- functionThe forcing function
C++ Type:FunctionName
Description:The forcing function
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Description:The name of the variable that this boundary condition applies to
UserForcingFunctionNodalKernel

The UserForcingFunctionNodalKernel has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# UserForcingFunctionNodalKernel
!syntax description /NodalKernels/UserForcingFunctionNodalKernel
## Overview
!! Replace these lines with information regarding the UserForcingFunctionNodalKernel object.
## Example Input File Syntax
!! Describe and include an example of how to use the UserForcingFunctionNodalKernel object.
!syntax parameters /NodalKernels/UserForcingFunctionNodalKernel
!syntax inputs /NodalKernels/UserForcingFunctionNodalKernel
!syntax children /NodalKernels/UserForcingFunctionNodalKernel
!syntax description /NodalKernels/UserForcingFunctionNodalKernel
Input Parameters
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector
Options:
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector
Options:
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime system
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime time
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i
- test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_action.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i
- modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y.i
- test/tests/nodalkernels/scaling/scaling.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i
- modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_z.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_action.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i
- modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i
- modules/tensor_mechanics/test/tests/shell/static/large_strain_m_40_AD.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 5ft (60 in).
# The beam is massless with a lumped mass at the end of the beam of 5000 lb
# The properties of the cantilever beam are as follows:
# E = 1e7 and I = 120 in^4
# Assuming a square cross section A = sqrt(12 * I) = 37.95
# Shear modulus (G) = 3.846e6
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# mass (m) = 5000 lb / 386 = 12.95
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 5.71 cps
# This implies that the corresponding time period of this beam is 0.175 s.
# The FEM solution for this beam with 10 elements gives
# a time period of 0.175 s with time step of 0.005 s.
# Reference: Strength of Materials by Marin ans Sauer, 2nd Ed.
# Example Problem 11-50, pg. 375
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-8
l_max_its = 50
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
start_time = 0.0
dt = 0.005
end_time = 1.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e7
poissons_ratio = 0.30005200208
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 37.95
Ay = 0.0
Az = 0.0
Iy = 120.0
Iz = 120.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first and third frequencies of this beam are:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho)
# f2 = 6.268 f1
# This implies that the corresponding time period of this beam are 2.858 s and 0.455s
# The FEM solution for this beam with 10 element gives time periods of 2.856 s and 0.4505s with a time step of 0.01.
# A smaller time step is required to obtain a closer match for the lower time periods/higher frequencies.
# A higher time step of 0.05 is used in this test to reduce testing time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0 0.0 0.0 0.0
# 0.05 0.0016523559162602 0.066094236650407 2.6437694660163
# 0.1 0.0051691308901533 0.07457676230532 -2.3044684398197
# 0.15 0.0078956772343372 0.03448509146203 4.7008016060883
# 0.2 0.0096592517031463 0.03605788729033 -0.63788977295649
# 0.25 0.011069233444348 0.020341382357756 0.0092295756535376
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
dim = 1
nx = 10
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.05 0.1 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.05
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./exact_solution]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = v
[../]
[./f]
type = UserForcingFunctionNodalKernel
variable = v
function = t*t*t+4
[../]
[]
[AuxKernels]
[./exact]
type = FunctionAux
variable = exact_solution
function = exact_solution_function
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Functions]
[./exact_solution_function]
type = ParsedFunction
value = (1.0/4.0)*(16*t+t*t*t*t)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = v
function = exact_solution_function
[../]
[]
[Executioner]
type = Transient
end_time = 10
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
scheme = 'crank-nicolson'
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_action.i
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# dynamic simulation using consistent mass/inertia matrix
dynamic_consistent_inertia = true
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
density = 1.0
beta = 0.4225 # Newmark time integraion parameter
gamma = 0.8 # Newmark time integraion parameter
# optional parameters for numerical (alpha) and Rayleigh damping
alpha = -0.3 # HHT time integration parameter
eta = 0.1 # Mass proportional Rayleigh damping
zeta = 0.1 # Stiffness proportional Rayleigh damping
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_rayleigh_hht_out'
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
start_time = 0.0
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = "dyn_euler_small_added_mass_inertia_damping_out"
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i
# Test for small strain euler beam vibration in y direction
# The velocity and acceleration AuxVariables and the corresponding AuxKernels
# are set up using the LineElementAction using add_dynamic_variables. The action
# also creates the displacement variables, stress divergence kernels and
# beam strain. NodalTranslationalInertia is not created by the action.
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# Add AuxVariables and AuxKernels for dynamic simulation
add_dynamic_variables = true
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25 # Newmark time integration parameter
gamma = 0.5 # Newmark time integration parameter
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_added_mass_out'
hide = 'rot_vel_x rot_vel_y rot_vel_z rot_accel_x rot_accel_y rot_accel_z'
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y.i
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Poisson's ratio (nu) = -0.99995
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
test/tests/nodalkernels/scaling/scaling.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
[]
[Variables]
[u][]
[]
[NodalKernels]
[time]
type = CoefTimeDerivativeNodalKernel
variable = u
coeff = 2
[]
[reaction]
type = ReactionNodalKernel
variable = u
coeff = 2
[]
[ffn]
type = UserForcingFunctionNodalKernel
variable = u
function = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped masses at the ends of the beam.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass = 0.01899772 at the cantilever end
# mass = 2.0 at the fixed end (just for file testing purposes does not alter result)
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = 'left right'
beta = 0.25
gamma = 0.5
# nodal_mass_file = nodal_mass.csv # commented out for testing error message
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = dyn_euler_small_added_mass_out
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i
# Test for small strain Timoshenko beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2e4
# Shear modulus (G) = 1e4
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# Iy = 1.0 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 8
# Therefore, the beam behaves like a Timoshenko beam.
# The FEM solution for this beam with 100 elements give first natural period of 0.2731s with a time step of 0.005.
# The acceleration, velocity and displacement time histories obtained from MOOSE matches with those obtained from ABAQUS.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.005 2.5473249455812e-05 0.010189299782325 4.0757199129299
# 0.01 5.3012872677486e-05 0.00082654950634483 -7.8208200233219
# 0.015 5.8611622914354e-05 0.0014129505884026 8.055380456145
# 0.02 6.766113649781e-05 0.0022068548449798 -7.7378187535141
# 0.025 7.8981810558437e-05 0.0023214147792709 7.7836427272305
# Note that the theoretical first frequency of the beam using Euler-Bernoulli theory is:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho) = 4.9455
# This implies that the corresponding time period of this beam (under Euler-Bernoulli assumption) is 0.2022s.
# This shows that Euler-Bernoulli beam theory under-predicts the time period of a thick beam. In other words, the Euler-Bernoulli beam theory predicts a more compliant beam than reality for a thick beam.
[Mesh]
type = GeneratedMesh
xmin = 0
xmax = 4.0
nx = 100
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.005 0.01 1.0'
y = '0.0 1.0 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
start_time = 0.0
dt = 0.005
end_time = 0.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2e4
poissons_ratio = 0.0
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.4225
gamma = 0.8
[../]
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_rayleigh_hht_out'
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_z.i
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# Poisson's ratio (nu) = -0.99995
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha ia quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in z
# large rotations + small strain = -0.92 m in x and 2.38 m in z
# large rotations + large strain = -0.954 m in x and 2.37 m in z (exact -1.0 m in x and 2.4 m in z)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_z
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_action.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# dynamic simulation using consistent mass/inertia matrix
dynamic_nodal_translational_inertia = true
nodal_mass = 0.01899772
dynamic_nodal_rotational_inertia = true
nodal_Ixx = 2e-1
nodal_Iyy = 1e-1
nodal_Izz = 1e-1
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25 # Newmark time integration parameter
gamma = 0.5 # Newmark time integration parameter
boundary = right # Node set where nodal mass and nodal inertia are applied
# optional parameters for Rayleigh damping
eta = 0.1 # Mass proportional Rayleigh damping
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_added_mass_inertia_damping_out'
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i
# Large strain/large rotation cantilever beam tese
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The non-dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
strain_type = FINITE
rotation_type = FINITE
# Geometry parameters
area = 1.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
file_base = 'euler_finite_rot_y_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/shell/static/large_strain_m_40_AD.i
# Large strain/rotation test for shell elements
# A cantilever beam that is 40 m long (Y direction) with 1 m x 1 m
# cross-section is modeled using 5 shell elements placed along its
# length. The bottom boundary is fixed in all displacements and
# rotations. A load of 0.140625 N is applied at each node on the top
# boundary, resulting in a total load of 0.28125 N. E = 1800 Pa and
# v = 0.0.
# The reference solution for large deflection of this beam is based on
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics,
# Vol 3, No. # 3, 1945.
# For PL^2/EI = 3, disp_z at tip = 0.6L = 24 m & disp_y at tip = 0.76*L-L = -9.6 m
# The FEM solution at tip of cantilever is:
# disp_z = 24.85069 m; relative error = 3.54 %
# disp_y = -9.125937 m; relative error = 5.19 %
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 40.0
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = bottom
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = bottom
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = top
function = force_y
[../]
[]
[Functions]
[./force_y]
type = PiecewiseLinear
x = '0.0 1.0 3.0'
y = '0.0 1.0 1.0'
scale_factor = 0.140625
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.1
end_time = 3.0
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
large_strain = true
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 1800
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeFiniteShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 1.0
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z2]
type = PointValue
point = '1.0 40.0 0.0'
variable = disp_z
[../]
[./disp_y2]
type = PointValue
point = '1.0 40.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]