- dtThe timestep size between solves
C++ Type:double
Description:The timestep size between solves
SolutionTimeAdaptiveDT

The SolutionTimeAdaptiveDT has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# SolutionTimeAdaptiveDT
!syntax description /Executioner/TimeStepper/SolutionTimeAdaptiveDT
## Overview
!! Replace these lines with information regarding the SolutionTimeAdaptiveDT object.
## Example Input File Syntax
!! Describe and include an example of how to use the SolutionTimeAdaptiveDT object.
!syntax parameters /Executioner/TimeStepper/SolutionTimeAdaptiveDT
!syntax inputs /Executioner/TimeStepper/SolutionTimeAdaptiveDT
!syntax children /Executioner/TimeStepper/SolutionTimeAdaptiveDT
!syntax description /Executioner/TimeStepper/SolutionTimeAdaptiveDT
Input Parameters
- adapt_logFalseOutput adaptive time step log
Default:False
C++ Type:bool
Options:
Description:Output adaptive time step log
- cutback_factor_at_failure0.5Factor to apply to timestep if it a time step fails to convergence.
Default:0.5
C++ Type:double
Options:
Description:Factor to apply to timestep if it a time step fails to convergence.
- initial_direction1Direction for the first step. 1 for up... -1 for down.
Default:1
C++ Type:int
Options:
Description:Direction for the first step. 1 for up... -1 for down.
- percent_change0.1Percentage to change the timestep by. Should be between 0 and 1
Default:0.1
C++ Type:double
Options:
Description:Percentage to change the timestep by. Should be between 0 and 1
- reset_dtFalseUse when restarting a calculation to force a change in dt.
Default:False
C++ Type:bool
Options:
Description:Use when restarting a calculation to force a change in dt.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- modules/combined/examples/mortar/eigenstrain_action.i
- modules/combined/examples/phase_field-mechanics/Pattern1.i
- modules/phase_field/examples/grain_growth/grain_growth_2D_voronoi_newadapt.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- test/tests/time_steppers/time_adaptive/time-adaptive.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/richards/test/tests/buckley_leverett/bl02.i
- modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
- test/tests/executioners/executioner/sln-time-adapt.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
- modules/combined/examples/mortar/eigenstrain.i
- modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
- modules/combined/examples/phase_field-mechanics/Nonconserved.i
modules/combined/examples/mortar/eigenstrain_action.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/Pattern1.i
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
modules/phase_field/examples/grain_growth/grain_growth_2D_voronoi_newadapt.i
# This simulation predicts GB migration of a 2D copper polycrystal with 15 grains
# Mesh adaptivity (new system) and time step adaptivity are used
# An AuxVariable is used to calculate the grain boundary locations
# Postprocessors are used to record time step and the number of grains
# We are not using the GrainTracker in this example so the number
# of order paramaters must match the number of grains.
[Mesh]
# Mesh block. Meshes can be read in or automatically generated
type = GeneratedMesh
dim = 2 # Problem dimension
nx = 12 # Number of elements in the x-direction
ny = 12 # Number of elements in the y-direction
nz = 0 # Number of elements in the z-direction
xmin = 0 # minimum x-coordinate of the mesh
xmax = 1000 # maximum x-coordinate of the mesh
ymin = 0 # minimum y-coordinate of the mesh
ymax = 1000 # maximum y-coordinate of the mesh
zmin = 0
zmax = 0
elem_type = QUAD4 # Type of elements used in the mesh
uniform_refine = 3 # Initial uniform refinement of the mesh
parallel_type = replicated # Periodic BCs
[]
[GlobalParams]
# Parameters used by several kernels that are defined globally to simplify input file
op_num = 15 # Number of grains
var_name_base = gr # Base name of grains
[]
[UserObjects]
[./voronoi]
type = PolycrystalVoronoi
grain_num = 15
rand_seed = 42
coloring_algorithm = bt # We must use bt to force the UserObject to assign one grain to each op
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[Variables]
# Variable block, where all variables in the simulation are declared
[./PolycrystalVariables]
# Custom action that created all of the grain variables and sets their initial condition
[../]
[]
[AuxVariables]
# Dependent variables
[./bnds]
# Variable used to visualize the grain boundaries in the simulation
[../]
[]
[Kernels]
# Kernel block, where the kernels defining the residual equations are set up.
[./PolycrystalKernel]
# Custom action creating all necessary kernels for grain growth. All input parameters are up in GlobalParams
[../]
[]
[AuxKernels]
# AuxKernel block, defining the equations used to calculate the auxvars
[./bnds_aux]
# AuxKernel that calculates the GB term
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
[BCs]
# Boundary Condition block
[./Periodic]
[./top_bottom]
auto_direction = 'x y' # Makes problem periodic in the x and y directions
[../]
[../]
[]
[Materials]
[./CuGrGr]
# Material properties
type = GBEvolution # Quantitative material properties for copper grain growth. Dimensions are nm and ns
GBmob0 = 2.5e-6 # Mobility prefactor for Cu from Schonfelder1997
GBenergy = 0.708 # GB energy for Cu from Schonfelder1997
Q = 0.23 # Activation energy for grain growth from Schonfelder 1997
T = 450 # Constant temperature of the simulation (for mobility calculation)
wGB = 14 # Width of the diffuse GB
[../]
[]
[Postprocessors]
# Scalar postprocessors
[./dt]
# Outputs the current time step
type = TimestepSize
[../]
[]
[Executioner]
type = Transient # Type of executioner, here it is transient with an adaptive time step
scheme = bdf2 # Type of time integration (2nd order backward euler), defaults to 1st order backward euler
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 30 # Max number of linear iterations
l_tol = 1e-4 # Relative tolerance for linear solves
nl_max_its = 40 # Max number of nonlinear iterations
nl_abs_tol = 1e-11 # Relative tolerance for nonlienar solves
nl_rel_tol = 1e-10 # Absolute tolerance for nonlienar solves
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 25 # Initial time step. In this simulation it changes.
[../]
start_time = 0.0
end_time = 4000
num_steps = 3
[]
[Adaptivity]
marker = errorfrac
max_h_level = 4
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[./Markers]
[./bound_adapt]
type = ValueThresholdMarker
third_state = DO_NOTHING
coarsen = 1.0
refine = 0.99
variable = bnds
invert = true
[../]
[./errorfrac]
type = ErrorFractionMarker
coarsen = 0.1
indicator = error
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
max_rows = 20
[../]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
test/tests/time_steppers/time_adaptive/time-adaptive.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD4
[]
[GlobalParams]
slope = 10
t_jump = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = TEIC
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = TEJumpFFN
variable = u
[../]
[]
[BCs]
[./all]
type = TEJumpBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
solve_type = 'PJFNK'
nl_abs_tol = 1e-15
start_time = 0.0
end_time = 5
num_steps = 500000
dtmin = 0.4
dtmax = 0.9
[]
[Outputs]
file_base = out
csv = true
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/richards/test/tests/buckley_leverett/bl02.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-3
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 50
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
file_base = bl02
interval = 1000000
exodus = true
[]
modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 100
xmin = 0
elem_type = EDGE
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
scaling = 1e1
[./InitialCondition]
type = RampIC
variable = c
value_left = 0
value_right = 1
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Functions]
[./Int_energy]
type = ParsedFunction
vals = 'total_solute Cleft Cright Fleft Fright volume'
value = '((total_solute-Cleft*volume)/(Cright-Cleft))*Fright+(volume-(total_solute-Cleft*volume)/(Cright-Cleft))*Fleft'
vars = 'total_solute Cleft Cright Fleft Fright volume'
[../]
[./Diff]
type = ParsedFunction
vals = 'total_free_energy total_no_int'
vars = 'total_free_energy total_no_int'
value = total_free_energy-total_no_int
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'kappa_c M'
prop_values = '25 150'
[../]
[./Free_energy]
type = DerivativeParsedMaterial
f_name = F
function = 'c^2*(c-1)^2'
args = c
derivative_order = 2
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved,
# gives Cavg in % for this problem.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
# Get simulation cell size (1D volume) from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
# Find concentration in each phase using SideAverageValue
[./Cleft]
type = SideAverageValue
boundary = left
variable = c
[../]
[./Cright]
type = SideAverageValue
boundary = right
variable = c
[../]
# Find local energy in each phase by checking boundaries
[./Fleft]
type = SideAverageValue
boundary = left
variable = local_energy
[../]
[./Fright]
type = SideAverageValue
boundary = right
variable = local_energy
[../]
# Use concentrations and energies to find total free energy without any interface,
# only applies once equilibrium is reached!!
# Difference between energy with and without interface
# gives interface energy per unit area.
[./total_no_int]
type = FunctionValuePostprocessor
function = Int_energy
[../]
[./Energy_of_Interface]
type = FunctionValuePostprocessor
function = Diff
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provides a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-4
start_time = 0.0
# make sure that the result obtained for the interfacial free energy is fully converged
end_time = 40
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Outputs]
gnuplot = true
csv = true
[./exodus]
type = Exodus
show = 'c local_energy'
execute_on = 'failed initial nonlinear timestep_end final'
[../]
[./console]
type = Console
execute_on = 'FAILED INITIAL NONLINEAR TIMESTEP_END final'
[../]
perf_graph = true
[]
test/tests/executioners/executioner/sln-time-adapt.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_sta
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -20
xmax = 20
ymin = -20
ymax = 20
[]
[GlobalParams]
op_num = 2
var_name_base = etab
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etab1]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etab1]
type = FunctionIC
variable = etab1
function = ic_func_etab1
[../]
[./IC_w]
type = ConstantIC
value = -0.05
variable = w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0-tanh((r-10.0)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0+tanh((y)/sqrt(2.0)))'
[../]
[./ic_func_etab1]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0-tanh((y)/sqrt(2.0)))'
[../]
[]
[BCs]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etab1'
gamma_names = 'gab gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 etab1 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etab1'
gamma_names = 'gab gbb'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab1 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_beta1
[./ACb1_bulk]
type = ACGrGrMulti
variable = etab1
v = 'etaa0 etab0'
gamma_names = 'gab gbb'
[../]
[./ACb1_sw]
type = ACSwitching
variable = etab1
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab0 w'
[../]
[./ACb1_int]
type = ACInterface
variable = etab1
kappa_name = kappa
[../]
[./eb1_dot]
type = TimeDerivative
variable = etab1
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab1dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab1
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etab0 etab1'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
enable_jit = false
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
enable_jit = false
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D chi Vm ka caeq kb cbeq gab gbb mu'
prop_values = '0 1 1.0 1.0 1.0 1.0 10.0 0.1 10.0 0.9 4.5 1.5 1.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
enable_jit = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 2
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[slave_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "slave_x"
[]
[master_x]
input = slave_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "master_x"
[]
[slave_y]
input = master_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "slave_y"
[]
[master_y]
input = slave_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "master_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = -12
xmax = 12
ymin = -12
ymax = 12
elem_type = QUAD4
[]
[GlobalParams]
# let's output all material properties for demonstration purposes
outputs = exodus
# prefactor on the penalty function kernels. The higher this value is, the
# more rigorously the constraint is enforced
penalty = 1e3
[]
#
# These AuxVariables hold the directly calculated free energy density in the
# simulation cell. They are provided for visualization purposes.
#
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
#
# Helper kernel to cpompute the gradient contribution from interfaces of order
# parameters evolved using the ACMultiInterface kernel
#
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
#
# The interface coefficient matrix. This should be symmetrical!
#
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#
# We set up a smooth cradial concentrtaion gradient
# The concentration will quickly change to adapt to the preset order
# parameters eta1, eta2, and eta3
#
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 5.0
invalue = 1.0
outvalue = 0.01
int_width = 10.0
[../]
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
#
# Note: this initial conditions sets up a _sharp_ interface. Ideally
# we should start with a smooth interface with a width consistent
# with the kappa parameter supplied for the given interface.
#
function = 'r:=sqrt(x^2+y^2);if(r<=4,1,0)'
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>4&r<=7,1,0)'
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>7,1,0)'
[../]
[../]
[]
[Kernels]
#
# Cahn-Hilliard kernel for the concentration variable.
# Note that we are not using an interfcae kernel on this variable, but rather
# rely on the interface width enforced on the order parameters. This allows us
# to use a direct solve using the CahnHilliard kernel _despite_ only using first
# order elements.
#
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
#
# Order parameter eta1
# Each order parameter is acted on by 4 kernels:
# 1. The stock time derivative deta_i/dt kernel
# 2. The Allen-Cahn kernel that takes a Dervative Material for the free energy
# 3. A gradient interface kernel that includes cross terms
# see http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/ACMultiInterface/
# 4. A penalty contribution that forces the interface contributions h(eta)
# to sum up to unity
#
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta2
#
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta3
#
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./penalty3]
type = SwitchingFunctionPenalty
variable = eta3
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# here we declare some of the model parameters: the mobilities and interface
# gradient prefactors. For this example we use arbitrary numbers. In an actual simulation
# physical mobilities would be used, and the interface gradient prefactors would
# be readjusted to the free energy magnitudes.
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.75 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 '
[../]
# This material sums up the individual phase contributions. It is written to the output file
# (see GlobalParams section above) and can be used to check the constraint enforcement.
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3'
[../]
# The phase contribution factors for each material point are computed using the
# SwitchingFunctionMaterials. Each phase with an order parameter eta contributes h(eta)
# to the global free energy density. h is a function that switches smoothly from 0 to 1
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
# The barrier function adds a phase transformation energy barrier. It also
# Drives order parameters toward the [0:1] interval to avoid negative or larger than 1
# order parameters (these are set to 0 and 1 contribution by the switching functions
# above)
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# We use DerivativeParsedMaterials to specify three (very) simple free energy
# expressions for the three phases. All necessary derivatives are built automatically.
# In a real problem these expressions can be arbitrarily complex (or even provided
# by custom kernels).
[./phase_free_energy_1]
type = DerivativeParsedMaterial
f_name = F1
function = '(c-1)^2'
args = 'c'
[../]
[./phase_free_energy_2]
type = DerivativeParsedMaterial
f_name = F2
function = '(c-0.5)^2'
args = 'c'
[../]
[./phase_free_energy_3]
type = DerivativeParsedMaterial
f_name = F3
function = 'c^2'
args = 'c'
[../]
# The DerivativeMultiPhaseMaterial ties the phase free energies together into a global free energy.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 1
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provedes a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-6
start_time = 0.0
end_time = 150.0
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/Nonconserved.i
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]