- absolute_value_vector_tagsThe tag names for extra vectors that the absolute value of the residual should be accumulated intoC++ Type:std::vector<TagName> Controllable:No Description:The tag names for extra vectors that the absolute value of the residual should be accumulated into 
- active__all__ If specified only the blocks named will be visited and made activeDefault:__all__ C++ Type:std::vector<std::string> Controllable:No Description:If specified only the blocks named will be visited and made active 
- base_nameMaterial property base nameC++ Type:std::string Controllable:No Description:Material property base name 
- constraint_typesType of each constraint: strain, stress, or none. The types are specified in the column-major order, and there must be 9 entries in total.C++ Type:MultiMooseEnum Controllable:No Description:Type of each constraint: strain, stress, or none. The types are specified in the column-major order, and there must be 9 entries in total. 
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation incrementsDefault:TaylorExpansion C++ Type:MooseEnum Controllable:No Description:Methods to calculate the finite strain and rotation increments 
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved intoC++ Type:std::vector<TagName> Controllable:No Description:The tag names for extra vectors that residual data should be saved into 
- formulationTOTALSelect between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system.Default:TOTAL C++ Type:MooseEnum Controllable:No Description:Select between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system. 
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BCC++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC 
- inactiveIf specified blocks matching these identifiers will be skipped.C++ Type:std::vector<std::string> Controllable:No Description:If specified blocks matching these identifiers will be skipped. 
- new_systemFalseIf true use the new LagrangianStressDiverence kernels.Default:False C++ Type:bool Controllable:No Description:If true use the new LagrangianStressDiverence kernels. 
- targetsFunctions giving the targets to hit for constraint types that are not none.C++ Type:std::vector<FunctionName> Unit:(no unit assumed) Controllable:No Description:Functions giving the targets to hit for constraint types that are not none. 
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possibleDefault:False C++ Type:bool Controllable:No Description:Flag to use automatic differentiation (AD) objects when possible 
- verboseFalseDisplay extra information.Default:False C++ Type:bool Controllable:No Description:Display extra information. 
- volumetric_locking_correctionFalseFlag to correct volumetric lockingDefault:False C++ Type:bool Controllable:No Description:Flag to correct volumetric locking 
Tensor Mechanics Master Action System
Set up stress divergence kernels with coordinate system aware logic
The TensorMechanics Master Action is a convenience object that simplifies part of the mechanics system setup.
It applies to both the current kernel system based on the StressDivergenceTensors kernels and to the new kernel system based on the TotalLagrangianStressDivergence and UpdatedLagrangianStressDivergence kernels. Some options only apply to one or the other system, as outlined below.
It performs
- Add StressDivergence Kernels (for the current coordinate system) – both systems, only Cartesian coordinates for the Lagrangian kernel system 
- Add WeakPlaneStress Kernel (for weak enforcement of the plane stress condition) – only the - StressDivergenceTensorssystem
- Add Strain calculation material (for the chosen strain model) – both systems 
- Correctly set use of displaced mesh – both systems 
- Optional: Setup of displacement variables (with the correct order for the current mesh) – both systems 
- Optional: Add AuxVariables and AuxKernels for various tensor components and quantity outputs – both systems 
- Optional: Set up out-of-plane stress/strain consistently – only the - StressDivergenceTensorssystem
- Optional: Automatic extraction of eigenstrain names from materials and correct application to proper blocks – both systems 
- Optional: Setup cell-average homogenization constraints on the simulation – only the new Lagrangian kernels 
Constructed MooseObjects
The Tensor Mechanics Master Action is used to construct the kernels, displacement variables, and strain materials in a consistent manner as required for a continuum mechanics simulation simulation. Optionally it generates aux variables and auxkernels to aid in the output of tensor components and scalar quantities.
For the StressDivergenceTensors Kernels
Table 1: Correspondence Among Action Functionality and MooseObjects for the Tensor Mechanics Master Action, current kernel system
| Functionality | Replaced Classes | Associated Parameters | 
|---|---|---|
| Calculate stress divergence equilibrium for the given coordinate system | StressDivergenceTensors and optionally WeakPlaneStress or StressDivergenceRZTensors or StressDivergenceRSphericalTensors | displacements: a string of the displacement field variables | 
| Add the displacement variables | Variables | add_variables: boolean | 
| Calculation of strain for the given coordinate system | ComputeFiniteStrain or ComputePlaneFiniteStrain or ComputeAxisymmetric1DFiniteStrain or ComputeAxisymmetricRZFiniteStrain | strain: MooseEnum to select finite or strain formulations | 
| ComputeSmallStrain or ComputePlaneSmallStrain or ComputeAxisymmetric1DSmallStrain or ComputeAxisymmetricRZSmallStrain | ||
| ComputeIncrementalStrain or ComputePlaneIncrementalStrain or ComputeAxisymmetric1DIncrementalStrain or ComputeAxisymmetricRZIncrementalStrain | incremental: boolean for using a incremental strain formulation | |
| Add AuxVariables and AuxKernels for various tensor component and quantity outputs | Material Properties as well as AuxVariables and RankTwoAux or RankTwoScalarAux or RankFourAux | generate_output: a string of the quantities to add | 
| Add Material Properties for various tensor component and quantity outputs | generate_output: a string of the quantities to add | |
| Add the optional global strain contribution to the strain calculation | Couples the GlobalStrain system | global_strain: name of the material property that computes the global strain tensor | 
Note that there are many variations for the calculation of the stress divergence and the strain measure. Review the theoretical introduction for the Stress Divergence and the Strain Formulations for more information.
For the New Lagrangian Kernel system
Table 2: Correspondence Among Action Functionality and MooseObjects for the Tensor Mechanics Master Action, new kernel system
| Functionality | Replaced Classes | Associated Parameters | 
|---|---|---|
| Calculate stress divergence equilibrium for the given coordinate system | TotalLagrangianStressDivergence or UpdatedLagrangianStressDivergence | displacements: a string of the displacement field variables,formulation: a MooseEnum controlling if theUPDATEDorTOTALLagrangian formulation is used | 
| Add the displacement variables | Variables | add_variables: boolean | 
| Calculation of strain for the given coordinate system | ComputeLagrangianStrain | strain: MooseEnum to select finite or small kinematic formulations | 
| Add AuxVariables and AuxKernels for various tensor component and quantity outputs | Material Properties as well as AuxVariables and RankTwoAux or RankTwoScalarAux or RankFourAux | generate_output: a string of the quantities to add | 
| Add Material Properties for various tensor component and quantity outputs | generate_output: a string of the quantities to add | |
| Add the optional homogenization constraints | Adds all objects required to impose the homogenization constraints | constraint_types: MooseEnum controlling whetherstrainorstressconstraints and imposed,targets: Functions providing the time-dependent targets | 
automatic_eigenstrain_names = true, the eigenstrain_names will be populated under restrictive conditions for classes such as CompositeEigenstrain, ComputeReducedOrderEigenstrain, and RankTwoTensorMaterialADConverter.  The input components for these classes are not included in the "eigenstrain_names" passed to the TensorMechanicsAction.  Set the automatic_eigenstrain_names = false and populate this list manually if these components need to be included.
Example Input File Syntax
New Kernel System
The following example sets up the new Lagrangian kernel system with a total Lagrangian formulation for a large displacement kinematics problem.
[Physics<<<{"href": "../../../Physics/index.html"}>>>]
  [SolidMechanics<<<{"href": "../../../Physics/SolidMechanics/index.html"}>>>]
    [QuasiStatic<<<{"href": "../../../Physics/SolidMechanics/QuasiStatic/index.html"}>>>]
      [all]
        strain<<<{"description": "Strain formulation"}>>> = SMALL
        add_variables<<<{"description": "Add the displacement variables"}>>> = true
        new_system<<<{"description": "If true use the new LagrangianStressDiverence kernels."}>>> = true
        formulation<<<{"description": "Select between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system."}>>> = TOTAL
        volumetric_locking_correction<<<{"description": "Flag to correct volumetric locking"}>>> = true
        generate_output<<<{"description": "Add scalar quantity output for stress and/or strain"}>>> = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy strain_xz strain_yz'
      []
    []
  []
[]New Kernel System, with Homogenization Constraints
The following uses the action to setup homogenization constraints in a problem using the new kernel system.
[Physics<<<{"href": "../../../Physics/index.html"}>>>]
  [SolidMechanics<<<{"href": "../../../Physics/SolidMechanics/index.html"}>>>]
    [QuasiStatic<<<{"href": "../../../Physics/SolidMechanics/QuasiStatic/index.html"}>>>]
      [all]
        strain<<<{"description": "Strain formulation"}>>> = FINITE
        add_variables<<<{"description": "Add the displacement variables"}>>> = true
        new_system<<<{"description": "If true use the new LagrangianStressDiverence kernels."}>>> = true
        formulation<<<{"description": "Select between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system."}>>> = TOTAL
        volumetric_locking_correction<<<{"description": "Flag to correct volumetric locking"}>>> = false
        constraint_types<<<{"description": "Type of each constraint: strain, stress, or none. The types are specified in the column-major order, and there must be 9 entries in total."}>>> = 'stress strain strain strain stress strain strain strain strain'
        targets<<<{"description": "Functions giving the targets to hit for constraint types that are not none."}>>> = 'stress11 strain21 strain31 strain12 stress22 strain32 strain13 strain23 strain33'
        generate_output<<<{"description": "Add scalar quantity output for stress and/or strain"}>>> = 'pk1_stress_xx pk1_stress_xy pk1_stress_xz pk1_stress_yx pk1_stress_yy pk1_stress_yz pk1_stress_zx pk1_stress_zy pk1_stress_zz deformation_gradient_xx deformation_gradient_xy deformation_gradient_xz deformation_gradient_yx deformation_gradient_yy deformation_gradient_yz deformation_gradient_zx deformation_gradient_zy deformation_gradient_zz'
      []
    []
  []
[]Subblocks
The subblocks of the Master action are what triggers MOOSE objects to be built. If none of the mechanics is subdomain restricted a single subblock can be used
[Physics<<<{"href": "../../../Physics/index.html"}>>>]
  [SolidMechanics<<<{"href": "../../../Physics/SolidMechanics/index.html"}>>>]
    [QuasiStatic<<<{"href": "../../../Physics/SolidMechanics/QuasiStatic/index.html"}>>>]
      [./all]
        strain<<<{"description": "Strain formulation"}>>> = FINITE
        add_variables<<<{"description": "Add the displacement variables"}>>> = true
      [../]
    [../]
  []
[]if different mechanics models are needed, multiple subblocks with subdomain restrictions can be used.
[Physics<<<{"href": "../../../Physics/index.html"}>>>]
  [SolidMechanics<<<{"href": "../../../Physics/SolidMechanics/index.html"}>>>]
    [QuasiStatic<<<{"href": "../../../Physics/SolidMechanics/QuasiStatic/index.html"}>>>]
      # parameters that apply to all subblocks are specified at this level. They
      # can be overwritten in the subblocks.
      add_variables<<<{"description": "Add the displacement variables"}>>> = true
      strain<<<{"description": "Strain formulation"}>>> = FINITE
      generate_output<<<{"description": "Add scalar quantity output for stress and/or strain"}>>> = 'stress_xx'
      [./block1]
        # the `block` parameter is only valid insde a subblock.
        block<<<{"description": "The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to"}>>> = 1
      [../]
      [./block2]
        block<<<{"description": "The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to"}>>> = 2
        # the `additional_generate_output` parameter is also only valid inside a
        # subblock. Values specified here are appended to the `generate_output`
        # parameter values.
        additional_generate_output<<<{"description": "Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)"}>>> = 'strain_yy'
      [../]
    []
  []
[]Parameters supplied at the [Physics/SolidMechanics/QuasiStatic] level act as defaults for the Master action subblocks.
Input Parameters
- add_variablesFalseAdd the displacement variablesDefault:False C++ Type:bool Controllable:No Description:Add the displacement variables 
- displacementsThe nonlinear displacement variables for the problemC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:The nonlinear displacement variables for the problem 
- scalingThe scaling to apply to the displacement variablesC++ Type:double Unit:(no unit assumed) Controllable:No Description:The scaling to apply to the displacement variables 
- temperatureThe temperatureC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:The temperature 
Variables Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)C++ Type:MultiMooseEnum Controllable:No Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`) 
- additional_material_output_familySpecifies the family of FE shape functions to use for this variable.C++ Type:MultiMooseEnum Controllable:No Description:Specifies the family of FE shape functions to use for this variable. 
- additional_material_output_orderSpecifies the order of the FE shape function to use for this variable.C++ Type:MultiMooseEnum Controllable:No Description:Specifies the order of the FE shape function to use for this variable. 
- generate_outputAdd scalar quantity output for stress and/or strainC++ Type:MultiMooseEnum Controllable:No Description:Add scalar quantity output for stress and/or strain 
- material_output_familySpecifies the family of FE shape functions to use for this variable.C++ Type:MultiMooseEnum Controllable:No Description:Specifies the family of FE shape functions to use for this variable. 
- material_output_orderSpecifies the order of the FE shape function to use for this variable.C++ Type:MultiMooseEnum Controllable:No Description:Specifies the order of the FE shape function to use for this variable. 
Output Parameters
- automatic_eigenstrain_namesFalseCollects all material eigenstrains and passes to required strain calculator within TMA internally.Default:False C++ Type:bool Controllable:No Description:Collects all material eigenstrains and passes to required strain calculator within TMA internally. 
- eigenstrain_namesList of eigenstrains to be applied in this strain calculationC++ Type:std::vector<MaterialPropertyName> Unit:(no unit assumed) Controllable:No Description:List of eigenstrains to be applied in this strain calculation 
- incrementalFalseUse incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain)Default:False C++ Type:bool Controllable:No Description:Use incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain) 
- strainSMALLStrain formulationDefault:SMALL C++ Type:MooseEnum Controllable:No Description:Strain formulation 
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_nameC++ Type:std::string Controllable:No Description:The base name used for the strain. If not provided, it will be set equal to base_name 
- use_finite_deform_jacobianFalseJacobian for corrotational finite strainDefault:False C++ Type:bool Controllable:No Description:Jacobian for corrotational finite strain 
Strain Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied toC++ Type:std::vector<SubdomainName> Controllable:No Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to 
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- diag_save_inThe displacement diagonal preconditioner termsC++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The displacement diagonal preconditioner terms 
- save_inThe displacement residualsC++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The displacement residuals 
Advanced Parameters
- cylindrical_axis_point1Starting point for direction of axis of rotation for cylindrical stress/strain.C++ Type:libMesh::Point Controllable:No Description:Starting point for direction of axis of rotation for cylindrical stress/strain. 
- cylindrical_axis_point2Ending point for direction of axis of rotation for cylindrical stress/strain.C++ Type:libMesh::Point Controllable:No Description:Ending point for direction of axis of rotation for cylindrical stress/strain. 
- directionDirection stress/strain is calculated inC++ Type:libMesh::Point Controllable:No Description:Direction stress/strain is calculated in 
- spherical_center_pointCenter point of the spherical coordinate system.C++ Type:libMesh::Point Controllable:No Description:Center point of the spherical coordinate system. 
Coordinate System Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.Default:z C++ Type:MooseEnum Controllable:No Description:The direction of the out-of-plane strain. 
- out_of_plane_pressure_functionFunction used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)C++ Type:FunctionName Unit:(no unit assumed) Controllable:No Description:Function used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems) 
- out_of_plane_pressure_material0Material used to prescribe pressure (applied toward the body) in the out-of-plane directionDefault:0 C++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:Material used to prescribe pressure (applied toward the body) in the out-of-plane direction 
- out_of_plane_strainVariable for the out-of-plane strain for plane stress modelsC++ Type:VariableName Unit:(no unit assumed) Controllable:No Description:Variable for the out-of-plane strain for plane stress models 
- planar_formulationNONEOut-of-plane stress/strain formulationDefault:NONE C++ Type:MooseEnum Controllable:No Description:Out-of-plane stress/strain formulation 
- pressure_factorScale factor applied to prescribed out-of-plane pressure (both material and function)C++ Type:double Unit:(no unit assumed) Controllable:No Description:Scale factor applied to prescribed out-of-plane pressure (both material and function) 
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)C++ Type:VariableName Unit:(no unit assumed) Controllable:No Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems) 
Out-Of-Plane Stress/Strain Parameters
Associated Actions
Available Actions
- Solid Mechanics App
- CommonSolidMechanicsActionStore common solid mechanics parameters
- QuasiStaticSolidMechanicsPhysicsSet up stress divergence kernels with coordinate system aware logic