- rank_two_tensorName of the nodal rank two tensors (stress/strains)
C++ Type:MaterialPropertyName
Description:Name of the nodal rank two tensors (stress/strains)
- scalar_typeType of scalar output
C++ Type:MooseEnum
Description:Type of scalar output
- variableName of AuxVariable this userobject is acting on
C++ Type:std::vector
Description:Name of AuxVariable this userobject is acting on
Nodal Rank Two Scalar UserObject
Description
UserObject NodalRankTwoScalarPD
is used to compute the values of equivalent scalar quantities of a rank two tensor at each material point for correspondence material model. The scalar variable should be defined as aux variable, but its value is computed using UserObject rather than AuxKernel.
In self-stabilized correspondence material model, a equivalent scalar quantity of rank two tensor (e.g., von Mises stress) at a material point is the weighted average of bond-associated corresponding equivalent quantities connected at that material point.
where is the bond-associated scalar quantity of rank two tensor, is the weight for each bond-associated scalar quantity of rank two tensor. For current implementation, the volume fraction is used as the weight.
Input Parameters
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Description:The list of block ids (SubdomainID) that this object will be applied
- direction0 0 1Direction vector
Default:0 0 1
C++ Type:libMesh::Point
Description:Direction vector
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
- point10 0 0Start point for axis used to calculate some cylindrical material tensor quantities
Default:0 0 0
C++ Type:libMesh::Point
Description:Start point for axis used to calculate some cylindrical material tensor quantities
- point20 1 0End point for axis used to calculate some material tensor quantities
Default:0 1 0
C++ Type:libMesh::Point
Description:End point for axis used to calculate some material tensor quantities
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.