StiffenedGasFluidProperties

Fluid properties for a stiffened gas

A simple fluid class that implements a stiffened equation of state (Métayer et al., 2004) (1) where is the ratio of specific heat capacities, is a constant that defines the zero reference state for internal energy, and is a constant representing the attraction between fluid molecules that makes the fluid stiff in comparison to an ideal gas. This equation of state is typically used to represent water that is under very high pressure.

Input Parameters

  • qParameter defining zero point of internal energy

    C++ Type:double

    Options:

    Description:Parameter defining zero point of internal energy

  • p_infStiffness parameter

    C++ Type:double

    Options:

    Description:Stiffness parameter

  • gammaHeat capacity ratio

    C++ Type:double

    Options:

    Description:Heat capacity ratio

  • cvConstant volume specific heat

    C++ Type:double

    Options:

    Description:Constant volume specific heat

Required Parameters

  • mu0.001Dynamic viscosity, Pa.s

    Default:0.001

    C++ Type:double

    Options:

    Description:Dynamic viscosity, Pa.s

  • rho_c0Critical density, kg/m3

    Default:0

    C++ Type:double

    Options:

    Description:Critical density, kg/m3

  • T_c0Critical temperature, K

    Default:0

    C++ Type:double

    Options:

    Description:Critical temperature, K

  • k0.6Thermal conductivity, W/(m-K)

    Default:0.6

    C++ Type:double

    Options:

    Description:Thermal conductivity, W/(m-K)

  • M0Molar mass, kg/mol

    Default:0

    C++ Type:double

    Options:

    Description:Molar mass, kg/mol

  • q_prime0Parameter

    Default:0

    C++ Type:double

    Options:

    Description:Parameter

  • e_c0Internal energy at the critical point, J/kg

    Default:0

    C++ Type:double

    Options:

    Description:Internal energy at the critical point, J/kg

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Options:

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • force_preauxFalseForces the GeneralUserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Options:

    Description:Forces the GeneralUserObject to be executed in PREAUX

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files

References

  1. O. L. Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci., 43:265–276, 2004.[BibTeX]