coarse_element_id
[]
[]
[Executioner]
type = SweepUpdate
# Richardson iterations
richardson_abs_tol = 1e-8
richardson_rel_tol = 1e-8
richardson_value = eigenvalue
richardson_max_its = 1000
inner_solve_type = GMRes
max_inner_its = 20
fixed_point_max_its = 1
custom_rel_tol = 1e-6
force_fixed_point_solve = true
#CMFD acceletation
cmfd_acceleration = true
coarse_element_id = coarse_element_id
diffusion_eigen_solver_type = newton
prolongation_type = multiplicative
max_diffusion_coefficient = 1
[]
[Debug]
check_boundary_coverage = false
print_block_volume = false
show_actions = false
[]
[AuxVariables]
[Tf]
initial_condition = 725.0
order = CONSTANT
family = MONOMIAL
[]
[]
[TransportSystems]
particle = neutron
equation_type = eigenvalue
G = 11
VacuumBoundary = 'top_boundary bottom_boundary side'
ReflectingBoundary = 'cut_surf'
[SN]
scheme = DFEM-SN
family = MONOMIAL
order = FIRST
AQtype = Gauss-Chebyshev
NPolar = 2
NAzmthl = 3
NA = 2
n_delay_groups = 6
sweep_type = asynchronous_parallel_sweeper
using_array_variable = true
collapse_scattering = true
hide_angular_flux = true
[]
[]
[GlobalParams]
library_file = '../ISOXML/XS_Griffin.xml'
library_name = XS_Griffin
isotopes = 'pseudo'
densities = 1.0
is_meter = true
plus = true
dbgmat = false
grid_names = 'Tfuel'
grid_variables = 'Tf'
[]
[PowerDensity]
power = 20000000
power_density_variable = power_density
[]
[Materials]
[mod]
type = CoupledFeedbackMatIDNeutronicsMaterial
block = '10 100 101 102 103 200 201 400 401 4000 4001 40000 40001 300 301 600 602 603 604 1000 1003 19000 29000 39000 49000 59000 19003 29003 39003 49003 59003 19900 29900 39900 49900 59900 19903 29903 39903 49903 59903 1777 1773 250'
[]
[]
[UserObjects]
[axial_power_inner]
type = LayeredIntegral
variable = power_density
direction = z
num_layers = 24
block = '400 401 4000 4001 40000 40001 1000 1003'
[]
[]
[AuxKernels]
[axial_power_inner]
type = SpatialUserObjectAux
variable = axial_power_inner
execute_on = timestep_end
user_object = axial_power_inner
[]
[]
[AuxVariables]
[axial_power_inner]
order = CONSTANT
family = MONOMIAL
[]
[]
[VectorPostprocessors]
[axial_power_inner_elm]
type = ElementValueSampler
variable = axial_power_inner
sort_by = z
execute_on = timestep_end
[]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
(microreactors/gcmr/core/Neutronics/Griffin_steady_state.i)Run Commands
The mesh file can be generated using the –mesh-only option as such:
mpirun -np <number_of_cores> /path/to/griffin-opt -i mesh_input.i --mesh-only
We can then execute the simulation as follows:
mpirun -np <number_of_cores> /path/to/griffin-opt -i Griffin_steady_state.i
The Griffin code is a component of the blue_crab code package, so griffin-opt
can be replaced with the BlueCrab executable : blue_crab-opt
.
Results
Segmentations of the whole-core GC-MR mesh utilized in the analyses, employing DFEM-SN with CMFD and an 11-energy-group structure, are illustrated in Figure 6. The simulation was conducted for 1/6 of the core with reflected boundary conditions on the cut surfaces and vacuum boundaries for the remaining surfaces. The resulting k-eff value for 2 polar angles and 3 azimuthal angles in the SN was determined as 1.051468, reasonably aligning with the k-eff value obtained from the Monte Carlo Serpent-2 code, which is 1.054670 ± 16 pcm. It was determined that an even closer alignment could be achieved with higher numbers of polar and azimuthal angles. Figure 7 presents a comparison between the normalized axial power distribution computed by both Serpent-2 and Griffin for DFEM-SN (n_polar=2,n_azimuthal=3) with CMFD.

Figure 6: 1/6 GCMR core with reflective boundary condition

Figure 7: Normalized axial power distribution computed by both Serpent-2 and Griffin
References
- Emily Shemon, Yinbin Miao, Shikhar Kumar, Kun Mo, Yeon Sang Jung, Aaron Oaks, Scott Richards, Guillaume Giudicelli, Logan Harbour, and Roy Stogner.
Moose reactor module: an open-source capability for meshing nuclear reactor geometries.
Nuclear Science and Engineering, 0(0):1–25, 2023.
URL: https://doi.org/10.1080/00295639.2022.2149231, arXiv:https://doi.org/10.1080/00295639.2022.2149231, doi:10.1080/00295639.2022.2149231.[BibTeX]