General Pebble Bed Reactor with Stochastic Analyses

Contact: Zachary M. Prince, [email protected]

Model link: GPBR200 Model

Purpose and Background

This 200MWth General Pebble Bed Reactor (GPBR200) model is the latest iteration of a series of pebble-bed high-temperature gas reactor (HTGR) models developed at Idaho National Laboratory (INL) using MOOSE-based applications. These models are primarily meant as a testing ground for multiphysics, optimization, and stochastic methods for PBRs, some also serving as verification benchmarks. An in-depth description of the latest iteration can be found in Prince et al. (2024). It is recommended to read this paper before continuing in the exposition here.

The purpose of this exposition is to show how to perform multiphysics simulations of PBRs and stochastic analyses of reactors, in general, with MOOSE-based applications. This is done by presenting and explaining the inputs that perform:

Brief Geometry and Property Description

The GPBR200 model is 2D axisymmetric geometry shown in Figure 1. The mesh shown was generated using a custom MOOSE MeshGenerator, not currently available publicly. The relevant properties of the model are shown in Table 1. Note that these are "nominal" property values, where some of them will be varied as part of the stochastic analyses.

Figure 1: Geometric diagram of GPBR200 model.

Table 1: Nominal properties of GPBR200 model.

PropertyValueUnit
Power200MW
Core radius1.2m
Core height8.93m
Pebble diameter6cm
TRISO filling factor9.34%
Fuel kernel compositionUCO
Fuel kernel diameter0.425mm
Fuel enrichment15.5%wt
Discharge rate1.5pebbles/min
Discharge limit147.6MWd/kg
He mass flow rate64.3kg/s
He inlet temperature260°C
He outlet pressure5.8MPa
RCCS temperature70°C

Outline

The remainder of this model description dives deeply into the inputs and a presentation of results, which are mostly showcased in Prince et al. (2024).

  1. Equilibrium Core Neutronics with Griffin

  2. Thermal Hydraulics with Pronghorn

  3. Pebble Thermomechanics with Bison

  4. Multiphysics Coupling

  5. Pebble Surrogate Modeling

  6. Design-Space Sensitivity Analysis

References

  1. Guillaume Giudicelli, Alexander Lindsay, Logan Harbour, Casey Icenhour, Mengnan Li, Joshua E. Hansel, Peter German, Patrick Behne, Oana Marin, Roy H. Stogner, Jason M. Miller, Daniel Schwen, Yaqi Wang, Lynn Munday, Sebastian Schunert, Benjamin W. Spencer, Dewen Yushu, Antonio Recuero, Zachary M. Prince, Max Nezdyur, Tianchen Hu, Yinbin Miao, Yeon Sang Jung, Christopher Matthews, April Novak, Brandon Langley, Timothy Truster, Nuno Nobre, Brian Alger, David Andrš, Fande Kong, Robert Carlsen, Andrew E. Slaughter, John W. Peterson, Derek Gaston, and Cody Permann. 3.0 - MOOSE: enabling massively parallel multiphysics simulations. SoftwareX, 26:101690, 2024. URL: https://www.sciencedirect.com/science/article/pii/S235271102400061X, doi:https://doi.org/10.1016/j.softx.2024.101690.[BibTeX]
  2. A.J. Novak, R.W. Carlsen, S. Schunert, P. Balestra, D. Reger, R.N. Slaybaugh, and R.C. Martineau. Pronghorn: a multidimensional coarse-mesh application for advanced reactor thermal hydraulics. Nuclear Technology, 207:1015–1046, 2021. URL: https://www.tandfonline.com/doi/full/10.1080/00295450.2020.1825307, doi:https://doi.org/10.1080/00295450.2020.1825307.[BibTeX]
  3. Zachary M. Prince, Paolo Balestra, Javier Ortensi, Sebastian Schunert, Olin Calvin, Joshua T. Hanophy, Kun Mo, and Gerhard Strydom. Sensitivity analysis, surrogate modeling, and optimization of pebble-bed reactors considering normal and accident conditions. Nuclear Engineering and Design, 428:113466, 2024. doi:https://doi.org/10.1016/j.nucengdes.2024.113466.[BibTeX]
  4. Andrew E Slaughter, Zachary M Prince, Peter German, Ian Halvic, Wen Jiang, Benjamin W Spencer, Somayajulu L N Dhulipala, and Derek R Gaston. MOOSE Stochastic Tools: A module for performing parallel, memory-efficient in situ stochastic simulations. SoftwareX, 22:101345, 2023. doi:10.1016/j.softx.2023.101345.[BibTeX]
  5. Yaqi Wang, Zachary M. Prince, Hansol Park, Olin W. Calvin, Namjae Choi, Yeon Sang Jung, Sebastian Schunert, Shikhar Kumar, Joshua T. Hanophy, Vincent M. Labouré, Changho Lee, Javier Ortensi, Logan H. Harbour, and Jackson R. Harter. Griffin: a moose-based reactor physics application for multiphysics simulation of advanced nuclear reactors. Annals of Nuclear Energy, 211:110917, 2025. URL: https://www.sciencedirect.com/science/article/pii/S0306454924005802, doi:https://doi.org/10.1016/j.anucene.2024.110917.[BibTeX]
  6. Richard L. Williamson, Jason D. Hales, Stephen R. Novascone, Giovanni Pastore, Kyle A. Gamble, Benjamin W. Spencer, Wen Jiang, Stephanie A. Pitts, Albert Casagranda, Daniel Schwen, Adam X. Zabriskie, Aysenur Toptan, Russell Gardner, Christoper Matthews, Wenfeng Liu, and Hailong Chen. Bison: a flexible code for advanced simulation of the performance of multiple nuclear fuel forms. Nuclear Technology, 207(7):1–27, 2021. URL: https://doi.org/10.1080/00295450.2020.1836940, doi:10.1080/00295450.2020.1836940.[BibTeX]