- distributionsThe distribution names to be sampled, the number of distributions provided defines the number of columns per matrix.
C++ Type:std::vector
Description:The distribution names to be sampled, the number of distributions provided defines the number of columns per matrix.
- num_rowsThe number of rows per matrix to generate.
C++ Type:unsigned int
Description:The number of rows per matrix to generate.
SobolSampler
The SobolSampler object generates the necessary matrices of Monte Carlo samples to perform a variance-based sensitivity analysis, refer to Saltelli (2002) for complete details.
Input Parameters
- execute_onLINEARThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:LINEAR
C++ Type:ExecFlagEnum
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
- legacy_supportTrueDisables errors for legacy API support.
Default:True
C++ Type:bool
Description:Disables errors for legacy API support.
- limit_get_global_samples429496729The maximum allowed number of items in the DenseMatrix returned by getGlobalSamples method.
Default:429496729
C++ Type:unsigned int
Description:The maximum allowed number of items in the DenseMatrix returned by getGlobalSamples method.
- limit_get_local_samples429496729The maximum allowed number of items in the DenseMatrix returned by getLocalSamples method.
Default:429496729
C++ Type:unsigned int
Description:The maximum allowed number of items in the DenseMatrix returned by getLocalSamples method.
- limit_get_next_local_row429496729The maximum allowed number of items in the std::vector returned by getNextLocalRow method.
Default:429496729
C++ Type:unsigned int
Description:The maximum allowed number of items in the std::vector returned by getNextLocalRow method.
- seed0Random number generator initial seed
Default:0
C++ Type:unsigned int
Description:Random number generator initial seed
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- modules/stochastic_tools/test/tests/transfers/sobol/sobol.i
- modules/stochastic_tools/test/tests/samplers/sobol/sobol.i
- modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/require_stochastic_results.i
- modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/master.i
- modules/stochastic_tools/test/tests/transfers/sampler_transfer/sobol.i
- modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/master.i
- modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results/master.i
- modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/wrong_multi_app.i
References
- Andrea Saltelli.
Making best use of model evaluations to compute sensitivity indices.
Computer Physics Communications, 145(2):280–297, 2002.
URL: https://doi.org/10.1016/S0010-4655(02)00280-1.[BibTeX]