LayeredIntegral

under construction:Undocumented Class

The LayeredIntegral has not been documented. The content contained on this page includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.

!syntax description /UserObjects/LayeredIntegral

Input Parameters

  • variableThe name of the variable that this object operates on

    C++ Type:std::vector

    Options:

    Description:The name of the variable that this object operates on

  • directionThe direction of the layers.

    C++ Type:MooseEnum

    Options:x y z

    Description:The direction of the layers.

Required Parameters

  • cumulativeFalseWhen true the value in each layer is the sum of the values up to and including that layer

    Default:False

    C++ Type:bool

    Options:

    Description:When true the value in each layer is the sum of the values up to and including that layer

  • boundsThe 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

    C++ Type:std::vector

    Options:

    Description:The 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

  • sample_typedirectHow to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

    Default:direct

    C++ Type:MooseEnum

    Options:direct interpolate average

    Description:How to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

  • average_radius1When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

    Default:1

    C++ Type:unsigned int

    Options:

    Description:When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

  • num_layersThe number of layers.

    C++ Type:unsigned int

    Options:

    Description:The number of layers.

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector

    Options:

    Description:The list of block ids (SubdomainID) that this object will be applied

Optional Parameters

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Options:

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Options:

    Description:The seed for the master random number generator

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Options:

    Description:Determines whether this object is calculated using an implicit or explicit form

Advanced Parameters

Input Files

Child Objects

References