- functionThe analytic solution to compare against
C++ Type:FunctionName
Description:The analytic solution to compare against
- variableThe name of the scalar variable
C++ Type:VariableName
Description:The name of the scalar variable
ScalarL2Error

The ScalarL2Error has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# ScalarL2Error
!syntax description /Postprocessors/ScalarL2Error
## Overview
!! Replace these lines with information regarding the ScalarL2Error object.
## Example Input File Syntax
!! Describe and include an example of how to use the ScalarL2Error object.
!syntax parameters /Postprocessors/ScalarL2Error
!syntax inputs /Postprocessors/ScalarL2Error
!syntax children /Postprocessors/ScalarL2Error
!syntax description /Postprocessors/ScalarL2Error
Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM TRANSFER
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Options:
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- force_preauxFalseForces the GeneralUserObject to be executed in PREAUX
Default:False
C++ Type:bool
Options:
Description:Forces the GeneralUserObject to be executed in PREAUX
- outputsVector of output names were you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- test/tests/kernels/ode/parsedode_pp_test.i
- examples/ex18_scalar_kernel/ex18_parsed.i
- test/tests/tag/scalar_tag_vector.i
- test/tests/time_integrators/explicit_ssp_runge_kutta/explicit_ssp_runge_kutta.i
- test/tests/time_integrators/scalar/stiff.i
- test/tests/kernels/ode/parsedode_sys_impl_test.i
- test/tests/time_integrators/scalar/scalar.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i
- examples/ex18_scalar_kernel/ex18.i
- test/tests/kernels/ode/ode_sys_impl_test.i
test/tests/kernels/ode/parsedode_pp_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
[./x]
family = SCALAR
order = FIRST
initial_condition = 0
[../]
[]
[ScalarKernels]
[./dt]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ParsedODEKernel
function = '-mytime'
postprocessors = mytime
variable = x
[../]
[]
[Postprocessors]
[./computed_x]
type = ScalarVariable
variable = x
execute_on = 'initial timestep_end'
[../]
[./mytime]
type = FunctionValuePostprocessor
function = t
execute_on = 'initial timestep_begin'
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = '0.5*t^2'
execute_on = 'initial timestep_end'
[../]
[./l2err_x]
type = ScalarL2Error
variable = x
function = '0.5*t^2'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
num_steps = 10
solve_type = 'NEWTON'
[]
[Outputs]
file_base = ode_pp_test_out
hide = 'x mytime'
csv = true
[]
examples/ex18_scalar_kernel/ex18_parsed.i
#
# Example 18 modified to use parsed ODE kernels.
#
# The ParsedODEKernel takes function expressions in the input file and computes
# Jacobian entries via automatic differentiation. It allows for rapid development
# of new models without the need for code recompilation.
#
# This input file should produce the exact same result as ex18.i
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
# ODEs
[./exact_x_fn]
type = ParsedFunction
value = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[./exact_y_fn]
type = ParsedFunction
value = (2/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
#
# This parsed expression ODE Kernel behaves exactly as the ImplicitODEx kernel
# in the main example. Checkout ImplicitODEx::computeQpResidual() in the
# source code file ImplicitODEx.C to see the matching residual function.
#
# The ParsedODEKernel automaticaly generates the On- and Off-Diagonal Jacobian
# entries.
#
[./ode1]
type = ParsedODEKernel
function = '-3*x - 2*y'
variable = x
args = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
#
# This parsed expression ODE Kernel behaves exactly as the ImplicitODEy Kernel
# in the main example.
#
[./ode2]
type = ParsedODEKernel
function = '-4*x - y'
variable = y
args = x
[../]
[]
[BCs]
[./right]
type = ScalarDirichletBC
variable = diffused
boundary = 1
scalar_var = x
[../]
[./left]
type = ScalarDirichletBC
variable = diffused
boundary = 3
scalar_var = y
[../]
[]
[Postprocessors]
# to print the values of x, y into a file so we can plot it
[./x]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = timestep_end
[../]
[./exact_y]
type = FunctionValuePostprocessor
function = exact_y_fn
execute_on = timestep_end
point = '0 0 0'
[../]
# Measure the error in ODE solution for 'x'.
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
[../]
# Measure the error in ODE solution for 'y'.
[./l2err_y]
type = ScalarL2Error
variable = y
function = exact_y_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 'ex18_out'
exodus = true
[]
test/tests/tag/scalar_tag_vector.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 1
ny = 1
elem_type = QUAD4
[]
[Variables]
[./n]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[]
[AuxVariables]
[./tag_vector_var1]
family = SCALAR
order = FIRST
[../]
[./tag_vector_var2]
family = SCALAR
order = FIRST
[../]
[./tag_matrix_var2]
family = SCALAR
order = FIRST
[../]
[]
[ScalarKernels]
[./dn]
type = ODETimeDerivative
variable = n
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./ode1]
type = ParsedODEKernel
function = '-n'
variable = n
extra_matrix_tags = 'mat_tag1'
extra_vector_tags = 'vec_tag1'
[../]
[./ode2]
type = ParsedODEKernel
function = '-n'
variable = n
vector_tags = 'vec_tag2'
matrix_tags = 'mat_tag2'
[../]
[]
[AuxScalarKernels]
[./TagVectorAux]
type = ScalarTagVectorAux
variable = tag_vector_var1
v = n
vector_tag = vec_tag1
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = ScalarTagVectorAux
variable = tag_vector_var2
v = n
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagMatrixAux2]
type = ScalarTagMatrixAux
variable = tag_matrix_var2
v = n
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'time nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Transient
start_time = 0
num_steps = 10
dt = 0.001
dtmin = 0.001 # Don't allow timestep cutting
solve_type = NEWTON
nl_max_its = 2
nl_abs_tol = 1.e-12 # This is an ODE, so nl_abs_tol makes sense.
[]
[Functions]
[./exact_solution]
type = ParsedFunction
value = exp(t)
[../]
[]
[Postprocessors]
[./error_n]
# Post processor that computes the difference between the computed
# and exact solutions. For the exact solution used here, the
# error at the final time should converge at O(dt^p), where p is
# the order of the method.
type = ScalarL2Error
variable = n
function = exact_solution
# final is not currently supported for Postprocessor execute_on...
# execute_on = 'final'
[../]
[]
[Outputs]
csv = true
[]
test/tests/time_integrators/explicit_ssp_runge_kutta/explicit_ssp_runge_kutta.i
# This test solves the following IVP:
# du/dt = f(u(t), t), u(0) = 1
# f(u(t), t) = -u(t) + t^3 + 3t^2
# The exact solution is the following:
# u(t) = exp(-t) + t^3
[Mesh]
[./mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 1
[../]
[]
[Variables]
[./u]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[]
[ScalarKernels]
[./time_derivative]
type = ODETimeDerivative
variable = u
[../]
[./source_part1]
type = ParsedODEKernel
variable = u
function = 'u'
[../]
[./source_part2]
type = PostprocessorSinkScalarKernel
variable = u
postprocessor = sink_pp
[../]
[]
[Functions]
[./sink_fn]
type = ParsedFunction
value = '-t^3 - 3*t^2'
[../]
[]
[Postprocessors]
[./sink_pp]
type = FunctionValuePostprocessor
function = sink_fn
execute_on = 'LINEAR NONLINEAR'
[../]
[./l2_err]
type = ScalarL2Error
variable = u
function = ${fparse exp(-0.5) + 0.5^3}
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 1
[../]
end_time = 0.5
dt = 0.1
[]
[Outputs]
file_base = 'first_order'
exodus = true
[./csv]
type = CSV
show = 'u'
execute_on = 'FINAL'
[../]
[]
test/tests/time_integrators/scalar/stiff.i
# This is a linear model problem described in Frank et al, "Order
# results for implicit Runge-Kutta methods applied to stiff systems",
# SIAM J. Numerical Analysis, vol. 22, no. 3, 1985, pp. 515-534.
#
# Problems "PL" and "PNL" from page 527 of the paper:
# { dy1/dt = lambda*y1 + y2**p, y1(0) = -1/(lambda+p)
# { dy2/dt = -y2, y2(0) = 1
#
# The exact solution is:
# y1 = -exp(-p*t)/(lambda+p)
# y2 = exp(-t)
#
# According to the following paragraph from the reference above, the
# p=1 version of this problem should not exhibit order reductions
# regardless of stiffness, while the nonlinear version (p>=2) will
# exhibit order reductions down to the "stage order" of the method for
# lambda large, negative.
# Use Dollar Bracket Expressions (DBEs) to set the value of LAMBDA in
# a single place. You can also set this on the command line with
# e.g. LAMBDA=-4, but note that this does not seem to override the
# value set in the input file. This is a bit different from the way
# that command line values normally work...
# Note that LAMBDA == Y2_EXPONENT is not allowed!
# LAMBDA = -10
# Y2_EXPONENT = 2
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 1
ny = 1
elem_type = QUAD4
[]
[Variables]
[./y1]
family = SCALAR
order = FIRST
[../]
[./y2]
family = SCALAR
order = FIRST
[../]
[]
[ICs]
[./y1_init]
type = FunctionScalarIC
variable = y1
function = y1_exact
[../]
[./y2_init]
type = FunctionScalarIC
variable = y2
function = y2_exact
[../]
[]
[ScalarKernels]
[./y1_time]
type = ODETimeDerivative
variable = y1
[../]
[./y1_space]
type = ParsedODEKernel
variable = y1
function = '-(${LAMBDA})*y1 - y2^${Y2_EXPONENT}'
args = 'y2'
[../]
[./y2_time]
type = ODETimeDerivative
variable = y2
[../]
[./y2_space]
type = ParsedODEKernel
variable = y2
function = 'y2'
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = LStableDirk2
[../]
start_time = 0
end_time = 1
dt = 0.125
solve_type = 'PJFNK'
nl_max_its = 6
nl_abs_tol = 1.e-13
nl_rel_tol = 1.e-32 # Force nl_abs_tol to be used.
line_search = 'none'
[]
[Functions]
[./y1_exact]
type = ParsedFunction
value = '-exp(-${Y2_EXPONENT}*t)/(lambda+${Y2_EXPONENT})'
vars = 'lambda'
vals = ${LAMBDA}
[../]
[./y2_exact]
type = ParsedFunction
value = exp(-t)
[../]
[]
[Postprocessors]
[./error_y1]
type = ScalarL2Error
variable = y1
function = y1_exact
execute_on = 'initial timestep_end'
[../]
[./error_y2]
type = ScalarL2Error
variable = y2
function = y2_exact
execute_on = 'initial timestep_end'
[../]
[./max_error_y1]
# Estimate ||e_1||_{\infty}
type = TimeExtremeValue
value_type = max
postprocessor = error_y1
execute_on = 'initial timestep_end'
[../]
[./max_error_y2]
# Estimate ||e_2||_{\infty}
type = TimeExtremeValue
value_type = max
postprocessor = error_y2
execute_on = 'initial timestep_end'
[../]
[./value_y1]
type = ScalarVariable
variable = y1
execute_on = 'initial timestep_end'
[../]
[./value_y2]
type = ScalarVariable
variable = y2
execute_on = 'initial timestep_end'
[../]
[./value_y1_abs_max]
type = TimeExtremeValue
value_type = abs_max
postprocessor = value_y1
execute_on = 'initial timestep_end'
[../]
[./value_y2_abs_max]
type = TimeExtremeValue
value_type = abs_max
postprocessor = value_y2
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
test/tests/kernels/ode/parsedode_sys_impl_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
value = -4
[../]
[./bc_all_fn]
type = ParsedFunction
value = x*x+y*y
[../]
# ODEs
[./exact_x_fn]
type = ParsedFunction
value = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./uff]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ParsedODEKernel
function = '-3*x - 2*y'
variable = x
args = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ParsedODEKernel
function = '-4*x - y'
variable = y
args = x
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = bc_all_fn
[../]
[]
[Postprocessors]
active = 'exact_x l2err_x x y'
[./x]
type = ScalarVariable
variable = x
execute_on = 'initial timestep_end'
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = 'initial timestep_end'
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = 'initial timestep_end'
point = '0 0 0'
[../]
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 100
solve_type = 'PJFNK'
[]
[Outputs]
file_base = ode_sys_impl_test_out
exodus = true
[]
test/tests/time_integrators/scalar/scalar.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 1
ny = 1
elem_type = QUAD4
[]
[Variables]
[./n]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[]
[ScalarKernels]
[./dn]
type = ODETimeDerivative
variable = n
[../]
[./ode1]
type = ParsedODEKernel
function = '-n'
variable = n
# implicit = false
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
# type = ImplicitEuler
# type = BDF2
type = CrankNicolson
# type = ImplicitMidpoint
# type = LStableDirk2
# type = LStableDirk3
# type = LStableDirk4
# type = AStableDirk4
#
# Explicit methods
# type = ExplicitEuler
# type = ExplicitMidpoint
# type = Heun
# type = Ralston
[../]
start_time = 0
end_time = 1
dt = 0.001
dtmin = 0.001 # Don't allow timestep cutting
solve_type = 'PJFNK'
nl_max_its = 2
nl_abs_tol = 1.e-12 # This is an ODE, so nl_abs_tol makes sense.
[]
[Functions]
[./exact_solution]
type = ParsedFunction
value = exp(t)
[../]
[]
[Postprocessors]
[./error_n]
# Post processor that computes the difference between the computed
# and exact solutions. For the exact solution used here, the
# error at the final time should converge at O(dt^p), where p is
# the order of the method.
type = ScalarL2Error
variable = n
function = exact_solution
# final is not currently supported for Postprocessor execute_on...
# execute_on = 'final'
[../]
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '-5e9 -5e9 -5e9 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err]
type = ScalarL2Error
variable = global_strain
function = -0.02428571 #strain = E*(1-2*nu)/sigma
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
examples/ex18_scalar_kernel/ex18.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
# ODEs
[./exact_x_fn]
type = ParsedFunction
value = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[./exact_y_fn]
type = ParsedFunction
value = (2/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
[./right]
type = ScalarDirichletBC
variable = diffused
boundary = 1
scalar_var = x
[../]
[./left]
type = ScalarDirichletBC
variable = diffused
boundary = 3
scalar_var = y
[../]
[]
[Postprocessors]
# to print the values of x, y into a file so we can plot it
[./x]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = timestep_end
point = '0 0 0'
[../]
[./exact_y]
type = FunctionValuePostprocessor
function = exact_y_fn
execute_on = timestep_end
point = '0 0 0'
[../]
# Measure the error in ODE solution for 'x'.
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
[../]
# Measure the error in ODE solution for 'y'.
[./l2err_y]
type = ScalarL2Error
variable = y
function = exact_y_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 10
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
test/tests/kernels/ode/ode_sys_impl_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
value = -4
[../]
[./bc_all_fn]
type = ParsedFunction
value = x*x+y*y
[../]
# ODEs
[./exact_x_fn]
type = ParsedFunction
value = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./uff]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = bc_all_fn
[../]
[]
[Postprocessors]
active = 'exact_x l2err_x x y'
[./x]
type = ScalarVariable
variable = x
execute_on = 'initial timestep_end'
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = 'initial timestep_end'
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = 'initial timestep_end'
point = '0 0 0'
[../]
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 100
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]