- prop_namesThe names of the properties this material will have
C++ Type:std::vector
Description:The names of the properties this material will have
- prop_valuesThe values associated with the named properties
C++ Type:std::vector
Description:The values associated with the named properties
GenericConstantMaterial

The GenericConstantMaterial has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# GenericConstantMaterial
!syntax description /Materials/GenericConstantMaterial
## Overview
!! Replace these lines with information regarding the GenericConstantMaterial object.
## Example Input File Syntax
!! Describe and include an example of how to use the GenericConstantMaterial object.
!syntax parameters /Materials/GenericConstantMaterial
!syntax inputs /Materials/GenericConstantMaterial
!syntax children /Materials/GenericConstantMaterial
!syntax description /Materials/GenericConstantMaterial
Input Parameters
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE ELEMENT SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_inside.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_normal_test.i
- modules/chemical_reactions/test/tests/jacobian/coupled_equilsub.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i
- modules/phase_field/examples/rigidbodymotion/grain_motion_GT.i
- modules/phase_field/test/tests/phase_field_kernels/SimpleSplitCHWRes.i
- modules/phase_field/test/tests/KKS_system/kks_example.i
- test/tests/materials/derivative_material_interface/multiblock.i
- modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i
- test/tests/postprocessors/element_integral_material_property/element_integral_material_property.i
- modules/navier_stokes/test/tests/ins/mms/pspg/pspg_mms_test.i
- modules/phase_field/examples/nucleation/cahn_hilliard.i
- modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
- modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
- modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i
- modules/xfem/test/tests/moving_interface/phase_transition.i
- test/tests/materials/get_material_property_names/get_material_property_block_names.i
- modules/phase_field/test/tests/phase_field_kernels/ADAllenCahn.i
- test/tests/controls/syntax_based_naming_access/object_param.i
- modules/phase_field/examples/rigidbodymotion/AC_CH_Multigrain.i
- modules/chemical_reactions/test/tests/solid_kinetics/calcite_dissolution.i
- test/tests/controls/output/controllable_clear.i
- modules/chemical_reactions/test/tests/jacobian/coupled_equilsub2.i
- modules/chemical_reactions/test/tests/exceptions/missing_sto.i
- modules/combined/test/tests/solid_mechanics/Time_integration/Newmark_time_integration/Newmark_test.i
- test/tests/materials/material/adv_mat_couple_test.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- modules/phase_field/test/tests/rigidbodymotion/grain_appliedforcedensity.i
- modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i
- modules/chemical_reactions/test/tests/jacobian/2species_equilibrium.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/sm/Rayleigh_Newmark_sm.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i
- modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/phase_field_slave.i
- test/tests/meshgenerators/patterned_mesh_generator/patterned_mesh_generator.i
- test/tests/controls/moose_base_naming_access/base_param.i
- modules/phase_field/test/tests/MultiPhase/lagrangemult.i
- modules/functional_expansion_tools/examples/2D_interface/main.i
- modules/porous_flow/test/tests/actions/addmaterials2.i
- modules/functional_expansion_tools/examples/2D_interface/sub.i
- test/tests/outputs/debug/show_material_props_debug.i
- modules/phase_field/test/tests/initial_conditions/RndBoundingBoxIC.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i
- modules/phase_field/test/tests/phase_field_kernels/ADSplitCahnHilliard.i
- modules/phase_field/test/tests/conserved_noise/integral.i
- modules/phase_field/test/tests/rigidbodymotion/grain_maskedforce.i
- test/tests/materials/discrete/recompute_block_error.i
- test/tests/thewarehouse/test1.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/Rayleigh_HHT.i
- test/tests/materials/discrete/recompute2.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i
- test/tests/mesh/named_entities/named_entities_test.i
- test/tests/vectorpostprocessors/1d_line_sampler/1d_line_sampler.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/water_dissociation.i
- modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i
- test/tests/materials/discrete/recompute_no_calc.i
- modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
- modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i
- modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy_split.i
- modules/chemical_reactions/test/tests/parser/kinetic_without_action.i
- test/tests/kernels/array_kernels/standard_save_in.i
- modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_no_parts.i
- modules/navier_stokes/test/tests/ins/jeffery_hamel/wedge_dirichlet.i
- modules/chemical_reactions/test/tests/jacobian/primary_convection.i
- modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i
- modules/chemical_reactions/test/tests/exceptions/missing_gamma.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Newmark_time_integration/sm/wave_bc_1d_sm.i
- modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i
- tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5a_steady.i
- modules/phase_field/test/tests/SplitCH/split_math_test.i
- test/tests/misc/subdomain_setup/mat_prop_block.i
- test/tests/controls/syntax_based_naming_access/system_asterisk_param.i
- test/tests/restrictable/block_api_test/block_restrictable.i
- modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/creep.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i
- test/tests/mesh/named_entities/named_entities_test_xda.i
- test/tests/actions/get_actions/test_get_actions.i
- modules/navier_stokes/test/tests/ins/mms/supg/supg_pspg_adv_dominated_mms.i
- test/tests/misc/check_error/nodal_value_off_block.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/1species_without_action.i
- modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
- test/tests/misc/check_error/missing_coupled_mat_prop_test.i
- modules/phase_field/test/tests/phase_field_kernels/SplitCHWRes.i
- test/tests/interfacekernels/1d_interface/reaction_1D_steady.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
- test/tests/interfacekernels/1d_interface/reaction_1D_transient.i
- test/tests/materials/ad_material/ad_stateful_material.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_small_invalue_test.i
- modules/chemical_reactions/test/tests/solid_kinetics/2species_without_action.i
- modules/heat_conduction/test/tests/verify_against_analytical/ad_2d_steady_state.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/sm/Rayleigh_HHT_sm.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i
- modules/phase_field/test/tests/initial_conditions/RndSmoothCircleIC.i
- modules/navier_stokes/test/tests/ins/stagnation/stagnation.i
- modules/navier_stokes/test/tests/scalar_adr/supg/2d_advection_error_testing.i
- modules/phase_field/test/tests/actions/conserved_forward_split_1var.i
- modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i
- test/tests/controls/moose_base_naming_access/base_object_param.i
- modules/chemical_reactions/test/tests/exceptions/extra_sto.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
- modules/combined/examples/phase_field-mechanics/Pattern1.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
- modules/phase_field/examples/multiphase/GrandPotential3Phase.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_test.i
- modules/combined/test/tests/solid_mechanics/Time_integration/Newmark_time_integration/sm/Newmark_test_sm.i
- modules/phase_field/examples/cahn-hilliard/Parsed_CH.i
- modules/heat_conduction/test/tests/verify_against_analytical/2d_steady_state.i
- modules/phase_field/test/tests/KKS_system/kks_example_split.i
- modules/porous_flow/examples/coal_mining/fine_with_fluid.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i
- modules/phase_field/test/tests/MultiPhase/penalty.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
- modules/tensor_mechanics/examples/coal_mining/fine.i
- modules/phase_field/test/tests/anisotropic_mobility/nonsplit.i
- modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_wrong_lib.i
- modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven.i
- modules/heat_conduction/test/tests/sideset_heat_transfer/cfem_gap.i
- modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_high_reynolds.i
- modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i
- modules/chemical_reactions/examples/calcium_bicarbonate/calcium_bicarbonate.i
- modules/chemical_reactions/test/tests/parser/equilibrium_action.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i
- tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5b_transient.i
- test/tests/materials/has_material/has_boundary_prop.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
- modules/phase_field/test/tests/actions/gpm_kernel.i
- modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_test.i
- modules/phase_field/test/tests/MultiPhase/mixedswitchingfunctionmaterial.i
- test/tests/interfacekernels/adaptivity/adaptivity.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/co2_h2o.i
- modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i
- test/tests/misc/line_source/line_source.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/specifiedsmoothcircleIC_test.i
- modules/heat_conduction/test/tests/transient_heat/transient_heat.i
- test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/Rayleigh_Newmark.i
- modules/navier_stokes/test/tests/ins/velocity_channel/velocity_inletBC_by_parts.i
- test/tests/controls/syntax_based_naming_access/param.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i
- modules/heat_conduction/test/tests/heat_source_bar/ad_heat_source_bar.i
- test/tests/materials/discrete/recompute_boundary_error.i
- modules/phase_field/examples/nucleation/refine.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/HHT_time_integration/wave_bc_1d.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
- modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i
- modules/tensor_mechanics/test/tests/jacobian/poro01.i
- modules/phase_field/test/tests/ADCHSplitChemicalPotential/simple_transient_diffusion.i
- modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
- modules/chemical_reactions/test/tests/jacobian/coupled_convreact.i
- modules/phase_field/test/tests/MultiPhase/acmultiinterface.i
- test/tests/mesh/patterned_mesh/mesh_tester.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i
- test/tests/controls/tag_based_naming_access/system_asterisk_param.i
- modules/combined/test/tests/exception/ad.i
- modules/phase_field/test/tests/initial_conditions/SmoothCircleIC.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_HHT/sm/wave_bc_1d_sm.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_stabilized.i
- test/tests/materials/discrete/reset_warning.i
- modules/combined/examples/xfem/xfem_thermomechanics_stress_growth.i
- modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i
- test/tests/materials/material/adv_mat_couple_test2.i
- modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_by_parts.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
- test/tests/problems/no_material_coverage_check/no_material_coverage_check.i
- modules/chemical_reactions/test/tests/solid_kinetics/calcite_precipitation.i
- modules/combined/test/tests/exception/nonad.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_test.i
- modules/phase_field/test/tests/initial_conditions/CrossIC.i
- modules/tensor_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i
- modules/navier_stokes/test/tests/ins/pressure_channel/open_bc_pressure_BC_fieldSplit.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
- modules/heat_conduction/test/tests/joule_heating/transient_jouleheating.i
- test/tests/restrictable/boundary_api_test/boundary_restrictable.i
- modules/navier_stokes/test/tests/ins/hydrostatic/gravity.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_split.i
- modules/phase_field/test/tests/rigidbodymotion/update_orientation.i
- modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
- modules/tensor_mechanics/test/tests/inertial_torque/residual.i
- modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i
- modules/phase_field/test/tests/conserved_noise/uniform.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i
- modules/phase_field/test/tests/free_energy_material/MathFreeEnergy.i
- test/tests/controls/tag_based_naming_access/system_object_param.i
- modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i
- modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_test.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
- modules/heat_conduction/test/tests/heat_source_bar/heat_source_bar.i
- modules/phase_field/test/tests/MultiPhase/acmultiinterface_aux.i
- modules/phase_field/test/tests/rigidbodymotion/grain_forcesum.i
- modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_stab_jac_test.i
- test/tests/materials/has_material/has_block_prop.i
- modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
- modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/sm/HHT_test_sm.i
- modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_stabilized_test.i
- modules/phase_field/examples/rigidbodymotion/grain_forcedensity_ext.i
- modules/phase_field/test/tests/initial_conditions/BimodalSuperellipsoidsIC.i
- test/tests/materials/get_material_property_names/get_material_property_any_block_id.i
- modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i
- modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i
- modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i
- modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i
- test/tests/materials/material/coupled_material_test.i
- test/tests/misc/check_error/missing_material_prop_test2.i
- modules/navier_stokes/test/tests/ins/mms/supg/supg_adv_dominated_mms.i
- modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i
- test/tests/materials/get_material_property_names/get_material_property_any_boundary_id.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_Newmark/sm/wave_bc_1d_sm.i
- modules/porous_flow/examples/tidal/atm_tides.i
- modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/HHT_test.i
- test/tests/materials/boundary_material/bnd_coupling_vol.i
- modules/phase_field/test/tests/MultiPhase/crosstermfreeenergy.i
- test/tests/materials/discrete/recompute_warning.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/calcium_bicarbonate.i
- modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i
- test/tests/controls/tag_based_naming_access/param.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/navier_stokes/test/tests/ins/pressure_channel/open_bc_pressure_BC.i
- modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
- modules/navier_stokes/test/tests/scalar_adr/supg/advection_error_testing.i
- test/tests/bcs/vectorpostprocessor/vectorpostprocessor.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i
- modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven.i
- test/tests/mesh_modifiers/subdomain_bounding_box/oriented_subdomain_bounding_box_outside.i
- test/tests/materials/generic_constant_material/generic_constant_material_test.i
- modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_traction_stabilized.i
- test/tests/outputs/debug/show_material_props.i
- modules/heat_conduction/test/tests/sideset_heat_transfer/gap_thermal_ktemp_1D.i
- modules/tensor_mechanics/examples/coal_mining/coarse.i
- modules/chemical_reactions/test/tests/parser/equilibrium_without_action.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/HHT_time_integration/sm/wave_bc_1d_sm.i
- modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i
- modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_chorin.i
- modules/phase_field/examples/cahn-hilliard/Math_CH.i
- modules/chemical_reactions/test/tests/jacobian/coupled_diffreact2.i
- test/tests/misc/check_error/missing_material_prop_test.i
- modules/phase_field/test/tests/rigidbodymotion/polycrystal_action.i
- modules/combined/examples/periodic_strain/global_strain_pfm.i
- modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven_stabilized.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
- modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i
- modules/rdg/test/tests/advection_1d/block_restrictable.i
- test/tests/dirackernels/multiplicity/multiplicity.i
- modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i
- modules/phase_field/test/tests/new_initial_conditions/GrainGrowth_initial_from_file.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Newmark_time_integration/wave_bc_1d.i
- test/tests/controls/output/controllable.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/phase_field/test/tests/anisotropic_mobility/split.i
- test/tests/auxkernels/diffusion_flux/diffusion_flux.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
- modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_with_density.i
- test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_outside.i
- test/tests/controls/syntax_based_naming_access/system_object_param.i
- modules/chemical_reactions/test/tests/jacobian/coupled_convreact2.i
- modules/combined/test/tests/solid_mechanics/HHT_time_integrator/one_element_b_0_3025_g_0_6_cubic.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
- test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i
- modules/chemical_reactions/test/tests/exceptions/missing_sto3.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_without_action.i
- modules/phase_field/examples/anisotropic_interfaces/snow.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
- test/tests/kernels/simple_transient_diffusion/ill_conditioned_simple_diffusion.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
- modules/phase_field/test/tests/initial_conditions/SpecifiedSmoothSuperellipsoidIC.i
- modules/functional_expansion_tools/examples/2D_interface_different_submesh/main.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i
- modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i
- modules/phase_field/test/tests/initial_conditions/BimodalInverseSuperellipsoidsIC.i
- modules/phase_field/test/tests/SplitCH/forward_split_math_test.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i
- modules/heat_conduction/test/tests/sideset_heat_transfer/gap_thermal_1D.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i
- modules/phase_field/test/tests/KKS_system/kks_example_offset.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
- modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/nonmatching.i
- modules/tensor_mechanics/examples/bridge/bridge.i
- tutorials/darcy_thermo_mech/step05_heat_conduction/tests/bcs/outflow/outflow.i
- modules/heat_conduction/test/tests/verify_against_analytical/1D_transient.i
- tutorials/darcy_thermo_mech/step04_velocity_aux/tests/auxkernels/velocity_aux/velocity_aux.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/2species.i
- modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i
- modules/chemical_reactions/test/tests/exceptions/missing_sto2.i
- modules/phase_field/test/tests/initial_conditions/BoundingBoxIC.i
- test/tests/controls/tag_based_naming_access/object_param.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i
- test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux_with_jump_material.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i
- test/tests/materials/get_material_property_names/get_material_property_boundary_names.i
- modules/porous_flow/test/tests/actions/addmaterials.i
- test/tests/dgkernels/adaptivity/adaptivity.i
- modules/tensor_mechanics/test/tests/inertial_torque/simple.i
- modules/xfem/test/tests/moving_interface/moving_diffusion.i
- modules/misc/test/tests/kernels/thermo_diffusion/thermo_diffusion.i
- test/tests/materials/stateful_prop/implicit_stateful.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_eqaux.i
- modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
- modules/navier_stokes/test/tests/ins/mms/supg/supg_mms_test.i
- modules/heat_conduction/test/tests/verify_against_analytical/ad_1D_transient.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i
- modules/phase_field/test/tests/KKS_system/kks_multiphase.i
- modules/combined/test/tests/phase_field_fracture/void2d_iso.i
- test/tests/vectorpostprocessors/material_vector_postprocessor/basic.i
- test/tests/dgkernels/2d_diffusion_dg/dg_stateful.i
- modules/phase_field/examples/cahn-hilliard/Parsed_SplitCH.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
- modules/navier_stokes/test/tests/scalar_adr/supg/tauOpt.i
- test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i
- modules/chemical_reactions/test/tests/aqueous_equilibrium/1species.i
- test/tests/postprocessors/side_flux_average/side_flux_average.i
- modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i
- modules/chemical_reactions/test/tests/exceptions/extra_gamma.i
- test/tests/userobjects/mat_prop_user_object/mat_prop_user_object.i
- test/tests/kernels/ad_mat_diffusion/ad_1D_transient.i
- tutorials/darcy_thermo_mech/step03_darcy_material/tests/kernels/darcy_pressure/darcy_pressure.i
- modules/combined/test/tests/solid_mechanics/HHT_time_integrator/sm/one_element_b_0_3025_g_0_6_cubic_sm.i
- modules/chemical_reactions/test/tests/kinetic_rate/arrhenius.i
- modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i
- modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i
- modules/navier_stokes/test/tests/ins/velocity_channel/velocity_inletBC_no_parts.i
- modules/chemical_reactions/test/tests/jacobian/2species.i
- modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i
- modules/chemical_reactions/test/tests/jacobian/coupled_diffreact.i
- test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i
- modules/tensor_mechanics/examples/bridge/bridge_large_strain.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_Newmark/wave_bc_1d.i
- modules/porous_flow/examples/tidal/atm_tides_open_hole.i
- modules/navier_stokes/test/tests/ins/jeffery_hamel/wedge_natural.i
- modules/phase_field/test/tests/free_energy_material/MathFreeEnergy_split.i
- test/tests/materials/derivative_material_interface/const.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i
- modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i
- modules/heat_conduction/test/tests/semiconductor_linear_conductivity/steinhart-hart_linear.i
- test/tests/vectorpostprocessors/material_vector_postprocessor/boundary-err.i
- test/tests/materials/multiple_materials/multiple_materials_test.i
- modules/chemical_reactions/test/tests/exceptions/missing_gamma2.i
- modules/tensor_mechanics/test/tests/jacobian/inertial_torque.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
- modules/heat_conduction/test/tests/parallel_element_pps_test/parallel_element_pps_test.i
- modules/combined/examples/phase_field-mechanics/Nonconserved.i
- modules/phase_field/test/tests/conserved_noise/normal.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
- test/tests/materials/discrete/recompute.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion.i
- modules/phase_field/test/tests/phase_field_kernels/SplitCahnHilliard.i
- modules/porous_flow/examples/coal_mining/coarse_with_fluid.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
- modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_HHT/wave_bc_1d.i
- test/tests/mesh_modifiers/subdomain_bounding_box/oriented_subdomain_bounding_box_inside.i
- modules/chemical_reactions/test/tests/parser/kinetic_action.i
- modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
- modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC_3D.i
- modules/phase_field/test/tests/initial_conditions/SmoothCircleIC_3D.i
- modules/combined/examples/mortar/eigenstrain.i
- modules/chemical_reactions/test/tests/solid_kinetics/2species.i
- modules/chemical_reactions/test/tests/jacobian/2species_equilibrium_with_density.i
- test/tests/vectorpostprocessors/material_vector_postprocessor/block-restrict-err.i
- test/tests/materials/boundary_material/elem_aux_bc_on_bnd.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
- modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i
- modules/tensor_mechanics/test/tests/gravity/gravity_test.i
- tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5c_outflow.i
- modules/heat_conduction/test/tests/heat_conduction_ortho/heat_conduction_ortho.i
- test/tests/restrictable/check_error/check_error.i
- test/tests/materials/material/material_check_test.i
- test/tests/materials/material/three_coupled_mat_test.i
- test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux.i
- modules/solid_mechanics/examples/bridge/bridge_large_strain.i
- test/tests/materials/declare_overlap/error.i
- modules/solid_mechanics/examples/bridge/bridge.i
- modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_test.i
- modules/phase_field/test/tests/ADCHSoretDiffusion/simple_transient_diffusion_with_soret.i
- modules/combined/examples/mortar/eigenstrain_action.i
- modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_normal_test.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i
- test/tests/userobjects/layered_side_integral/layered_side_flux_average.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_inside.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
uniform_refine = 2
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_normal_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 22
ny = 22
nz = 22
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = LatticeSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
circles_per_side = '3 3 3'
pos_variation = 10.0
radius = 10.0
int_width = 12.0
radius_variation = 2
radius_variation_type = normal
[../]
[]
[Kernels]
active = 'ie_c diff'
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[]
[Materials]
active = 'Dv'
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
active = 'bubbles'
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps =1
dt = 100.0
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/jacobian/coupled_equilsub.i
# Test the Jacobian terms for the CoupledBEEquilibriumSub Kernel
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = 2
weight = 2
sto_v = 1.5
sto_u = 2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i
# Wave propogation in 1D using HHT time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*((1+alpha)*disp-alpha*disp_old) = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.097405701570538350e-02, 2.113131879547342634e-02 and -5.182787688751439893e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = vel_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = vel_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = vel_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = vel_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/examples/rigidbodymotion/grain_motion_GT.i
# example showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 4
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 40
nz = 0
xmin = 0.0
xmax = 40.0
ymin = 0.0
ymax = 20.0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./PolycrystalVariables]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta0 eta1 eta2 eta3'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1 eta2 eta3'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = F
mob_name = L
kappa_name = kappa_eta
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
[]
[Functions]
[./load_x]
# Defines the force on the grains in the x-direction
type = ParsedFunction
value = 0.005*cos(x*pi/600)
[../]
[./load_y]
# Defines the force on the grains in the y-direction
type = ConstantFunction
value = 0.002
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '4.5 60 250 4000'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
#args = 'c eta0 eta1 eta2 eta3'
#constant_names = 'barr_height cv_eq'
#constant_expressions = '0.1 1.0e-2'
#function = '16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
# +eta0*(1-eta0)*c+eta1*(1-eta1)*c
# +eta2*(1-eta2)*c+eta3*(1-eta3)*c'
constant_names = 'A B'
constant_expressions = '450 1.5'
args = 'c eta0 eta1 eta2 eta3' #Must be changed as op_num changes. Copy/paste from line 4
function = 'A*c^2*(1-c)^2+B*(c^2+6*(1-c)*(eta0^2+eta1^2+eta2^2+eta3^2)
-4*(2-c)*(eta0^3+eta1^3+eta2^3+eta3^3)
+3*(eta0^2+eta1^2+eta2^2+eta3^2)^2)'
derivative_order = 2
[../]
#[./force_density]
# type = ForceDensityMaterial
# c = c
# etas = 'eta0 eta1 eta2 eta3'
#[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
k = 10.0
etas = 'eta0 eta1 eta2 eta3'
force_x = load_x
force_y = load_y
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
#var_name_base = eta
#op_num = 4.0
v = 'eta0 eta1 eta2 eta3'
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta1]
x_positions = '32.5 24.0'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 14.0'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0
variable = eta1
invalue = 1
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./multip]
x_positions = '5.5 15.5 24.0 32.5 7.0 15.5 24.0 32.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 6.0 6.0 6.0 14.5 14.5 14.0 14.5'
radii = '4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0'
3D_spheres = false
outvalue = 0.001
variable = c
invalue = 0.999
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta0]
x_positions = '5.5 15.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 6.0'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta2]
x_positions = '24.0 7.0'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 14.5 '
radii = '4.0 4.0 '
3D_spheres = false
outvalue = 0.0
variable = eta2
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta3]
x_positions = '15.5 32.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '14.5 14.5'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0.0
variable = eta3
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
c = c
grain_data = grain_center
force_density = force_density_ext
etas = 'eta0 eta1 eta2 eta3'
execute_on = 'initial linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 20
dt = 0.01
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/SimpleSplitCHWRes.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the SplitCHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_Cu_Split_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 250
ymin = 0
ymax = 250
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SimpleSplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1e-3 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 6
dt = 10
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/KKS_system/kks_example.i
#
# KKS toy problem in the non-split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
nz = 0
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
# order parameter
[./eta]
order = THIRD
family = HERMITE
[../]
# hydrogen concentration
[./c]
order = THIRD
family = HERMITE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.2
outvalue = 0.1
int_width = 0.05
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.6
outvalue = 0.4
int_width = 0.05
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
outputs = oversampling
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2'
outputs = oversampling
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
outputs = oversampling
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = oversampling
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L '
prop_values = '0.7 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSCHBulk
variable = c
ca = cm
cb = cd
fa_name = fm
fb_name = fd
mob_name = 0.7
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 0.4
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-4
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Preconditioning]
[./mydebug]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example
[./oversampling]
type = Exodus
refinements = 3
[../]
[]
test/tests/materials/derivative_material_interface/multiblock.i
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./c]
[../]
[]
[Materials]
[./mat1]
type = DefaultMatPropConsumerMaterial
block = 1
[../]
[./mat2]
type = DefaultMatPropConsumerMaterial
block = 2
[../]
[./mat1b]
type = DefaultMatPropConsumerMaterial
mat_prop = prop2
block = 1
[../]
[./mat2b]
type = DefaultMatPropConsumerMaterial
mat_prop = prop2
block = 2
[../]
[./generic]
type = GenericConstantMaterial
block = '1 2'
prop_names = prop3
prop_values = 9
[../]
[./mat1c]
type = DefaultMatPropConsumerMaterial
mat_prop = prop3
block = 1
[../]
[./mat2c]
type = DefaultMatPropConsumerMaterial
mat_prop = prop3
block = 2
[../]
[]
[Kernels]
[./kern1]
type = DefaultMatPropConsumerKernel
variable = c
block = 1
[../]
[./kern2]
type = DefaultMatPropConsumerKernel
variable = c
block = 2
[../]
[./kern1b]
type = DefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 1
[../]
[./kern2b]
type = DefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 2
[../]
[]
[Executioner]
type = Steady
[]
[Debug]
show_material_props = true
[]
[Problem]
solve = false
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
master_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block_id = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = HeatConduction
variable = temperature
diffusion_coefficient = 'k_s'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./thermal]
type = GenericConstantMaterial
prop_names = 'k_s'
prop_values = '12'
[../]
[./htc_material]
type = GenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = ADPiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
test/tests/postprocessors/element_integral_material_property/element_integral_material_property.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
block = 0
prop_names = prop
prop_values = 2.0
[../]
[]
[Postprocessors]
[./prop_integral]
type = ElementIntegralMaterialProperty
mat_prop = prop
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/mms/pspg/pspg_mms_test.i
mu=1.5
rho=2.5
[GlobalParams]
gravity = '0 0 0'
pspg = true
convective_term = true
integrate_p_by_parts = true
laplace = true
u = vel_x
v = vel_y
p = p
alpha = 1e-6
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
x_vel_forcing_func = vel_x_source_func
y_vel_forcing_func = vel_y_source_func
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
value = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
value = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
value = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
value = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
value = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
value = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
value = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[./px_func]
type = ParsedFunction
value = '0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2px]
variable = px
function = px_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[./px]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[./px]
type = VariableGradientComponent
component = x
variable = px
gradient_variable = p
[../]
[]
modules/phase_field/examples/nucleation/cahn_hilliard.i
#
# Test the DiscreteNucleation material in a toy system. The global
# concentration is above the solubility limit, but below the spinodal.
# Without further intervention no nucleation will occur in a phase
# field model. The DiscreteNucleation material will locally modify the
# free energy to coerce nuclei to grow.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 120
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = RandomIC
variable = c
min = 0.2
max = 0.21
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = c*1e-7
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 100
probability = P
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
radius = 10
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1200
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 5
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = eta
args = 'eta'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_vol_dev
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
args = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
args = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/xfem/test/tests/moving_interface/phase_transition.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 1
xmin = 0
xmax = 2
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./velocity]
type = XFEMPhaseTransitionMovingInterfaceVelocity
diffusivity_at_positive_level_set = 5
diffusivity_at_negative_level_set = 1
equilibrium_concentration_jump = 1
value_at_interface_uo = value_uo
[../]
[./value_uo]
type = PointValueAtXFEMInterface
variable = 'u'
geometric_cut_userobject = 'moving_line_segments'
execute_on = 'nonlinear'
level_set_var = ls
[../]
[./moving_line_segments]
type = MovingLineSegmentCutSetUserObject
cut_data = '0.5 0 0.5 1.0 0 0'
heal_always = true
interface_velocity = velocity
[../]
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./ic_u]
type = FunctionIC
variable = u
function = 'if(x<0.51, 2, 1)'
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'moving_line_segments'
use_displaced_mesh = false
variable = u
value = 2
alpha = 1e5
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./ls]
type = LineSegmentLevelSetAux
line_segment_cut_set_user_object = 'moving_line_segments'
variable = ls
[../]
[]
[Materials]
[./diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[../]
[./diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 1
[../]
[./diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
value = 2
boundary = 3
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-11
start_time = 0.0
dt = 0.01
num_steps = 4
max_xfem_update = 1
[]
[Outputs]
execute_on = timestep_end
exodus = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
csv = true
[]
test/tests/materials/get_material_property_names/get_material_property_block_names.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./material]
type = GenericConstantMaterial
prop_names = combo
block = 100
prop_values = 12345
[../]
[./top]
type = GenericConstantMaterial
prop_names = combo
block = 0
prop_values = 99999
[../]
[]
[UserObjects]
[./get_material_block_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'top 0'
property_name = combo
test_type = 'block'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/ADAllenCahn.i
#
# Test the forward automatic differentiation Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = ADTimeDerivative
variable = eta
[../]
[./ACBulk]
type = ADAllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ADACInterface
variable = eta
kappa_name = 1
variable_L = false
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = ADTestDerivativeFunction
function = F1
f_name = F
op = 'eta'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
test/tests/controls/syntax_based_naming_access/object_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/test_object/point'
execute_on = 'initial'
[../]
[]
modules/phase_field/examples/rigidbodymotion/AC_CH_Multigrain.i
# Tests the rigid body motion due to applied force of multiple particles.
# ***COPY AND PASTE THESE AS NEEDED***
# 'gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr8 gr9 gr10 gr11 gr12 gr13 gr14 gr15 gr16 gr17 gr18 gr19'
# (gr0^2+gr1^2+gr2^2+gr3^2+gr4^2+gr5^2+gr6^2+gr7^2+gr8^2+gr9^2+gr10^2+gr11^2+gr12^2+gr13^2+gr14^2+gr15^2+gr16^2+gr17^2+gr18^2+gr19^2)
# (gr0^3+gr1^3+gr2^3+gr3^3+gr4^3+gr5^3+gr6^3+gr7^3+gr8^3+gr9^3+gr10^3+gr11^3+gr12^3+gr13^3+gr14^3+gr15^3+gr16^3+gr17^3+gr18^3+gr19^3)
[GlobalParams]
op_num = 4
var_name_base = gr
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = 0
xmax = 600
ymin = 0
ymax = 600
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./PolycrystalVariables] # Automatically creates order parameter variables
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./force]
order = CONSTANT
family = MONOMIAL
[../]
[./free_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./load_x]
# Defines the force on the grains in the x-direction
type = ParsedFunction
value = 0.005*cos(x*pi/600)
[../]
[./load_y]
# Defines the force on the grains in the y-direction
type = ConstantFunction
value = 0.002
[../]
[]
[Kernels]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = f_loc
mob_name = L
kappa_name = kappa_gr
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
# Cahn Hilliard kernels
[./dt_w]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./CH_wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./CH_Parsed]
type = SplitCHParsed
variable = c
f_name = f_loc
w = w
kappa_name = kappa_c
args = 'gr0 gr1 gr2 gr3' # Must be changed as op_num changes. Copy/paste from line 4
[../]
[./CH_RBM]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'gr0 gr1 gr2 gr3'
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
[]
[AuxKernels]
[./force_x]
type = FunctionAux
variable = force
function = load_x
[../]
[./force_y]
type = FunctionAux
variable = force
function = load_y
[../]
[./energy_density]
type = TotalFreeEnergy
variable = free_energy
f_name = f_loc
kappa_names = kappa_c
interfacial_vars = c
[../]
[./bnds]
type = BndsCalcAux
variable = bnds
[../]
[]
[BCs]
[./bcs]
#zero flux BC
type = NeumannBC
value = 0
variable = c
boundary = '0 1 2 3'
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_gr kappa_c M L'
prop_values = '250 4000 4.5 60'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = f_loc
constant_names = 'A B'
constant_expressions = '450 1.5'
args = 'c gr0 gr1 gr2 gr3' #Must be changed as op_num changes. Copy/paste from line 4
function = 'A*c^2*(1-c)^2+B*(c^2+6*(1-c)*(gr0^2+gr1^2+gr2^2+gr3^2)
-4*(2-c)*(gr0^3+gr1^3+gr2^3+gr3^3)
+3*(gr0^2+gr1^2+gr2^2+gr3^2)^2)'
#Copy/paste from lines 5-6
derivative_order = 2
[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
k = 10.0
force_x = load_x
force_y = load_y
[../]
[]
[Postprocessors]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = free_energy
execute_on = 'initial timestep_end'
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
grain_data = grain_center
c = c
etas = 'gr0 gr1 gr2 gr3'
force_density = force_density_ext
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 2'
l_tol = 1e-05
nl_max_its = 30
l_max_its = 30
nl_rel_tol = 1e-07
nl_abs_tol = 1e-09
start_time = 0.0
end_time = 4
dt = 0.05
[]
[Outputs]
exodus = true
perf_graph = true
[./display]
type = Console
max_rows = 12
[../]
[]
[ICs]
[./concentration_IC]
type = SpecifiedSmoothCircleIC
x_positions = '150 450 150 450'
y_positions = '150 150 450 450'
z_positions = '0 0 0 0'
radii = '120 120 120 120'
variable = c
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 150
y1 = 150
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 450
y1 = 150
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 150
y1 = 450
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 450
y1 = 450
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[]
modules/chemical_reactions/test/tests/solid_kinetics/calcite_dissolution.i
# Example of batch reaction of calcite (CaCO3) dissolution to form calcium (Ca++)
# and bicarbonate (HCO3-).
#
# The reaction network considered is as follows:
# Aqueous equilibrium reactions:
# a) H+ + HCO3- = CO2(aq), Keq = 10^(6.341)
# b) HCO3- = H+ + CO3--, Keq = 10^(-10.325)
# c) Ca++ + HCO3- = H+ + CaCO3(aq), Keq = 10^(-7.009)
# d) Ca++ + HCO3- = CaHCO3+, Keq = 10^(-0.653)
# e) Ca++ = H+ + CaOh+, Keq = 10^(-12.85)
# f) - H+ = OH-, Keq = 10^(-13.991)
#
# Kinetic reactions
# g) Ca++ + HCO3- = H+ + CaCO3(s), A = 0.461 m^2/L, k = 6.456542e-2 mol/m^2 s,
# Keq = 10^(1.8487)
#
# The primary chemical species are H+, HCO3- and Ca++.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./ca++]
initial_condition = 1.0e-5
[../]
[./h+]
initial_condition = 1.0e-6
[../]
[./hco3-]
initial_condition = 1.0e-5
[../]
[]
[AuxVariables]
[./caco3_s]
initial_condition = 0.05
[../]
[./ph]
[../]
[]
[AuxKernels]
[./ph]
type = PHAux
h_conc = h+
variable = ph
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'ca++ hco3- h+'
secondary_species = 'co2_aq co3-- caco3_aq cahco3+ caoh+ oh-'
reactions = 'h+ + hco3- = co2_aq 6.3447,
hco3- - h+ = co3-- -10.3288,
ca++ + hco3- - h+ = caco3_aq -7.0017,
ca++ + hco3- = cahco3+ -1.0467,
ca++ - h+ = caoh+ -12.85,
- h+ = oh- -13.9951'
[../]
[./SolidKineticReactions]
primary_species = 'ca++ hco3- h+'
kin_reactions = 'ca++ + hco3- - h+ = caco3_s'
secondary_species = caco3_s
log10_keq = 1.8487
reference_temperature = 298.15
system_temperature = 298.15
gas_constant = 8.314
specific_reactive_surface_area = 0.1
kinetic_rate_constant = 6.456542e-7
activation_energy = 1.5e4
[../]
[]
[Kernels]
[./ca++_ie]
type = PrimaryTimeDerivative
variable = ca++
[../]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'porosity diffusivity'
prop_values = '0.25 1e-9'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 100
dt = 10
nl_abs_tol = 1e-12
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./h+]
type = ElementIntegralVariablePostprocessor
variable = h+
execute_on = 'initial timestep_end'
[../]
[./ca++]
type = ElementIntegralVariablePostprocessor
variable = ca++
execute_on = 'initial timestep_end'
[../]
[./hco3-]
type = ElementIntegralVariablePostprocessor
variable = hco3-
execute_on = 'initial timestep_end'
[../]
[./co2_aq]
type = ElementIntegralVariablePostprocessor
variable = co2_aq
execute_on = 'initial timestep_end'
[../]
[./oh-]
type = ElementIntegralVariablePostprocessor
variable = oh-
execute_on = 'initial timestep_end'
[../]
[./co3--]
type = ElementIntegralVariablePostprocessor
variable = co3--
execute_on = 'initial timestep_end'
[../]
[./caco3_aq]
type = ElementIntegralVariablePostprocessor
variable = caco3_aq
execute_on = 'initial timestep_end'
[../]
[./caco3_s]
type = ElementIntegralVariablePostprocessor
variable = caco3_s
execute_on = 'initial timestep_end'
[../]
[./ph]
type = ElementIntegralVariablePostprocessor
variable = ph
execute_on = 'initial timestep_end'
[../]
[./calcite_vf]
type = TotalMineralVolumeFraction
variable = caco3_s
molar_volume = 36.934e-6
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
test/tests/controls/output/controllable_clear.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
controls = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
modules/chemical_reactions/test/tests/jacobian/coupled_equilsub2.i
# Test the Jacobian terms for the CoupledBEEquilibriumSub Kernel using
# activity coefficients not equal to unity
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = 2
weight = 2
sto_v = 1.5
sto_u = 2
gamma_eq = 2
gamma_u = 2.5
gamma_v = 1.5
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/chemical_reactions/test/tests/exceptions/missing_sto.i
# Missing stoichiometric coefficient in AqueousEquilibriumRxnAux AuxKernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./c]
[../]
[./gamma_a]
[../]
[./gamma_b]
[../]
[]
[AuxKernels]
[./c]
type = AqueousEquilibriumRxnAux
variable = c
v = 'a b'
gamma_v = 'gamma_a gamma_b'
sto_v = 1
log_k = 1
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/combined/test/tests/solid_mechanics/Time_integration/Newmark_time_integration/Newmark_test.i
# Test for Newmark time integration
#
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters The equation
# of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force
# kernel The last term on the left is evaluated using StressDivergence
# Kernel The residual due to Pressure is evaluated using Pressure
# boundary condition
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy strain_yy'
[]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
test/tests/materials/material/adv_mat_couple_test.i
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
# This material is global and uses a coupled property
[./mat_global]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
block = '1 2'
[../]
# This material supplies a value for block 1 ONLY
[./mat_0]
type = GenericConstantMaterial
block = 1
prop_names = 'mp1'
prop_values = 2
[../]
# This material supplies a value for block 2 ONLY
[./mat_1]
type = GenericConstantMaterial
block = 2
prop_names = 'mp1'
prop_values = 200
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out_adv_coupled
exodus = true
[]
[Debug]
show_material_props = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i
# Test for small strain Timoshenko beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2e4
# Shear modulus (G) = 1e4
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# Iy = 1.0 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 8
# Therefore, the beam behaves like a Timoshenko beam.
# The FEM solution for this beam with 100 elements give first natural period of 0.2731s with a time step of 0.005.
# The acceleration, velocity and displacement time histories obtained from MOOSE matches with those obtained from ABAQUS.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.005 2.5473249455812e-05 0.010189299782325 4.0757199129299
# 0.01 5.3012872677486e-05 0.00082654950634483 -7.8208200233219
# 0.015 5.8611622914354e-05 0.0014129505884026 8.055380456145
# 0.02 6.766113649781e-05 0.0022068548449798 -7.7378187535141
# 0.025 7.8981810558437e-05 0.0023214147792709 7.7836427272305
# Note that the theoretical first frequency of the beam using Euler-Bernoulli theory is:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho) = 4.9455
# This implies that the corresponding time period of this beam (under Euler-Bernoulli assumption) is 0.2022s.
# This shows that Euler-Bernoulli beam theory under-predicts the time period of a thick beam. In other words, the Euler-Bernoulli beam theory predicts a more compliant beam than reality for a thick beam.
[Mesh]
type = GeneratedMesh
xmin = 0
xmax = 4.0
nx = 100
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.005 0.01 1.0'
y = '0.0 1.0 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
start_time = 0.0
dt = 0.005
end_time = 0.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2e4
poissons_ratio = 0.0
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/phase_field/test/tests/rigidbodymotion/grain_appliedforcedensity.i
# test file for showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 10
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./load]
type = ConstantFunction
value = 0.01
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density_ext]
type = ExternalForceDensityMaterial
c = c
etas = 'eta0 eta1'
k = 1.0
force_y = load
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
c = c
etas = 'eta0 eta1'
force_density = force_density_ext
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i
# Derived from the example '3D_volumetric_cylindrical' with the following differences:
#
# 1) The model mesh is refined in the MasterApp by 1
# 2) Mesh adaptivity is enabled for the SubApp
# 3) Output from the SubApp is enabled so that the mesh changes can be visualized
[Mesh]
type = FileMesh
file = cyl-tet.e
uniform_refine = 1
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
output_sub_cycles = true
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/chemical_reactions/test/tests/jacobian/2species_equilibrium.i
# Tests the Jacobian when equilibrium secondary species are present
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
max = 5
min = 1
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2
a + b = pab 2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./pressure]
type = DarcyFluxPressure
variable = pressure
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/sm/Rayleigh_Newmark_sm.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping beta and gamma are Newmark time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next two terms on the left involving zeta ise
# evaluated using the StressDivergence Kernel The residual due to
# Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant.
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./stiffness_x]
type = StressDivergence
variable = disp_x
component = 0
zeta = 0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./stiffness_y]
type = StressDivergence
variable = disp_y
component = 1
zeta = 0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[./stiffness_z]
type = StressDivergence
variable = disp_z
component = 2
zeta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = MaterialTensorAux
variable = stress_yy
tensor = stress
index = 1
[../]
[./strain_yy]
type = MaterialTensorAux
variable = strain_yy
tensor = total_strain
index = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 210e+09
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((min(t/end_t,1)*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*min(t/end_t,1)*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 10000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_wp
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/phase_field_slave.i
# This input file contains objects only available in phase_field
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
test/tests/meshgenerators/patterned_mesh_generator/patterned_mesh_generator.i
[Mesh]
[./fmg]
type = FileMeshGenerator
file = quad_mesh.e
[]
[./fmg2]
type = FileMeshGenerator
file = tri_mesh.e
[]
[./pmg]
type = PatternedMeshGenerator
inputs = 'fmg fmg2'
pattern = '0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 1 1 0 0 0 0 0 0 0 0 1 1 0 ;
0 1 1 1 0 0 0 0 0 0 1 1 1 0 ;
0 1 0 1 1 0 0 0 0 1 1 0 1 0 ;
0 1 0 0 1 1 0 0 1 1 0 0 1 0 ;
0 1 0 0 0 1 1 1 1 0 0 0 1 0 ;
0 1 0 0 0 0 1 1 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0'
bottom_boundary = 1
right_boundary = 2
top_boundary = 3
left_boundary = 4
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = conductivity
prop_values = 100
[../]
[./mat2]
type = GenericConstantMaterial
block = 2
prop_names = conductivity
prop_values = 1e-4
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
test/tests/controls/moose_base_naming_access/base_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'Postprocessor::*/point'
execute_on = 'initial'
[../]
[]
modules/phase_field/test/tests/MultiPhase/lagrangemult.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2'
h_names = 'h1 h2'
epsilon = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
outputs = exodus
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
outputs = exodus
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = '(c-0.9)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
args = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/functional_expansion_tools/examples/2D_interface/main.i
# Basic example coupling a master and sub app at an interface in a 2D model.
# The master app provides a flux term to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's interface conditions, both value and flux, are transferred back
# to the master app
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[Materials]
[./Impervium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.00001 50.0 100.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
modules/porous_flow/test/tests/actions/addmaterials2.i
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# the at_nodes parameter isn't provided. In this case, only a single material
# is given, and the action must correctly identify if materials should be added
# at the nodes, qps, or even both
[Mesh]
type = GeneratedMesh
dim = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pwater]
initial_condition = 1e6
[../]
[./sgas]
initial_condition = 0.3
[../]
[./temperature]
initial_condition = 50
[../]
[]
[AuxVariables]
[./x0]
initial_condition = 0.1
[../]
[./x1]
initial_condition = 0.5
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = sgas
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[../]
[./heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater sgas temperature'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-5
pc_max = 1e7
sat_lr = 0.1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
cv = 2
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1e9
viscosity = 1e-4
density0 = 20
thermal_expansion = 0
cv = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = 50
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'x0 x1'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[../]
[./relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.11
[../]
[./relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
s_res = 0.01
sum_s_res = 0.11
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[../]
[./unused]
type = GenericConstantMaterial
prop_names = unused
prop_values = 0
[../]
[]
[Executioner]
type = Transient
end_time = 1
nl_abs_tol = 1e-14
[]
modules/functional_expansion_tools/examples/2D_interface/sub.i
# Basic example coupling a master and sub app at an interface in a 2D model.
# The master app provides a flux term to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's interface conditions, both value and flux, are transferred back
# to the master app
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
test/tests/outputs/debug/show_material_props_debug.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./subdomains]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
block = '0 1'
prop_names = 'property0 property1 property2 property3 property4 property5 property6 property7 property8 property9 property10'
prop_values = '0 1 2 3 4 5 6 7 8 9 10'
[../]
[./boundary]
type = GenericConstantMaterial
prop_names = bnd_prop
boundary = top
prop_values = 12345
[../]
[./restricted]
type = GenericConstantMaterial
block = 1
prop_names = 'restricted0 restricted1'
prop_values = '10 11'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Debug]
show_material_props = true
[]
modules/phase_field/test/tests/initial_conditions/RndBoundingBoxIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 8
xmax = 50
ymax = 25
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = RndBoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
mx_invalue = 1.0
mn_invalue = 0.9
mx_outvalue = -0.7
mn_outvalue = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 4
dt = 5.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/phase_field_kernels/ADSplitCahnHilliard.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the SplitCHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_Cu_Split_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 60
ymin = 0
ymax = 60
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = -0.5
int_width = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = ADSplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = ADSplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = ADCoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '100 40'
[../]
[./free_energy]
type = ADMathFreeEnergy
f_name = F
c = 'c'
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
file_base = SplitCahnHilliard_out
[]
modules/phase_field/test/tests/conserved_noise/integral.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 10.0
ymin = 0.0
ymax = 10.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHMath
variable = c
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./conserved_langevin]
type = ConservedLangevinNoise
amplitude = 0.5
variable = w
noise = uniform_noise
[]
[]
[BCs]
[./Periodic]
[./all]
variable = 'c w'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[]
[UserObjects]
[./uniform_noise]
type = ConservedUniformNoise
[../]
[]
[Postprocessors]
[./total_c]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial timestep_end'
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 30
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
dt = 10.0
num_steps = 10
[]
[Outputs]
file_base = integral
csv = true
console = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_maskedforce.i
# test file for showing pinning of grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 4.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '10.0 10.0'
3D_spheres = false
variable = c
block = 0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
c = c
variable = w
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
block = 0
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
block = 0
[../]
[]
[ICs]
[./ic_eta0]
int_width = 4.0
x1 = 20.0
y1 = 0.0
radius = 10.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 4.0
x1 = 30.0
y1 = 25.0
radius = 10.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces_cosnt]
type = GrainForcesPostprocessor
grain_force = grain_force_const
[../]
[./forces_total]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force_const]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '5.0 10.0 0.0 1.0 0.0 0.0'
torque = '0.0 0.0 50.0 0.0 0.0 5.0'
[../]
[./grain_force]
type = MaskedGrainForceAndTorque
grain_force = grain_force_const
pinned_grains = 0
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 20
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 1.0
[]
[Outputs]
exodus = true
csv = true
[]
test/tests/materials/discrete/recompute_block_error.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false # makes this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = '0 10'
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '1 0.5 '
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
test/tests/thewarehouse/test1.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[manyblocks]
input = gen
type = ElemUniqueSubdomainsGenerator
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[mat_props]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 2
[]
[]
[UserObjects]
[]
[Postprocessors]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[]
[u1_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[u2_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[diff]
type = DifferencePostprocessor
value1 = u1_avg
value2 = u2_avg
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/Rayleigh_HHT.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping alpha, beta and gamma are HHT time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old] +
# zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)] +
# alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next three terms on the left involving zeta and
# alpha are evaluated using the StressDivergence Kernel The residual
# due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_automatic_differentiation = true
alpha = 0.11
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
test/tests/materials/discrete/recompute2.i
[Mesh]
[generator]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[left_domain]
type = SubdomainBoundingBoxGenerator
input = generator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
constant = 3
compute = false # make this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
test/tests/mesh/named_entities/named_entities_test.i
[Mesh]
file = named_entities.e
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
test/tests/vectorpostprocessors/1d_line_sampler/1d_line_sampler.i
# Tests the ability of a line sampler to correctly sample a coincident line. In
# 1-D, it was found that sometimes only the first few elements would be found,
# due to floating point precision error in equality tests for the points. This
# test uses a mesh configuration for which this has occurred and ensures that
# the output CSV file contains all points for the LineMaterialRealSampler vector
# postprocessor.
my_xmax = 1.2
[Mesh]
type = GeneratedMesh
parallel_type = replicated # Until RayTracing.C is fixed
dim = 1
nx = 10
xmin = 0
xmax = ${my_xmax}
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Materials]
[./my_mat]
type = GenericConstantMaterial
prop_names = 'my_prop'
prop_values = 5
[../]
[]
[VectorPostprocessors]
[./my_vpp]
type = LineMaterialRealSampler
property = my_prop
start = '0 0 0'
end = '${my_xmax} 0 0'
sort_by = x
[../]
[]
[Outputs]
[./out]
type = CSV
execute_vector_postprocessors_on = 'timestep_end'
show = 'my_vpp'
precision = 5
[../]
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
# This is identical to vol_expansion.i, but uses the PoroMechanics action
#
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./PoroMechanics]
porepressure = p
displacements = 'disp_x disp_y disp_z'
[../]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion_action
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/water_dissociation.i
# Dissociation of H2O at 25C
# The dissociation of water into H+ and OH- is given by
# the equilibrium reaction H20 = H+ + OH-
#
# This can be entered in the ReactionNetwork block using
# Aqueous equilibrium reaction: - H+ = OH-, Keq = 10^(-13.9951)
#
# Note that H2O does not need to be explicitly included.
#
# The primary chemical species is H+, and the secondary equilibrium
# species is OH-.
#
# The initial concentration of H+ is 10^-7, which is its value in neutral
# water. The pH of this water is therefore 7.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[AuxVariables]
[./ph]
[../]
[]
[AuxKernels]
[./ph]
type = PHAux
h_conc = h+
variable = ph
[../]
[]
[Variables]
[./h+]
initial_condition = 1.0e-7
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = h+
secondary_species = oh-
reactions = '- h+ = oh- -13.9951'
[../]
[]
[Kernels]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity porosity'
prop_values = '1e-7 0.25'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./h+]
type = ElementIntegralVariablePostprocessor
variable = h+
execute_on = 'initial timestep_end'
[../]
[./oh-]
type = ElementIntegralVariablePostprocessor
variable = oh-
execute_on = 'initial timestep_end'
[../]
[./ph]
type = ElementIntegralVariablePostprocessor
variable = ph
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 1D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/materials/discrete/recompute_no_calc.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = '0'
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = recompute_props
max_iterations = 0
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[../]
[./remove_1]
type = BlockDeletionGenerator
block_id = 1
input = cartesian
[../]
[./readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[../]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./temp]
initial_condition = 800.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 800
[../]
[./radiative_bc]
type = InfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[./right]
type = SideFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[../]
[./min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[../]
[./max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[../]
[]
[Outputs]
csv = true
[]
modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy_split.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0.0
xmax = 30.0
ymin = 0.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./w]
[../]
[]
[Preconditioning]
active = 'SMP'
[./PBP]
type = PBP
solve_order = 'w c'
preconditioner = 'AMG ASM'
off_diag_row = 'c '
off_diag_column = 'w '
[../]
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 0
secondary = 2
translation = '0 30.0 0'
[../]
[./left_right]
primary = 1
secondary = 3
translation = '-30.0 0 0'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/parser/kinetic_without_action.i
# Explicitly adds all Kernels and AuxKernels. Used to check that the
# SolidKineticReactions parser is working correctly
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
initial_condition = 0.1
[../]
[./b]
initial_condition = 0.1
[../]
[./c]
initial_condition = 0.1
[../]
[./d]
initial_condition = 0.1
[../]
[]
[AuxVariables]
[./m1]
[../]
[./m2]
[../]
[./m3]
[../]
[]
[AuxKernels]
[./m1]
type = KineticDisPreConcAux
variable = m1
v = 'a b'
sto_v = '1 1'
log_k = -8
r_area = 1
ref_kconst = 1e-8
e_act = 1e4
gas_const = 8.314
ref_temp = 298.15
sys_temp = 298.15
[../]
[./m2]
type = KineticDisPreConcAux
variable = m2
v = 'c d'
sto_v = '2 3'
log_k = -8
r_area = 2
ref_kconst = 2e-8
e_act = 2e4
gas_const = 8.314
ref_temp = 298.15
sys_temp = 298.15
[../]
[./m3]
type = KineticDisPreConcAux
variable = m3
v = 'a c'
sto_v = '1 -2'
log_k = -8
r_area = 3
ref_kconst = 3e-8
e_act = 3e4
gas_const = 8.314
ref_temp = 298.15
sys_temp = 298.15
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./c_ie]
type = PrimaryTimeDerivative
variable = c
[../]
[./d_ie]
type = PrimaryTimeDerivative
variable = d
[../]
[./a_kin]
type = CoupledBEKinetic
variable = a
v = 'm1 m3'
weight = '1 1'
[../]
[./b_kin]
type = CoupledBEKinetic
variable = b
v = m1
weight = 1
[../]
[./c_kin]
type = CoupledBEKinetic
variable = c
v = 'm2 m3'
weight = '2 -2'
[../]
[./d_kin]
type = CoupledBEKinetic
variable = d
v = m2
weight = 3
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 1
l_tol = 1e-10
nl_rel_tol = 1e-10
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kinetic_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
test/tests/kernels/array_kernels/standard_save_in.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0.5 0'
top_right = '1 1 0'
block_id = 1
[]
[]
[Variables]
[u_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_1]
order = FIRST
family = L2_LAGRANGE
[]
[]
[AuxVariables]
[u_diff_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_diff_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[u_vacuum_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_vacuum_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[u_dg_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_dg_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[u_diff_diag_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_diff_diag_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[u_vacuum_diag_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_vacuum_diag_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[u_dg_diag_save_in_0]
order = FIRST
family = L2_LAGRANGE
[]
[u_dg_diag_save_in_1]
order = FIRST
family = L2_LAGRANGE
[]
[]
[Kernels]
[diff0]
type = MatCoefDiffusion
variable = u_0
conductivity = dc
save_in = u_diff_save_in_0
diag_save_in = u_diff_diag_save_in_0
[]
[diff1]
type = Diffusion
variable = u_1
save_in = u_diff_save_in_1
diag_save_in = u_diff_diag_save_in_1
[]
[reaction0]
type = CoefReaction
variable = u_0
[]
[reaction1]
type = CoefReaction
variable = u_1
[]
[reaction01]
type = CoupledForce
variable = u_1
v = u_0
coef = 0.1
[]
[]
[DGKernels]
[dgdiff0]
type = DGDiffusion
variable = u_0
diff = dc
sigma = 4
epsilon = 1
save_in = u_dg_save_in_0
diag_save_in = u_dg_diag_save_in_0
[]
[dgdiff1]
type = DGDiffusion
variable = u_1
sigma = 4
epsilon = 1
save_in = u_dg_save_in_1
diag_save_in = u_dg_diag_save_in_1
[]
[]
[BCs]
[left0]
type = VacuumBC
variable = u_0
boundary = 1
save_in = u_vacuum_save_in_0
diag_save_in = u_vacuum_diag_save_in_0
[]
[left1]
type = VacuumBC
variable = u_1
boundary = 1
save_in = u_vacuum_save_in_1
diag_save_in = u_vacuum_diag_save_in_1
[]
[right0]
type = PenaltyDirichletBC
variable = u_0
boundary = 2
value = 1
penalty = 4
[]
[right1]
type = PenaltyDirichletBC
variable = u_1
boundary = 2
value = 2
penalty = 4
[]
[]
[Materials]
[dc0]
type = GenericConstantMaterial
block = 0
prop_names = dc
prop_values = 1
[]
[dc1]
type = GenericConstantMaterial
block = 1
prop_names = dc
prop_values = 2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[intu0]
type = ElementIntegralVariablePostprocessor
variable = u_0
[]
[intu1]
type = ElementIntegralVariablePostprocessor
variable = u_1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = array_save_in_out
exodus = true
[]
modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_no_parts.i
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = false
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
modules/navier_stokes/test/tests/ins/jeffery_hamel/wedge_dirichlet.i
# This input file tests whether we can converge to the semi-analytical
# solution for flow in a 2D wedge.
[GlobalParams]
gravity = '0 0 0'
# Params used by the WedgeFunction for computing the exact solution.
# The value of K is only required for comparing the pressure to the
# exact solution, and is computed by the associated jeffery_hamel.py
# script.
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
[file]
type = FileMeshGenerator
# file = wedge_4x6.e
file = wedge_8x12.e
# file = wedge_16x24.e
# file = wedge_32x48.e
# file = wedge_64x96.e
[]
[./corner_node]
# Pin is on the centerline of the channel on the left-hand side of
# the domain at r=1. If you change the domain, you will need to
# update this pin location for the pressure exact solution to
# work.
type = ExtraNodesetGenerator
new_boundary = pinned_node
coord = '1 0'
input = file
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[BCs]
[./vel_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'inlet outlet'
function = 'vel_x_exact'
[../]
[./vel_y_inlet]
type = FunctionDirichletBC
variable = vel_y
boundary = 'inlet outlet'
function = 'vel_y_exact'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
[Functions]
[./f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15 deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# functions below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[../]
[./vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[../]
[./vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[../]
[./p_exact]
type = WedgeFunction
var_num = 2
mu = 1
rho = 1
[../]
[]
[Postprocessors]
[./vel_x_L2_error]
type = ElementL2Error
variable = vel_x
function = vel_x_exact
execute_on = 'initial timestep_end'
[../]
[./vel_y_L2_error]
type = ElementL2Error
variable = vel_y
function = vel_y_exact
execute_on = 'initial timestep_end'
[../]
[./p_L2_error]
type = ElementL2Error
variable = p
function = p_exact
execute_on = 'initial timestep_end'
[../]
[]
modules/chemical_reactions/test/tests/jacobian/primary_convection.i
# Test the Jacobian terms for the PrimaryConvection Kernel
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./a]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledACInterface]
type = SimpleCoupledACInterface
variable = w
v = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 2
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
exodus = true
[]
modules/chemical_reactions/test/tests/exceptions/missing_gamma.i
# Missing activity coefficient in AqueousEquilibriumRxnAux AuxKernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./c]
[../]
[./gamma_a]
[../]
[]
[AuxKernels]
[./c]
type = AqueousEquilibriumRxnAux
variable = c
v = 'a b'
gamma_v = gamma_a
sto_v = '1 1'
log_k = 1
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Newmark_time_integration/sm/wave_bc_1d_sm.i
# Wave propogation in 1-D using Newmark time integration
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
alpha = 0.0
zeta = 0.0
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 1.0
poissons_ratio = 0.0
thermal_expansion = 0.0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-12
nl_rel_tol = 1e-12
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i
# exploring CONSTANT MONOMIAL
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
# try with and without the CONSTANT MONOMIAL to see that
# CONSTANT MONOMIAL yields the correct result that pressure(x=0) is unchanged
# but LINEAR LAGRANGE changes pressure(x=0) since pressure is not lumped at x=0
# (the x=0 eqn is a*dot(p0)+b*dot(p10)=0, and x=10 eqn a*dot(p10)+b*dot(p20)=desorption,
# and since dot(p10)>0, we get dot(p0)<0)
family = MONOMIAL
order = CONSTANT
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./rock]
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
[../]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
mat_desorption_time_const = 0.1
mat_adsorption_time_const = 0.1
mat_langmuir_density = 1
mat_langmuir_pressure = 1
pressure_var = pressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = langmuir_lumping_problem
exodus = true
[]
tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5a_steady.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = DirichletBC
variable = temperature
boundary = right
value = 300 # (K)
[]
[]
[Materials]
[steel]
type = GenericConstantMaterial
prop_names = thermal_conductivity
prop_values = 18 # K: (W/m*K) from wikipedia @296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/SplitCH/split_math_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0.0
xmax = 30.0
ymin = 0.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
active = 'SMP'
[./PBP]
type = PBP
solve_order = 'w c'
preconditioner = 'AMG ASM'
off_diag_row = 'c '
off_diag_column = 'w '
[../]
[./SMP]
type = SMP
coupled_groups = 'c,w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHMath
variable = c
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 0
secondary = 2
translation = '0 30.0 0'
[../]
[./left_right]
primary = 1
secondary = 3
translation = '-30.0 0 0'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#petsc_options = '-snes_mf'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
file_base = out
exodus = true
[]
test/tests/misc/subdomain_setup/mat_prop_block.i
[Mesh]
[./generator]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
input = generator
bottom_left = '0 0 0'
top_right = '0.5 0.5 0'
block_id = 1
[../]
[./subdomain2]
type = SubdomainBoundingBoxGenerator
input = subdomain1
bottom_left = '0.5 0 0'
top_right = '1 0.5 0'
block_id = 2
[../]
[./subdomain3]
type = SubdomainBoundingBoxGenerator
input = subdomain2
bottom_left = '0 0.5 0'
top_right = '0.5 1 0'
block_id = 3
[../]
[./subdomain4]
type = SubdomainBoundingBoxGenerator
input = subdomain3
bottom_left = '0.5 0.5 0'
top_right = '1 1 0'
block_id = 4
[../]
[]
[Debug]
show_material_props = true
[]
[Variables]
[./dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./dummy]
type = Diffusion
variable = dummy
[../]
[]
[BCs]
[./dummy_left]
type = DirichletBC
variable = dummy
boundary = left
value = 0
[../]
[./dummy_right]
type = DirichletBC
variable = dummy
boundary = right
value = 1
[../]
[]
[AuxVariables]
[./var1]
family = MONOMIAL
order = CONSTANT
[../]
[./var2]
family = MONOMIAL
order = CONSTANT
[../]
[./var3]
family = MONOMIAL
order = CONSTANT
[../]
[../]
[AuxKernels]
[./var1]
variable = var1
type = MaterialPropertyBlockAux
mat_prop_name = prop1
[../]
[./var2]
variable = var2
type = MaterialPropertyBlockAux
mat_prop_name = prop2
[../]
[./var3]
variable = var3
type = MaterialRealAux
property = prop3
block = '2 3 4'
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = '1 2 4'
prop_names = 'prop1'
prop_values = '0'
[../]
[./mat2]
type = GenericConstantMaterial
block = '2 3 4'
prop_names = 'prop2'
prop_values = '0'
[../]
[./mat3]
type = SubdomainConstantMaterial
block = '2 3 4'
mat_prop_name = 'prop3'
values = '4 2 1'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
test/tests/controls/syntax_based_naming_access/system_asterisk_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'Postprocessors/*/point'
execute_on = 'initial'
[../]
[]
test/tests/restrictable/block_api_test/block_restrictable.i
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/creep.i
# This test is provided as a check to ensure ADComputeMultiplePorousInelasticStress
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 0.002
ymax = 0.002
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
base_name = 'total'
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[]
[Materials]
active='elasticity_tensor porous_stress creep'
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
base_name = 'total'
[../]
[./porous_stress]
type = ADComputeMultiplePorousInelasticStress
inelastic_models = creep
initial_porosity = 0.1
outputs = all
base_name = 'total'
[../]
[./regular_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = creep
outputs = all
base_name = 'total'
[../]
[./porosity]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.1
outputs = all
[../]
[./creep]
type = ADPowerLawCreepStressUpdate
activation_energy = 4e4
temperature = 1200
coefficient = 1e-18
gas_constant = 1.987
n_exponent = 3
base_name = 'creep'
outputs = all
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = total_hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = total_vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = creep_effective_creep_strain
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 12
ny = 12
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 10
variable = c
int_width = 3
invalue = 1
outvalue = -1
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = c
function = 'if(c<-1,0.1,if(c>1,0.1,1-.9*c^2))'
outputs = exodus
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
dt = 0.9
[]
[Outputs]
exodus = true
[]
test/tests/mesh/named_entities/named_entities_test_xda.i
[Mesh]
file = named_entities.xda
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
test/tests/actions/get_actions/test_get_actions.i
[Mesh]
file = square.e
uniform_refine = 4
[]
[TestGetActions]
[]
[Variables]
[./convected]
[../]
[./diffused]
[../]
[]
[Kernels]
# intentionally give a name the same as material names
[./mat1]
type = Diffusion
variable = convected
[../]
[./diff_u]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
active = 'left_convected right_convected left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = '1'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = '2'
value = 1
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = '1'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = '2'
value = 1
[../]
[]
[Materials]
[./mat4]
type = RandomMaterial
block = 1
[../]
[./mat3]
type = MTMaterial
block = 1
[../]
[./mat1]
type = GenericConstantMaterial
prop_names = prop1
prop_values = 1.0
block = 1
[../]
[./mat2]
type = CoupledMaterial
mat_prop = prop2
coupled_mat_prop = prop1
block = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
[]
modules/navier_stokes/test/tests/ins/mms/supg/supg_pspg_adv_dominated_mms.i
mu=1.5e-4
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
pspg = true
convective_term = true
integrate_p_by_parts = false
transient_term = true
laplace = true
u = vel_x
v = vel_y
p = p
alpha = 1e0
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
x_vel_forcing_func = vel_x_source_func
y_vel_forcing_func = vel_y_source_func
[../]
[./x_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
value = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
value = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
value = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
value = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
value = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
value = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
value = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
# To run to steady-state, set num-steps to some large number (1000000 for example)
type = Transient
num_steps = 10
steady_state_detection = true
steady_state_tolerance = 1e-10
[./TimeStepper]
dt = .1
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
execute_on = 'final'
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
test/tests/misc/check_error/nodal_value_off_block.i
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
[./u]
block = '1 2'
[../]
[./v]
block = 2
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[./v_diff]
type = Diffusion
variable = v
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = 1
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = 2
prop_names = a
prop_values = 10
[../]
[]
[Postprocessors]
[./off_block]
type = NodalVariableValue
variable = v
nodeid = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/1species_without_action.i
# Simple equilibrium reaction example.
# This simulation is identical to 1species.i, but explicitly includes the AuxVariables,
# AuxKernels, and Kernels that the action in 1species.i adds
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1e-2
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
variable = a
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./pa2]
[../]
[]
[AuxKernels]
[./pa2eq]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
sto_v = 2
log_k = 1
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./aeq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 1
weight = 2
sto_u = 2
[../]
[./adiff]
type = CoupledDiffusionReactionSub
variable = a
log_k = 1
weight = 2
sto_u = 2
[../]
[./aconv]
type = CoupledConvectionReactionSub
variable = a
log_k = 1
weight = 2
sto_u = 2
p = pressure
[../]
[]
[BCs]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 1species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 100
xmin = 0
elem_type = EDGE
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
scaling = 1e1
[./InitialCondition]
type = RampIC
variable = c
value_left = 0
value_right = 1
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Functions]
[./Int_energy]
type = ParsedFunction
vals = 'total_solute Cleft Cright Fleft Fright volume'
value = '((total_solute-Cleft*volume)/(Cright-Cleft))*Fright+(volume-(total_solute-Cleft*volume)/(Cright-Cleft))*Fleft'
vars = 'total_solute Cleft Cright Fleft Fright volume'
[../]
[./Diff]
type = ParsedFunction
vals = 'total_free_energy total_no_int'
vars = 'total_free_energy total_no_int'
value = total_free_energy-total_no_int
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'kappa_c M'
prop_values = '25 150'
[../]
[./Free_energy]
type = DerivativeParsedMaterial
f_name = F
function = 'c^2*(c-1)^2'
args = c
derivative_order = 2
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved,
# gives Cavg in % for this problem.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
# Get simulation cell size (1D volume) from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
# Find concentration in each phase using SideAverageValue
[./Cleft]
type = SideAverageValue
boundary = left
variable = c
[../]
[./Cright]
type = SideAverageValue
boundary = right
variable = c
[../]
# Find local energy in each phase by checking boundaries
[./Fleft]
type = SideAverageValue
boundary = left
variable = local_energy
[../]
[./Fright]
type = SideAverageValue
boundary = right
variable = local_energy
[../]
# Use concentrations and energies to find total free energy without any interface,
# only applies once equilibrium is reached!!
# Difference between energy with and without interface
# gives interface energy per unit area.
[./total_no_int]
type = FunctionValuePostprocessor
function = Int_energy
[../]
[./Energy_of_Interface]
type = FunctionValuePostprocessor
function = Diff
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provides a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-4
start_time = 0.0
# make sure that the result obtained for the interfacial free energy is fully converged
end_time = 40
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Outputs]
gnuplot = true
csv = true
[./exodus]
type = Exodus
show = 'c local_energy'
execute_on = 'failed initial nonlinear timestep_end final'
[../]
[./console]
type = Console
execute_on = 'FAILED INITIAL NONLINEAR TIMESTEP_END final'
[../]
perf_graph = true
[]
test/tests/misc/check_error/missing_coupled_mat_prop_test.i
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
# This material is global and uses a coupled property
[./mat_global]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
block = '1 2'
[../]
# This material supplies a value for block 1 ONLY
[./mat_0]
type = GenericConstantMaterial
block = 1
prop_names = 'mp1'
prop_values = 2
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = missing_mat_prop_test
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/SplitCHWRes.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# with two concentration variables and coupling through off-diagonal Onsager
# matrix coefficients
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 60
ymin = 0
ymax = 60
elem_type = QUAD4
[]
[Variables]
[./c1]
[./InitialCondition]
type = FunctionIC
function = 'cos(x/60*pi)'
[../]
[../]
[./c2]
[./InitialCondition]
type = FunctionIC
function = 'cos(y/60*pi)'
[../]
[../]
[./w1]
[../]
[./w2]
[../]
[]
[Kernels]
[./c1_res]
type = SplitCHParsed
variable = c1
f_name = F
kappa_name = kappa_c
w = w1
[../]
[./w11_res]
type = SplitCHWRes
variable = w1
mob_name = M11
[../]
[./w12_res]
type = SplitCHWRes
variable = w1
w = w2
mob_name = M12
[../]
[./c2_res]
type = SplitCHParsed
variable = c2
f_name = F
kappa_name = kappa_c
w = w2
[../]
[./w22_res]
type = SplitCHWRes
variable = w2
mob_name = M22
[../]
[./w21_res]
type = SplitCHWRes
variable = w2
w = w1
mob_name = M21
[../]
[./time1]
type = CoupledTimeDerivative
variable = w1
v = c1
[../]
[./time2]
type = CoupledTimeDerivative
variable = w2
v = c2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M11 M12 M21 M22 kappa_c'
prop_values = '10 2.5 20 5 40'
[../]
[./free_energy]
# equivalent to `MathFreeEnergy`
type = DerivativeParsedMaterial
f_name = F
args = 'c1 c2'
function = '0.25*(1+c1)^2*(1-c1)^2 + 0.25*(1+c2)^2*(1-c2)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 10
[]
[Outputs]
exodus = true
[]
test/tests/interfacekernels/1d_interface/reaction_1D_steady.i
# Steady-state test for the InterfaceReaction kernel.
#
# Specie M transport from domain 1 (0<=x<=1) to domain 2 (1<x<=2),
# u and v are concentrations in domain 1 and domain 2.
#
# Diffusion in both domains can be described by Ficks law and diffusion
# kernel is applied.
#
# Specie M has different diffusity in different domains, here set as D1=4, D2=2.
#
# Dirichlet boundary conditions are applied, i.e., u(0)=1, v(2)=0
#
# At the interface consider the following
#
# (a) Fluxes are matched from both domains (InterfaceDiffusion kernel)
#
# (b) First-order reaction is R = kf*u - kb*v
#
# Analytical solution is
# u = -0.2*u+1, 0<=u<=1
# v = -0.4*v+0.8, 1<v<=2
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = MatDiffusion
variable = u
block = '0'
diffusivity = D
[../]
[./diff_v]
type = MatDiffusion
variable = v
block = '1'
diffusivity = D
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'master0_interface'
D = D
D_neighbor = D
[../]
[./interface_reaction]
type = InterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'master0_interface'
kf = 1 # Forward reaction rate coefficient
kb = 2 # Backward reaction rate coefficient
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[]
[Materials]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
print_linear_residuals = true
execute_on = 'FINAL'
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[./elemental_error_u]
type = ElementL2Error
function = -0.2*x+1
variable = 'u'
block = '0'
[../]
[./elemental_error_v]
type = ElementL2Error
function = -0.4*x+0.8
variable = 'v'
block = '1'
[../]
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cvbubinit cvmatrixinit'
vals = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cgbubinit cgmatrixinit'
vals = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
function = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
f_name = fb
args = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
function = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
f_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
args = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
f_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
function = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
f_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
function = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
f_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
function = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
f_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
function = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
test/tests/interfacekernels/1d_interface/reaction_1D_transient.i
# Transient-state test for the InterfaceReaction kernel.
#
# Same to steady-state, except the following
#
# Natural BCs are applied (i.e. NewmannBC h=0 at left and right)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = MatDiffusion
diffusivity = D
variable = u
block = '0'
[../]
[./diff_v]
type = MatDiffusion
diffusivity = D
variable = v
block = '1'
[../]
[./diff_u_dt]
type = TimeDerivative
variable = u
block = '0'
[../]
[./diff_v_dt]
type = TimeDerivative
variable = v
block = '1'
[../]
[./source_u]
type = BodyForce
variable = u
block = '0'
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'master0_interface'
D = D
D_neighbor = D
[../]
[./interface_reaction]
type = InterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'master0_interface'
kf = 1 # Forward reaction rate coefficient
kb = 2 # Backward reaction rate coefficient
[../]
[]
[Materials]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
test/tests/materials/ad_material/ad_stateful_material.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 2
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusionTest
variable = u
prop_to_use = 'AdAd'
ad_mat_prop = 'diffusivity'
regular_mat_prop = 'unused_diffusivity'
[../]
[]
[Kernels]
[./force]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./constant_material]
type = GenericConstantMaterial
prop_names = 'unused_diffusivity'
prop_values = '0'
[../]
[./ad_stateful]
type = ADStatefulMaterial
u = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
line_search = 'none'
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
[]
[Outputs]
[./exodus]
type = Exodus
show_material_properties = 'diffusivity'
[../]
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion.i
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_small_invalue_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothCircleIC
variable = c
invalue = -0.8
outvalue = 1
int_width = 5
x_positions = '25 32'
z_positions = '0 0'
y_positions = '25 32'
radii = '6 5'
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.5'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 5
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/solid_kinetics/2species_without_action.i
# Simple reaction-diffusion example without using the action.
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate
# This simulation is identical to 2species.i, but explicitly includes the AuxVariables,
# AuxKernels, and Kernels that the action in 2species.i adds
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 40
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./b]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[]
[AuxVariables]
[./mineral]
[../]
[]
[AuxKernels]
[./mineral_conc]
type = KineticDisPreConcAux
variable = mineral
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.314
ref_temp = 298.15
sys_temp = 298.15
sto_v = '1 1'
v = 'a b'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_pd]
type = PrimaryDiffusion
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_pd]
type = PrimaryDiffusion
variable = b
[../]
[./a_r]
type = CoupledBEKinetic
variable = a
v = mineral
weight = 1
[../]
[./b_r]
type = CoupledBEKinetic
variable = b
v = mineral
weight = 1
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = DirichletBC
variable = a
preset = false
boundary = right
value = 0
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 0
[../]
[./b_right]
type = DirichletBC
variable = b
preset = false
boundary = right
value = 1.0e-2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '5e-4 4e-3 0.4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 50
dt = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
modules/heat_conduction/test/tests/verify_against_analytical/ad_2d_steady_state.i
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'right bottom left'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/sm/Rayleigh_HHT_sm.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping alpha, beta and gamma are HHT time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old] +
# zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)] +
# alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next three terms on the left involving zeta and
# alpha are evaluated using the StressDivergence Kernel The residual
# due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./stiffness_x]
type = StressDivergence
variable = disp_x
component = 0
zeta = 0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./stiffness_y]
type = StressDivergence
variable = disp_y
component = 1
zeta = 0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[./stiffness_z]
type = StressDivergence
variable = disp_z
component = 2
zeta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = MaterialTensorAux
variable = stress_yy
tensor = stress
index = 1
[../]
[./strain_yy]
type = MaterialTensorAux
variable = strain_yy
tensor = total_strain
index = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 210e+09
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 28
xmin = -7
xmax = 7
ymin = -7
ymax = 7
uniform_refine = 2
[]
[GlobalParams]
radius = 0.2
int_width = 0.1
x1 = 0.0
y1 = 0.0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./T]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w T'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w T'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./etaa0_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = etaa0
coef = -5.0
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w T'
f_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '33.33 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 5.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-10
end_time = 2.0
dtmax = 0.05
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 5
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/RndSmoothCircleIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
variable = c
type = RndSmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
variation_invalue = 0.0
outvalue = -0.8
variation_outvalue = 0.2
int_width = 5
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 10
l_tol = 1.0e-4
nl_max_its = 10
start_time = 0.0
num_steps = 1
dt = 20.0
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/stagnation/stagnation.i
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 2.0
ymin = 0
ymax = 2.0
nx = 20
ny = 20
elem_type = QUAD9
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 1.0
dtmin = 1.e-6
num_steps = 5
l_max_its = 100
nl_max_its = 10
nl_rel_tol = 1.e-9
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
[]
[Variables]
[./vel_x]
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = FunctionDirichletBC
boundary = 'top'
variable = vel_x
function = vel_x_inlet
[../]
[./v_in]
type = FunctionDirichletBC
boundary = 'top'
variable = vel_y
function = vel_y_inlet
[../]
[./vel_x_no_slip]
type = DirichletBC
boundary = 'left bottom'
variable = vel_x
value = 0
[../]
[./vel_y_no_slip]
type = DirichletBC
boundary = 'bottom'
variable = vel_y
value = 0
[../]
# Note: setting INSMomentumNoBCBC on the outlet boundary causes the
# matrix to be singular. The natural BC, on the other hand, is
# sufficient to specify the value of the pressure without requiring
# a pressure pin.
[]
[Functions]
[./vel_x_inlet]
type = ParsedFunction
value = 'k*x'
vars = 'k'
vals = '1'
[../]
[./vel_y_inlet]
type = ParsedFunction
value = '-k*y'
vars = 'k'
vals = '1'
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 .01389' # 2/144
[../]
[]
[Outputs]
exodus = true
[./out]
type = CSV
execute_on = 'final'
[../]
[]
[VectorPostprocessors]
[./nodal_sample]
# Pick off the wall pressure values.
type = NodalValueSampler
variable = p
boundary = 'bottom'
sort_by = x
[../]
[]
modules/navier_stokes/test/tests/scalar_adr/supg/2d_advection_error_testing.i
ax=1
ay=1
[GlobalParams]
u = ${ax}
v = ${ay}
p = 0
tau_type = mod
transient_term = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1
ymax = 1
elem_type = QUAD9
[]
[Variables]
[./c]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./adv]
type = Advection
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = c
boundary = 'left right top bottom'
function = 'c_func'
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '${ax}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)) + ${ay}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))'
[../]
[./c_func]
type = ParsedFunction
value = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./cx_func]
type = ParsedFunction
value = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
# [Executioner]
# type = Steady
# petsc_options_iname = '-pc_type -pc_factor_shift_type'
# petsc_options_value = 'lu NONZERO'
# []
[Executioner]
type = Transient
num_steps = 10
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
[./TimeStepper]
dt = .05
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2c]
type = ElementL2Error
variable = c
function = c_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2cx]
type = ElementL2Error
variable = cx
function = cx_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./cx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./cx_aux]
type = VariableGradientComponent
component = x
variable = cx
gradient_variable = c
[../]
[]
modules/phase_field/test/tests/actions/conserved_forward_split_1var.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 25.0
ymax = 25.0
elem_type = QUAD
[]
[Debug]
show_actions = true
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
solve_type = FORWARD_SPLIT
mobility = 1.0
kappa = kappa_c
free_energy = F
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
variable = c
x1 = 0.0
x2 = 25.0
y1 = 0.0
y2 = 25.0
[../]
[]
[AuxVariables]
[./local_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = F
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./kappa_c]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
function = '(1 - c)^2 * (1 + c)^2'
f_name = F
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'initial TIMESTEP_END'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
file_base = "3D_QStatic_1_Ramped_Displacement_out"
exodus = true
csv = true
perf_graph = true
[]
test/tests/controls/moose_base_naming_access/base_object_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'DiracKernel::test_object/point'
execute_on = 'initial'
[../]
[]
modules/chemical_reactions/test/tests/exceptions/extra_sto.i
# Additional stoichiometric coefficient in AqueousEquilibriumRxnAux AuxKernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./c]
[../]
[./gamma_a]
[../]
[./gamma_b]
[../]
[]
[AuxKernels]
[./c]
type = AqueousEquilibriumRxnAux
variable = c
v = 'a b'
gamma_v = 'gamma_a gamma_b'
sto_v = '1 2 3'
log_k = 1
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2e-6
num_steps = 5
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Pattern1.i
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integrator scheme
scheme = "newmark-beta"
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/phase_field/examples/multiphase/GrandPotential3Phase.i
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2019). It includes 3 phases with 1 grain of each phase. This example was used
# to generate the results shown in Fig. 3 of the paper.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmin = -15
xmax = 15
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etad0]
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etad0]
type = ConstantIC
variable = etad0
value = 0.1
[../]
[./IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = '0.9*0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = '0.9*0.5*(1.0+tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_w]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etab0 etad0 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etad0 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_delta0
[./ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[../]
[./ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 w'
[../]
[./ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[../]
[./ed0_dot]
type = TimeDerivative
variable = etad0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = 'etaa0 etab0 etad0'
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etad0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etad0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[../]
[./hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[../]
[./omegad]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegad
material_property_names = 'Vm kd cdeq'
function = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[../]
[./rhod]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhod
material_property_names = 'Vm kd cdeq'
function = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[../]
[./c]
type = ParsedMaterial
material_property_names = 'Vm rhoa rhob rhod ha hb hd'
function = 'Vm * (ha * rhoa + hb * rhob + hd * rhod)'
f_name = c
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
f_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
function = '(ha/ka + hb/kb + hd/kd) / Vm^2'
args = 'etaa0 etab0 etad0'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./etaa0]
type = LineValueSampler
variable = etaa0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etab0]
type = LineValueSampler
variable = etab0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etad0]
type = LineValueSampler
variable = etad0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'initial timestep_end final'
interval = 1
[../]
[./csv]
type = CSV
execute_on = 'initial timestep_end final'
interval = 1
[../]
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = MultiSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
bubspac = 30.0 # This spacing is from bubble center to bubble center
numbub = 6
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[./Adaptivity]
refine_fraction = .5
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Time_integration/Newmark_time_integration/sm/Newmark_test_sm.i
# Test for Newmark time integration
#
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters The equation
# of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force
# kernel The last term on the left is evaluated using StressDivergence
# Kernel The residual due to Pressure is evaluated using Pressure
# boundary condition
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./stiffness_x]
type = StressDivergence
variable = disp_x
component = 0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./stiffness_y]
type = StressDivergence
variable = disp_y
component = 1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[./stiffness_z]
type = StressDivergence
variable = disp_z
component = 2
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = MaterialTensorAux
variable = stress_yy
tensor = stress
index = 1
[../]
[./strain_yy]
type = MaterialTensorAux
variable = strain_yy
tensor = total_strain
index = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 210e+09
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/cahn-hilliard/Parsed_CH.i
#
# Example problem showing how to use the DerivativeParsedMaterial with CahnHilliard.
# The free energy is identical to that from CHMath, f_bulk = 1/4*(1-c)^2*(1+c)^2.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmax = 60
ymax = 60
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = fbulk
mobility = M
kappa = kappa_c
solve_type = DIRECT
[../]
[../]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = RandomIC
variable = c
min = -0.1
max = 0.1
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = fbulk
interfacial_vars = c
kappa_names = kappa_c
execute_on = timestep_end
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = c
constant_names = W
constant_expressions = 1.0/2^2
function = W*(1-c)^2*(1+c)^2
enable_jit = true
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
scheme = bdf2
# Alternative preconditioning using the additive Schwartz method and LU decomposition
#petsc_options_iname = '-pc_type -sub_ksp_type -sub_pc_type'
#petsc_options_value = 'asm preonly lu '
# Preconditioning options using Hypre (algebraic multi-grid)
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 30
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
dt = 2.0
end_time = 20.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/verify_against_analytical/2d_steady_state.i
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/KKS_system/kks_example_split.i
#
# KKS toy problem in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_split
exodus = true
[]
modules/porous_flow/examples/coal_mining/fine_with_fluid.i
#################################################################
#
# NOTE:
# The mesh for this model is too large for the MOOSE repository
# so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = fine.e
[]
[./xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
input = file
[../]
[./xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[../]
[./ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[../]
[./ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[../]
[./zmax]
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
input = ymax
[../]
[./zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsBetweenSubdomainsGenerator
master_block = 3
paired_block = 1
input = excav
new_boundary = roof
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./porepressure]
scaling = 1E-5
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[../]
[]
[AuxVariables]
[./saturation]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_x]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_y]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_z]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[../]
[./darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[../]
[./darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[../]
[./perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[../]
[./perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[../]
[./roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[../]
[./ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[../]
[./ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[./roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[../]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity_for_aux]
type = PorousFlowPorosity
at_nodes = false
fluid = true
mechanical = true
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[../]
[./permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[../]
[./permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[../]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[./min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[../]
[./max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = perm_zz
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
# best if you don't have mumps:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.0025
end_time = 0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.4225
gamma = 0.8
[../]
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_rayleigh_hht_out'
exodus = true
csv = true
perf_graph = true
[]
modules/phase_field/test/tests/MultiPhase/penalty.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[GlobalParams]
penalty = 5
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./hsum]
type = ParsedMaterial
function = h1+h2
f_name = hsum
material_property_names = 'h1 h2'
args = 'c'
outputs = exodus
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2'
derivative_order = 2
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = '(c-0.9)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
args = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 0.05
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -20
xmax = 20
ymin = -20
ymax = 20
[]
[GlobalParams]
op_num = 2
var_name_base = etab
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etab1]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etab1]
type = FunctionIC
variable = etab1
function = ic_func_etab1
[../]
[./IC_w]
type = ConstantIC
value = -0.05
variable = w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0-tanh((r-10.0)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0+tanh((y)/sqrt(2.0)))'
[../]
[./ic_func_etab1]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0-tanh((y)/sqrt(2.0)))'
[../]
[]
[BCs]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etab1'
gamma_names = 'gab gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 etab1 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etab1'
gamma_names = 'gab gbb'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab1 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_beta1
[./ACb1_bulk]
type = ACGrGrMulti
variable = etab1
v = 'etaa0 etab0'
gamma_names = 'gab gbb'
[../]
[./ACb1_sw]
type = ACSwitching
variable = etab1
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab0 w'
[../]
[./ACb1_int]
type = ACInterface
variable = etab1
kappa_name = kappa
[../]
[./eb1_dot]
type = TimeDerivative
variable = etab1
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab1dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab1
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etab0 etab1'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
enable_jit = false
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
enable_jit = false
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D chi Vm ka caeq kb cbeq gab gbb mu'
prop_values = '0 1 1.0 1.0 1.0 1.0 10.0 0.1 10.0 0.9 4.5 1.5 1.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
enable_jit = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 2
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
# Wave propogation in 1D using Newmark time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998738
# 0.6 520 519.9995114
# 0.8 560 559.9989360
# 1.0 600 599.9983833
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)-(5*t/1.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/1.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/1.04)*(-2.5*x-2.5*y-t)+1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/examples/coal_mining/fine.i
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/fine.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '100.0 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '100.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5
end_time = 100.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/phase_field/test/tests/anisotropic_mobility/nonsplit.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[]
[Kernels]
[./cres]
type = CahnHilliardAniso
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterfaceAniso
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = ConstantAnisotropicMobility
tensor = '0.1 0 0
0 1 0
0 0 0'
M_name = M
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_wrong_lib.i
# This input file contains objects only available in phase_field
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
# Here we'll load the wrong library and check for the correct error condition
[Problem]
register_objects_from = 'TensorMechanicsApp'
library_path = '../../../../../tensor_mechanics/lib'
[]
modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
# [./TensorMechanics]
# [../]
[./x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./z]
type = ADStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./gravity_y]
type = ADGravity
variable = disp_y
value = -9.81
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2.0387
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types:discrete homog 2 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description
# A transient heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance in the presence of a moving interface separating two
# discrete material regions for linear element models. Both the temperature
# solution and level set function are designed to be linear to attempt to
# minimize error between the exact solution and XFEM results. Thermal
# conductivity, density, and heat capacity are homogeneous in each material
# region with a discontinuous jump in thermal flux between the two material
# regions.
# Results:
# The temperature at the left boundary is determined by the analytical
# solution, so temperature at the right boundary (x=1) should exhibit the
# largest difference between the analytical solution and XFEM results. We
# present the analytical and XFEM results at the material interface position
# and right side boundary at various times.
# Interface:
# Time Expected Temperature XFEM Calculated Temperature
# 20 746.75 746.7235521
# 40 893.05 893.0379081
# 60 1040.15 1040.1527530
#
# Right Boundary (x=1):
# Time Expected Temperature XFEM Calculated Temperature
# 20 720 719.9708681
# 40 840 839.9913293
# 60 960 960.0100886
#
# IMPORTANT NOTE:
# When running this input file, add the --allow-test-objects tag!!!
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = phi
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = 'diffusion_coefficient'
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = phi
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
jump_flux = jump_flux_func
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
10*(8-x),
(7/(1-i))*((i-2)*x + (8-7*i)) )'
[../]
[./right_du_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
(2.0/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./exact_u_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
605 - 5*x + t*(8-x),
(1/(1-i))*((-5+5*i+i*t-2*t)*x + (605-605*i+8*t-7*t*i)) )'
[../]
[./jump_flux_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
k_1:=(20.0);
k_2:=(2.0);
k_1*(5+t) + (k_2/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./ls_func]
type = ParsedFunction
value = '0.75 - x - 0.001*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'A_rhoCp B_rhoCp'
prop_values = '10 7'
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'A_diffusion_coefficient B_diffusion_coefficient'
prop_values = '20.0 2.0'
[../]
[./combined_rhoCp]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = rhoCp
[../]
[./combined_diffusion_coefficient]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = diffusion_coefficient
[../]
[]
[BCs]
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = exact_u_func
[../]
[./right_du]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_du_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 600
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 20
end_time = 60.0
max_xfem_update = 2
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven.i
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./T]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
# x-momentum, time
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
# y-momentum, time
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
# temperature
[./temperature_time]
type = INSTemperatureTimeDerivative
variable = T
[../]
[./temperature_space]
type = INSTemperature
variable = T
u = vel_x
v = vel_y
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/sideset_heat_transfer/cfem_gap.i
[Mesh]
# Build 2-by-2 mesh
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
[]
# Create blocs 0, 1, 2, 3
[block_1]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 1 0'
[]
[block_2]
type = SubdomainBoundingBoxGenerator
input = block_1
block_id = 2
bottom_left = '0 1 0'
top_right = '1 2 0'
[]
[block_3]
type = SubdomainBoundingBoxGenerator
input = block_2
block_id = 3
bottom_left = '1 1 0'
top_right = '2 2 0'
[]
# Create inner sidesets
[interface_01]
type = SideSetsBetweenSubdomainsGenerator
input = block_3
master_block = 0
paired_block = 1
new_boundary = 'interface_01'
[]
[interface_13]
type = SideSetsBetweenSubdomainsGenerator
input = interface_01
master_block = 1
paired_block = 3
new_boundary = 'interface_13'
[]
[interface_32]
type = SideSetsBetweenSubdomainsGenerator
input = interface_13
master_block = 3
paired_block = 2
new_boundary = 'interface_32'
[]
[interface_20]
type = SideSetsBetweenSubdomainsGenerator
input = interface_32
master_block = 2
paired_block = 0
new_boundary = 'interface_20'
[]
# Create outer boundaries
[boundary_left_0]
type = SideSetsAroundSubdomainGenerator
input = interface_20
block = 0
normal = '-1 0 0'
new_boundary = 'left_0'
[]
[boundary_bot_0]
type = SideSetsAroundSubdomainGenerator
input = boundary_left_0
block = 0
normal = '0 -1 0'
new_boundary = 'bot_0'
[]
[boundary_bot_1]
type = SideSetsAroundSubdomainGenerator
input = boundary_bot_0
block = 1
normal = '0 -1 0'
new_boundary = 'bot_1'
[]
[boundary_right_1]
type = SideSetsAroundSubdomainGenerator
input = boundary_bot_1
block = 1
normal = '1 0 0'
new_boundary = 'right_1'
[]
[boundary_right_3]
type = SideSetsAroundSubdomainGenerator
input = boundary_right_1
block = 3
normal = '1 0 0'
new_boundary = 'right_3'
[]
[boundary_top_3]
type = SideSetsAroundSubdomainGenerator
input = boundary_right_3
block = 3
normal = '0 1 0'
new_boundary = 'top_3'
[]
[boundary_top_2]
type = SideSetsAroundSubdomainGenerator
input = boundary_top_3
block = 2
normal = '0 1 0'
new_boundary = 'top_2'
[]
[boundary_left_2]
type = SideSetsAroundSubdomainGenerator
input = boundary_top_2
block = 2
normal = '-1 0 0'
new_boundary = 'left_2'
[]
uniform_refine = 4
[]
[Variables]
# Need to have variable for each block to allow discontinuity
[T0]
block = 0
[]
[T1]
block = 1
[]
[T2]
block = 2
[]
[T3]
block = 3
[]
[]
[Kernels]
# Diffusion kernel for each block's variable
[diff_0]
type = MatDiffusion
variable = T0
diffusivity = conductivity
block = 0
[]
[diff_1]
type = MatDiffusion
variable = T1
diffusivity = conductivity
block = 1
[]
[diff_2]
type = MatDiffusion
variable = T2
diffusivity = conductivity
block = 2
[]
[diff_3]
type = MatDiffusion
variable = T3
diffusivity = conductivity
block = 3
[]
# Source for two of the blocks
[source_0]
type = BodyForce
variable = T0
value = 5e5
block = '0'
[]
[source_3]
type = BodyForce
variable = T3
value = 5e5
block = '3'
[]
[]
[InterfaceKernels]
# Side set kernel to represent heat transfer across blocks
# Automatically uses the materials defined in SideSetHeatTransferMaterial
[gap_01]
type = SideSetHeatTransferKernel
# This variable defined on a given block must match the master_block given when the side set was generated
variable = T0
# This variable defined on a given block must match the paired_block given when the side set was generated
neighbor_var = T1
boundary = 'interface_01'
[]
[gap_13]
type = SideSetHeatTransferKernel
variable = T1
neighbor_var = T3
boundary = 'interface_13'
[]
[gap_32]
type = SideSetHeatTransferKernel
variable = T3
neighbor_var = T2
boundary = 'interface_32'
[]
[gap_20]
type = SideSetHeatTransferKernel
variable = T2
neighbor_var = T0
boundary = 'interface_20'
[]
[]
# Creating auxiliary variable to combine block restricted solutions
# Ignores discontinuity though
[AuxVariables]
[T]
[]
[]
[AuxKernels]
[temp_0]
type = NormalizationAux
variable = T
source_variable = T0
block = 0
[]
[temp_1]
type = NormalizationAux
variable = T
source_variable = T1
block = 1
[]
[temp_2]
type = NormalizationAux
variable = T
source_variable = T2
block = 2
[]
[temp_3]
type = NormalizationAux
variable = T
source_variable = T3
block = 3
[]
[]
[BCs]
# Boundary condition for each block's outer surface
[bc_left_2]
type = DirichletBC
boundary = 'left_2'
variable = T2
value = 300.0
[]
[bc_left_0]
type = DirichletBC
boundary = 'left_0'
variable = T0
value = 300.0
[]
[bc_bot_0]
type = DirichletBC
boundary = 'bot_0'
variable = T0
value = 300.0
[]
[bc_bot_1]
type = DirichletBC
boundary = 'bot_1'
variable = T1
value = 300.0
[]
[./bc_top_2]
type = ConvectiveFluxFunction # (Robin BC)
variable = T2
boundary = 'top_2'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_top_3]
type = ConvectiveFluxFunction # (Robin BC)
variable = T3
boundary = 'top_3'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_right_3]
type = ConvectiveFluxFunction # (Robin BC)
variable = T3
boundary = 'right_3'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_right_1]
type = ConvectiveFluxFunction # (Robin BC)
variable = T1
boundary = 'right_1'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[]
[Materials]
[fuel]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 75
block = '0 3'
[]
[mod]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 7.5
block = '1 2'
[]
# Interface material used for SideSetHeatTransferKernel
# Heat transfer meachnisms ignored if certain properties are not supplied
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface_01 interface_13 interface_32 interface_20'
conductivity = 0.41
gap_length = 0.002
Tbulk = 750
h_master = 3000
h_neighbor = 3000
emissivity_master = 0.85
emissivity_neighbor = 0.85
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
l_tol = 1e-8
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -ksp_gmres_restart'
petsc_options_value = 'lu superlu_dist 50'
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_high_reynolds.i
[GlobalParams]
gravity = '0 0 0'
laplace = true
transient_term = false
supg = true
pspg = true
family = LAGRANGE
order = FIRST
[]
[Mesh]
file = 'cone_linear_alltri.e'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
# type = Transient
# dt = 0.005
# dtmin = 0.005
# num_steps = 5
# l_max_its = 100
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
# petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
# petsc_options_value = 'bjacobi ilu 4'
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
nl_max_its = 20
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
# [./x_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_x
# [../]
# [./y_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_y
# [../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1e-3'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 2D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4'
physical_bounds = '0.0 10.0 1.0 11.0'
x = Legendre
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/chemical_reactions/examples/calcium_bicarbonate/calcium_bicarbonate.i
# Example of reactive transport model with precipitation and dissolution.
# Calcium (ca2) and bicarbonate (hco3) reaction to form calcite (CaCO3).
# Models bicarbonate injection following calcium injection, so that a
# moving reaction front forms a calcite precipitation zone. As the front moves,
# the upstream side of the front continues to form calcite via precipitation,
# while at the downstream side, dissolution of the solid calcite occurs.
#
# The reaction network considered is as follows:
# Aqueous equilibrium reactions:
# a) h+ + hco3- = CO2(aq), Keq = 10^(6.341)
# b) hco3- = h+ + CO23-, Keq = 10^(-10.325)
# c) ca2+ + hco3- = h+ + CaCO3(aq), Keq = 10^(-7.009)
# d) ca2+ + hco3- = cahco3+, Keq = 10^(-0.653)
# e) ca2+ = h+ + CaOh+, Keq = 10^(-12.85)
# f) - h+ = oh-, Keq = 10^(-13.991)
#
# Kinetic reactions
# g) ca2+ + hco3- = h+ + CaCO3(s), A = 0.461 m^2/L, k = 6.456542e-2 mol/m^2 s,
# Keq = 10^(1.8487)
#
# The primary chemical species are h+, hco3- and ca2+. The pressure gradient is fixed,
# and a conservative tracer is also included.
#
# This example is taken from:
# Guo et al, A parallel, fully coupled, fully implicit solution to reactive
# transport in porous media using the preconditioned Jacobian-Free Newton-Krylov
# Method, Advances in Water Resources, 53, 101-108 (2013).
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
xmax = 1
ymax = 0.25
[]
[Variables]
[./tracer]
[../]
[./ca2+]
[../]
[./h+]
initial_condition = 1.0e-7
scaling = 1e6
[../]
[./hco3-]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure_ic]
type = FunctionIC
variable = pressure
function = pic
[../]
[./hco3_ic]
type = BoundingBoxIC
variable = hco3-
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[../]
[./ca2_ic]
type = BoundingBoxIC
variable = ca2+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 1.0e-6
outside = 5.0e-2
[../]
[./tracer_ic]
type = BoundingBoxIC
variable = tracer
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 1.0
outside = 0.0
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
value = 60-50*x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'ca2+ hco3- h+'
secondary_species = 'co2_aq co32- caco3_aq cahco3+ caoh+ oh-'
pressure = pressure
reactions = 'h+ + hco3- = co2_aq 6.341,
hco3- - h+ = co32- -10.325,
ca2+ + hco3- - h+ = caco3_aq -7.009,
ca2+ + hco3- = cahco3+ -0.653,
ca2+ - h+ = caoh+ -12.85,
- h+ = oh- -13.991'
[../]
[./SolidKineticReactions]
primary_species = 'ca2+ hco3- h+'
kin_reactions = 'ca2+ + hco3- - h+ = caco3_s'
secondary_species = caco3_s
log10_keq = 1.8487
reference_temperature = 298.15
system_temperature = 298.15
gas_constant = 8.314
specific_reactive_surface_area = 4.61e-4
kinetic_rate_constant = 6.456542e-7
activation_energy = 1.5e4
[../]
[]
[Kernels]
[./tracer_ie]
type = PrimaryTimeDerivative
variable = tracer
[../]
[./tracer_pd]
type = PrimaryDiffusion
variable = tracer
[../]
[./tracer_conv]
type = PrimaryConvection
variable = tracer
p = pressure
[../]
[./ca2+_ie]
type = PrimaryTimeDerivative
variable = ca2+
[../]
[./ca2+_pd]
type = PrimaryDiffusion
variable = ca2+
[../]
[./ca2+_conv]
type = PrimaryConvection
variable = ca2+
p = pressure
[../]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./h+_pd]
type = PrimaryDiffusion
variable = h+
[../]
[./h+_conv]
type = PrimaryConvection
variable = h+
p = pressure
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[./hco3-_pd]
type = PrimaryDiffusion
variable = hco3-
[../]
[./hco3-_conv]
type = PrimaryConvection
variable = hco3-
p = pressure
[../]
[]
[BCs]
[./tracer_left]
type = DirichletBC
variable = tracer
boundary = left
value = 1.0
[../]
[./tracer_right]
type = ChemicalOutFlowBC
variable = tracer
boundary = right
[../]
[./ca2+_left]
type = SinDirichletBC
variable = ca2+
boundary = left
initial = 5.0e-2
final = 1.0e-6
duration = 1
[../]
[./ca2+_right]
type = ChemicalOutFlowBC
variable = ca2+
boundary = right
[../]
[./hco3-_left]
type = SinDirichletBC
variable = hco3-
boundary = left
initial = 1.0e-6
final = 5.0e-2
duration = 1
[../]
[./hco3-_right]
type = ChemicalOutFlowBC
variable = hco3-
boundary = right
[../]
[./h+_left]
type = DirichletBC
variable = h+
boundary = left
value = 1.0e-7
[../]
[./h+_right]
type = ChemicalOutFlowBC
variable = h+
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-7 2e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 50
l_tol = 1e-5
nl_max_its = 10
nl_rel_tol = 1e-5
end_time = 10
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/chemical_reactions/test/tests/parser/equilibrium_action.i
# Test AqueousEquilibriumReactions parser
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./pressure]
[../]
[]
[ICs]
[./a]
type = BoundingBoxIC
variable = a
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./b]
type = BoundingBoxIC
variable = b
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
(1.0)a + (1.0)b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 10
dt = 10
[]
[Outputs]
file_base = equilibrium_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernls are only for checking output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integration scheme
scheme = 'newmark-beta'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'hht_test_out'
exodus = true
perf_graph = true
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
active = 'PhaseConc ChemPotSolute CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./c]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = c
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[./eta]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = eta
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = final
[../]
[]
tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5b_transient.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = DirichletBC
variable = temperature
boundary = right
value = 300 # (K)
[]
[]
[Materials]
[steel]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 0.466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
test/tests/materials/has_material/has_boundary_prop.i
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = MatTestNeumannBC
variable = u
boundary = 2
mat_prop = 'right_bc'
has_check = true
[../]
[]
[Materials]
[./right_bc]
type = GenericConstantMaterial
boundary = 2
prop_names = 'right_bc'
prop_values = '2.0'
[../]
[./other]
type = GenericConstantMaterial
boundary = 1
prop_names = 'other_value'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
#This input does not add time derivative kernel for phase field equation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./ACBulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = c
kappa_name = kappa_op
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/gpm_kernel.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 300
[]
[GlobalParams]
op_num = 1
var_name_base = eta
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./eta0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[ICs]
[./IC_w]
type = BoundingBoxIC
variable = w
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 0.1
outside = 0
[../]
[./IC_phi]
type = BoundingBoxIC
variable = phi
x1 = 0
x2 = 150
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[./IC_eta0]
type = BoundingBoxIC
variable = eta0
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
[../]
[]
[Modules]
[./PhaseField]
[./GrandPotential]
switching_function_names = 'hb hm'
chemical_potentials = 'w'
anisotropic = 'false'
mobilities = 'chiD'
susceptibilities = 'chi'
free_energies_w = 'rhob rhom'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegab omegam'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = L_phi
kappa_op = kappa
free_energies_op = 'omegab omegam'
[../]
[../]
[]
[Materials]
#REFERENCES
[./constants]
type = GenericConstantMaterial
prop_names = 'Va cb_eq cm_eq kb km mu gamma L L_phi kappa kB'
prop_values = '0.04092 1.0 1e-5 1400 140 1.5 1.5 5.3e+3 2.3e+4 295.85 8.6173324e-5'
[../]
#SWITCHING FUNCTIONS
[./switchb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'phi eta0'
phase_etas = 'phi'
[../]
[./switchm]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hm
all_etas = 'phi eta0'
phase_etas = 'eta0'
[../]
[./omegab]
type = DerivativeParsedMaterial
f_name = omegab
args = 'w phi'
material_property_names = 'Va kb cb_eq'
function = '-0.5*w^2/Va^2/kb - w/Va*cb_eq'
derivative_order = 2
[../]
[./omegam]
type = DerivativeParsedMaterial
f_name = omegam
args = 'w eta0'
material_property_names = 'Va km cm_eq'
function = '-0.5*w^2/Va^2/km - w/Va*cm_eq'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
f_name = chi
args = 'w'
material_property_names = 'Va hb hm kb km'
function = '(hm/km + hb/kb)/Va^2'
derivative_order = 2
[../]
#DENSITIES/CONCENTRATION
[./rhob]
type = DerivativeParsedMaterial
f_name = rhob
args = 'w'
material_property_names = 'Va kb cb_eq'
function = 'w/Va^2/kb + cb_eq/Va'
derivative_order = 1
[../]
[./rhom]
type = DerivativeParsedMaterial
f_name = rhom
args = 'w eta0'
material_property_names = 'Va km cm_eq(eta0)'
function = 'w/Va^2/km + cm_eq/Va'
derivative_order = 1
[../]
[./concentration]
type = ParsedMaterial
f_name = c
material_property_names = 'rhom hm rhob hb Va'
function = 'Va*(hm*rhom + hb*rhob)'
outputs = exodus
[../]
[./mobility]
type = DerivativeParsedMaterial
material_property_names = 'chi kB'
constant_names = 'T Em D0'
constant_expressions = '1400 2.4 1.25e2'
f_name = chiD
function = 'chi*D0*exp(-Em/kB/T)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-7
nl_abs_tol = 1e-7
start_time = 0
dt = 2e-5
num_steps = 3
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_test.i
# This input file tests the jacobians of many of the INS kernels
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.5
nx = 1
ny = 1
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[./temp]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
integrate_p_by_parts = false
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
integrate_p_by_parts = false
[../]
[./x_mom_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_mom_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./temp]
type = INSTemperature
variable = temp
u = vel_x
v = vel_y
[../]
[./temp_time_deriv]
type = INSTemperatureTimeDerivative
variable = temp
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu k cp'
prop_values = '0.5 1.5 0.7 1.3'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
[]
[ICs]
[./p]
type = RandomIC
variable = p
min = 0.5
max = 1.5
[../]
[./vel_x]
type = RandomIC
variable = vel_x
min = 0.5
max = 1.5
[../]
[./vel_y]
type = RandomIC
variable = vel_y
min = 0.5
max = 1.5
[../]
[./temp]
type = RandomIC
variable = temp
min = 0.5
max = 1.5
[../]
[]
modules/phase_field/test/tests/MultiPhase/mixedswitchingfunctionmaterial.i
# This is a test of the MixedSwitchingfunctionmaterial
# Several mixed type of switching function with ajustable weight parameter
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[]
[Variables]
[./eta]
[../]
[]
[ICs]
[./IC_eta]
type = SmoothCircleIC
variable = eta
x1 = 10
y1 = 10
radius = 5
invalue = 1
outvalue = 0
int_width = 1
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1.0 1.0'
[../]
[./switching]
type = MixedSwitchingFunctionMaterial
function_name = h
eta = eta
h_order = MIX234
weight = 1.0
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = SIMPLE
[../]
# Total free energy: F = Fa*(1-h) + Fb*h
[./free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = '0'
fb_name = '-1'
eta = eta
W = 3.1
derivative_order = 2
outputs = exodus
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-12
start_time = 0.0
num_steps = 2
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/interfacekernels/adaptivity/adaptivity.i
# This input file is used for two tests:
# 1) Check that InterfaceKernels work with mesh adaptivity
# 2) Error out when InterfaceKernels are used with adaptivity
# and stateful material prpoerties
[Mesh]
parallel_type = 'replicated'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
top_right = '1 1 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[./break_boundary]
input = interface
type = BreakBoundaryOnSubdomainGenerator
[../]
[]
[Variables]
[./u]
[./InitialCondition]
type = ConstantIC
value = 1
[../]
block = 0
[../]
[./u_neighbor]
[./InitialCondition]
type = ConstantIC
value = 1
[../]
block = 1
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = (x*x*x)-6.0*x
[../]
[./bc_fn]
type = ParsedFunction
value = (x*x*x)
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
block = 0
[../]
[./abs]
type = Reaction
variable = u
block = 0
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
block = 0
[../]
[./diffn]
type = MatDiffusionTest
variable = u_neighbor
prop_name = diffusivity
block = 1
[../]
[./absn]
type = Reaction
variable = u_neighbor
block = 1
[../]
[./forcingn]
type = BodyForce
variable = u_neighbor
function = forcing_fn
block = 1
[../]
[]
[InterfaceKernels]
[./flux_match]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = u_neighbor
boundary = master0_interface
penalty = 1e6
[../]
[]
[BCs]
[./u]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = bc_fn
[../]
[./u_neighbor]
type = FunctionDirichletBC
variable = u_neighbor
boundary = 'right'
function = bc_fn
[../]
[]
[Materials]
active = 'constant'
[./stateful]
type = StatefulTest
prop_names = 'diffusivity'
prop_values = '1'
block = '0 1'
[../]
[./constant]
type = GenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '1'
block = '0 1'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Adaptivity]
marker = 'marker'
steps = 1
[./Markers]
[./marker]
type = BoxMarker
bottom_left = '0 0 0'
top_right = '1 1 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/co2_h2o.i
# Batch CO2 - H2O equilibrium reaction at 25C
#
# Aqueous equilibrium reactions:
# a) H+ + HCO3- = CO2(aq), Keq = 10^(6.3447)
# b) HCO3- = H+ + CO3--, Keq = 10^(-10.3288)
# c) - H+ = OH-, Keq = 10^(-13.9951)
#
# The primary chemical species are h+ and hco3-, and the secondary equilibrium
# species are CO2(aq), CO3-- and OH-
[Mesh]
type = GeneratedMesh
dim = 2
[]
[AuxVariables]
[./ph]
[../]
[./total_h+]
[../]
[./total_hco3-]
[../]
[]
[AuxKernels]
[./ph]
type = PHAux
variable = ph
h_conc = h+
[../]
[./total_h+]
type = TotalConcentrationAux
variable = total_h+
primary_species = h+
v = 'oh- co3-- co2_aq'
sto_v = '-1 1 1'
[../]
[./total_hco3-]
type = TotalConcentrationAux
variable = total_hco3-
primary_species = hco3-
v = 'co2_aq co3--'
sto_v = '1 1'
[../]
[]
[Variables]
[./h+]
initial_condition = 1e-5
[../]
[./hco3-]
initial_condition = 1e-5
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'hco3- h+'
secondary_species = 'co2_aq co3-- oh-'
reactions = 'hco3- + h+ = co2_aq 6.3447,
hco3- - h+ = co3-- -10.3288,
- h+ = oh- -13.9951'
[../]
[]
[Kernels]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity porosity'
prop_values = '1e-7 0.25'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 1
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./h+]
type = ElementIntegralVariablePostprocessor
variable = h+
execute_on = 'initial timestep_end'
[../]
[./hco3-]
type = ElementIntegralVariablePostprocessor
variable = hco3-
execute_on = 'initial timestep_end'
[../]
[./co2_aq]
type = ElementIntegralVariablePostprocessor
variable = co2_aq
execute_on = 'initial timestep_end'
[../]
[./co3--]
type = ElementIntegralVariablePostprocessor
variable = co3--
execute_on = 'initial timestep_end'
[../]
[./oh-]
type = ElementIntegralVariablePostprocessor
variable = oh-
execute_on = 'initial timestep_end'
[../]
[./ph]
type = ElementIntegralVariablePostprocessor
variable = ph
execute_on = 'initial timestep_end'
[../]
[./total_h+]
type = ElementIntegralVariablePostprocessor
variable = total_h+
execute_on = 'initial timestep_end'
[../]
[./total_hco3-]
type = ElementIntegralVariablePostprocessor
variable = total_hco3-
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
test/tests/misc/line_source/line_source.i
[Mesh]
type = FileMesh
file = line_source_cube.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = bulk
[../]
[./heating]
type = BodyForce
variable = u
function = 1
block = heater
[../]
[]
[BCs]
[./outside]
type = DirichletBC
variable = u
boundary = outside
value = 0
[../]
[]
[Materials]
[./diffusivity]
type = GenericConstantMaterial
block = 'bulk heater'
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./total_flux]
type = SideFluxIntegral
variable = u
boundary = outside
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/specifiedsmoothcircleIC_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothCircleIC
variable = c
x_positions = '10 50 90'
y_positions = '30 20 80'
z_positions = '30 50 75'
radii = '21 25 16'
invalue = 1.0
outvalue = 0.0001
int_width = 4
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/transient_heat/transient_heat.i
[Mesh]
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./ie]
type = SpecificHeatConductionTimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./constant]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1
specific_heat = 1
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 1
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
exodus = true
[]
test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/Rayleigh_Newmark.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping beta and gamma are Newmark time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next two terms on the left involving zeta ise
# evaluated using the StressDivergence Kernel The residual due to
# Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = true
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/velocity_channel/velocity_inletBC_by_parts.i
# This input file tests outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
integrate_p_by_parts = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'left'
function = 'inlet_func'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * (y - 0.5)^2 + 1'
[../]
[]
test/tests/controls/syntax_based_naming_access/param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see weak-plane parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = mc
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/heat_conduction/test/tests/heat_source_bar/ad_heat_source_bar.i
# This is a simple 1D test of the volumetric heat source with material properties
# of a representative ceramic material. A bar is uniformly heated, and a temperature
# boundary condition is applied to the left side of the bar.
# Important properties of problem:
# Length: 0.01 m
# Thermal conductivity = 3.0 W/(mK)
# Specific heat = 300.0 J/K
# density = 10431.0 kg/m^3
# Prescribed temperature on left side: 600 K
# When it has reached steady state, the temperature as a function of position is:
# T = -q/(2*k) (x^2 - 2*x*length) + 600
# or
# T = -6.3333e+7 * (x^2 - 0.02*x) + 600
# on left side: T=600, on right side, T=6933.3
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 0.01
nx = 20
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
thermal_conductivity = thermal_conductivity
[../]
[./heatsource]
type = ADMatHeatSource
material_property = volumetric_heat
variable = temp
scalar = 10
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 600
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity volumetric_heat '
prop_values = '10431.0 3.0 3.8e7'
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./right]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./error]
type = NodalL2Error
function = '-3.8e+8/(2*3) * (x^2 - 2*x*0.01) + 600'
variable = temp
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
test/tests/materials/discrete/recompute_boundary_error.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
boundary = 'left'
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
[../]
[./newton]
type = NewtonMaterial
boundary = 'left right'
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '1 0.5 '
block = '10 0'
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/phase_field/examples/nucleation/refine.i
#
# Example derived from cahn_hilliard.i demonstrating the use of Adaptivity
# with the DiscreteNucleation system. The DiscreteNucleationMarker triggers
# mesh refinement for the nucleus geometry. It is up to the user to specify
# refinement for the physics. In this example this is done using a GradientJumpIndicator
# with a ValueThresholdMarker. The nucleation system marker and the physics marker
# must be combined using a ComboMarker to combine their effect.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = ConstantIC
variable = c
value = 0.2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = 'if(c<0.21,c*1e-8,0)'
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 50
probability = P
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
radius = 10
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./ndof]
type = NumDOFs
[../]
[./rate]
type = DiscreteNucleationData
value = RATE
inserter = inserter
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.0005
dt_max = 10
[../]
[./update]
type = DiscreteNucleationData
value = UPDATE
inserter = inserter
[../]
[./count]
type = DiscreteNucleationData
value = COUNT
inserter = inserter
[../]
[]
[Adaptivity]
[./Indicators]
[./jump]
type = GradientJumpIndicator
variable = c
[../]
[../]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[./grad]
type = ValueThresholdMarker
variable = jump
coarsen = 0.1
refine = 0.2
[../]
[./combo]
type = ComboMarker
markers = 'nuc grad'
[../]
[../]
marker = combo
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 120
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/HHT_time_integration/wave_bc_1d.i
# Wave propogation in 1-D using HHT time integration
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*((1+alpha)*disp-alpha*disp_old) = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.097405701570538350e-02, 2.113131879547342634e-02 and -5.182787688751439893e-03, respectively.
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
alpha = -0.3
use_displaced_mesh = false
displacements = 'disp_x disp_y disp_z'
[]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 1.0
poissons_ratio = 0.0
[../]
[./constant_strain]
type= ComputeFiniteStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
[../]
[./constant_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = '0'
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-8
nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998745
# 0.6 520 519.9995067
# 0.8 560 559.9989409
# 1.0 600 599.9987054
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + 100*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i
#
# Test the non-split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/poro01.i
# tests of the poroelasticity kernel, PoroMechanicsCoupling
# in conjunction with the usual StressDivergenceTensors Kernel
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -1
max = 1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -1
max = 1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -1
max = 1
[../]
[./p]
type = RandomIC
variable = p
min = -1
max = 1
[../]
[]
[Kernels]
[./unimportant_p]
type = TimeDerivative
variable = p
[../]
[./grad_stress_x]
type = StressDivergenceTensors
displacements = 'disp_x disp_y disp_z'
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 0
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian_again]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 1
[../]
[./This_is_not_poroelasticity._It_is_checking_offdiagonal_jacobian_for_disps]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_y
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 0.54
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/phase_field/test/tests/ADCHSplitChemicalPotential/simple_transient_diffusion.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[Kernels]
[./conc]
type = ADCHSplitConcentration
variable = c
chemical_potential_var = mu
mobility = mobility_prop
[../]
[./chempot]
type = ADCHSplitChemicalPotential
variable = mu
chemical_potential = mu_prop
[../]
[./time]
type = ADTimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = ADPiecewiseLinearInterpolationMaterial
property = mu_prop
variable = c
x = '0 1'
y = '0 1'
[../]
[./mobility_prop]
type = GenericConstantMaterial
prop_names = mobility_prop
prop_values = 0.1
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 2'
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
f_name = var_dep1
args = 'eta1'
function = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
f_name = var_dep2
args = 'eta2'
function = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/chemical_reactions/test/tests/jacobian/coupled_convreact.i
# Test the Jacobian terms for the CoupledConvectionReactionSub Kernel
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = 2
weight = 1
sto_v = 2.5
sto_u = 2
p = pressure
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/phase_field/test/tests/MultiPhase/acmultiinterface.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
nz = 0
xmin = -10
xmax = 10
ymin = -5
ymax = 5
elem_type = QUAD4
[]
[Variables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '-4.0 4.0'
y_positions = ' 0.0 0.0'
z_positions = ' 0.0 0.0'
radii = '4.0 4.0'
invalue = 0.1
outvalue = 0.9
int_width = 2.0
[../]
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 0
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'Fx L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 1 1 1 1 1 1 1 1 1 1 1 1 '
[../]
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'Fx Fx Fx'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
# the free energy is given by the MultiBarrierFunctionMaterial only
W = 1
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.2
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/mesh/patterned_mesh/mesh_tester.i
[Mesh]
type = FileMesh
file = patterned_mesh_in.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = conductivity
prop_values = 100
[../]
[./mat2]
type = GenericConstantMaterial
block = 2
prop_names = conductivity
prop_values = 1e-4
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The coupling is performed via BodyForce instead of the
# FunctionSeriesToAux+CoupledForce approach
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = BodyForce
variable = m
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
enable_cache = true
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/controls/tag_based_naming_access/system_asterisk_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
modules/combined/test/tests/exception/ad.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
patch_update_strategy = iteration
[./gen]
type = FileMeshGenerator
file = mesh.e
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
initial_condition = 501
[../]
[]
[AuxVariables]
[./density_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./finite]
strain = FINITE
use_automatic_differentiation = true
[../]
[]
[Kernels]
[./gravity]
type = ADGravity
variable = disp_y
value = -9.81
[../]
[./heat]
type = ADMatDiffusion
variable = temp
diffusivity = 1
[../]
[./heat_ie]
type = ADTimeDerivative
variable = temp
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = density
variable = density_aux
boundary = inner_surface
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
master = outer_interior
slave = inner_surface
quadrature = true
[../]
[]
[BCs]
[./no_x]
type = ADDirichletBC
variable = disp_x
boundary = 'centerline'
value = 0.0
[../]
[./no_y]
type = ADDirichletBC
variable = disp_y
boundary = 'centerline outer_exterior'
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
boundary = outer_exterior
variable = temp
function = '500 + t'
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[../]
[./inner_elastic_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'inner_creep'
block = inner
outputs = all
[../]
[./inner_creep]
type = ADPowerLawCreepExceptionTest
coefficient = 10e-22
n_exponent = 2
activation_energy = 0
block = inner
[../]
[./outer_stressstress]
type = ADComputeFiniteStrainElasticStress
block = outer
[../]
[]
[Executioner]
type = Transient
petsc_options = ' -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
nl_abs_tol = 1e-7
l_max_its = 20
num_steps = 1
dt = 1
dtmin = .1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/SmoothCircleIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_HHT/sm/wave_bc_1d_sm.i
# Wave propogation in 1-D using HHT time integration in the presence
# of Rayleigh damping
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the
# other end. alpha, beta and gamma are HHT time integration
# parameters eta and zeta are mass dependent and stiffness dependent
# Rayleigh damping coefficients, respectively. The equation of motion
# in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)+(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
zeta = 0.1
alpha = -0.3
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 1
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-8
nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = true
perf_graph = true
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_stabilized.i
[GlobalParams]
gravity = '0 0 0'
laplace = true
integrate_p_by_parts = true
family = LAGRANGE
order = FIRST
# There are multiple types of stabilization possible in incompressible
# Navier Stokes. The user can specify supg = true to apply streamline
# upwind petrov-galerkin stabilization to the momentum equations. This
# is most useful for high Reynolds numbers, e.g. when inertial effects
# dominate over viscous effects. The user can also specify pspg = true
# to apply pressure stabilized petrov-galerkin stabilization to the mass
# equation. PSPG is a form of Galerkin Least Squares. This stabilization
# allows equal order interpolations to be used for pressure and velocity.
# Finally, the alpha parameter controls the amount of stabilization.
# For PSPG, decreasing alpha leads to increased accuracy but may induce
# spurious oscillations in the pressure field. Some numerical experiments
# suggest that alpha between .1 and 1 may be optimal for accuracy and
# robustness.
supg = true
pspg = true
alpha = 1e-1
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 64
ny = 64
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[lin]
type = NumLinearIterations
[]
[nl]
type = NumNonlinearIterations
[]
[lin_tot]
type = CumulativeValuePostprocessor
postprocessor = 'lin'
[]
[nl_tot]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
test/tests/materials/discrete/reset_warning.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'prop'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop'
prop_values = 1
compute = false # testing that this produces warning because resetQpProperties is not re-defined
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/examples/xfem/xfem_thermomechanics_stress_growth.i
# This is a demonstration of a simple thermomechanics simulation using
# XFEM in which a single crack propagates based on a principal stress
# criterion.
#
# The top and bottom of the plate are fixed in the y direction, and the
# top of the plate is cooled down over time. The thermal contraction
# causes tensile stresses, which lead to crack propagation. The crack
# propagates in a curved path because of the changinging nature of
# the thermal gradient as a result of the crack. There is no heat
# conduction across the crack as soon as it forms.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
# Solve for the temperature and the displacements
# Displacements are not specified because the TensorMechanics/Master Action sets them up
[./temp]
initial_condition = 300
[../]
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.8 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./xfem_marker_uo]
type = XFEMRankTwoTensorMarkerUserObject
execute_on = timestep_end
tensor = stress
scalar_type = MaxPrincipal
threshold = 5e+1
average = true
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[Kernels]
[./htcond]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = DirichletBC
boundary = top
variable = disp_y
value = 0.0
[../]
[./topt]
type = FunctionDirichletBC
boundary = top
variable = temp
function = 273-t*27.3
[../]
[./bott]
type = FunctionDirichletBC
boundary = bottom
variable = temp
function = 273
# value = 273.0
[../]
[]
[Materials]
[./thcond]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 10e-6
temperature = temp
stress_free_temperature = 273
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 10.0
max_xfem_update = 5
[]
[Outputs]
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i
[GlobalParams]
displacements = 'disp_x'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 5
[]
[Variables]
[./disp_x]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Functions]
[./prefac]
type = ParsedFunction
value = '1+2*x'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
elasticity_tensor_prefactor = prefac
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
test/tests/materials/material/adv_mat_couple_test2.i
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat_3]
type = GenericConstantMaterial
prop_names = 'prop3'
prop_values = '300'
block = '1 2'
[../]
[./mat_2]
type = CoupledMaterial
mat_prop = 'prop2'
coupled_mat_prop = 'prop3'
block = '1 2'
[../]
[./mat_1]
type = CoupledMaterial2
mat_prop = 'prop1'
coupled_mat_prop1 = 'prop2'
coupled_mat_prop2 = 'prop3'
block = '1 2'
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out_adv_coupled2
exodus = true
[]
modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_by_parts.i
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Integrating the pressure by parts.
# .) Natural boundary condition at the outlet.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998791
# 0.6 520 519.9995307
# 0.8 560 559.9989724
# 1.0 600 599.9984541
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
test/tests/problems/no_material_coverage_check/no_material_coverage_check.i
[Mesh]
file = rectangle.e
[]
[Problem]
material_coverage_check = false
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/solid_kinetics/calcite_precipitation.i
# Example of batch reaction of calcium (Ca++) and bicarbonate (HCO3-) precipitation
# to form calcite (CaCO3).
#
# The reaction network considered is as follows:
# Aqueous equilibrium reactions:
# a) H+ + HCO3- = CO2(aq), Keq = 10^(6.341)
# b) HCO3- = H+ + CO3--, Keq = 10^(-10.325)
# c) Ca++ + HCO3- = H+ + CaCO3(aq), Keq = 10^(-7.009)
# d) Ca++ + HCO3- = CaHCO3+, Keq = 10^(-0.653)
# e) Ca++ = H+ + CaOh+, Keq = 10^(-12.85)
# f) - H+ = OH-, Keq = 10^(-13.991)
#
# Kinetic reactions
# g) Ca++ + HCO3- = H+ + CaCO3(s), A = 0.461 m^2/L, k = 6.456542e-2 mol/m^2 s,
# Keq = 10^(1.8487)
#
# The primary chemical species are H+, HCO3- and Ca++.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./ca++]
initial_condition = 2.0e-2
[../]
[./h+]
initial_condition = 1.0e-8
[../]
[./hco3-]
initial_condition = 1.0e-2
[../]
[]
[AuxVariables]
[./caco3_s]
[../]
[./ph]
[../]
[]
[AuxKernels]
[./ph]
type = PHAux
h_conc = h+
variable = ph
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'ca++ hco3- h+'
secondary_species = 'co2_aq co3-- caco3_aq cahco3+ caoh+ oh-'
reactions = 'h+ + hco3- = co2_aq 6.3447,
hco3- - h+ = co3-- -10.3288,
ca++ + hco3- - h+ = caco3_aq -7.0017,
ca++ + hco3- = cahco3+ -1.0467,
ca++ - h+ = caoh+ -12.85,
- h+ = oh- -13.9951'
[../]
[./SolidKineticReactions]
primary_species = 'ca++ hco3- h+'
kin_reactions = 'ca++ + hco3- - h+ = caco3_s'
secondary_species = caco3_s
log10_keq = 1.8487
reference_temperature = 298.15
system_temperature = 298.15
gas_constant = 8.314
specific_reactive_surface_area = 0.1
kinetic_rate_constant = 1e-6
activation_energy = 1.5e4
[../]
[]
[Kernels]
[./ca++_ie]
type = PrimaryTimeDerivative
variable = ca++
[../]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'porosity diffusivity'
prop_values = '0.25 1e-9'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 100
dt = 10
nl_abs_tol = 1e-12
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./h+]
type = ElementIntegralVariablePostprocessor
variable = h+
execute_on = 'initial timestep_end'
[../]
[./ca++]
type = ElementIntegralVariablePostprocessor
variable = ca++
execute_on = 'initial timestep_end'
[../]
[./hco3-]
type = ElementIntegralVariablePostprocessor
variable = hco3-
execute_on = 'initial timestep_end'
[../]
[./co2_aq]
type = ElementIntegralVariablePostprocessor
variable = co2_aq
execute_on = 'initial timestep_end'
[../]
[./oh-]
type = ElementIntegralVariablePostprocessor
variable = oh-
execute_on = 'initial timestep_end'
[../]
[./co3--]
type = ElementIntegralVariablePostprocessor
variable = co3--
execute_on = 'initial timestep_end'
[../]
[./caco3_aq]
type = ElementIntegralVariablePostprocessor
variable = caco3_aq
execute_on = 'initial timestep_end'
[../]
[./caco3_s]
type = ElementIntegralVariablePostprocessor
variable = caco3_s
execute_on = 'initial timestep_end'
[../]
[./ph]
type = ElementIntegralVariablePostprocessor
variable = ph
execute_on = 'initial timestep_end'
[../]
[./calcite_vf]
type = TotalMineralVolumeFraction
variable = caco3_s
molar_volume = 36.934e-6
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
modules/combined/test/tests/exception/nonad.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
patch_update_strategy = iteration
[./gen]
type = FileMeshGenerator
file = mesh.e
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
initial_condition = 501
[../]
[]
[AuxVariables]
[./density_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./finite]
strain = FINITE
[../]
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_y
value = -9.81
[../]
[./heat]
type = MatDiffusion
variable = temp
diffusivity = 1
[../]
[./heat_ie]
type = TimeDerivative
variable = temp
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = density
variable = density_aux
boundary = inner_surface
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
master = outer_interior
slave = inner_surface
quadrature = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'centerline'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'centerline outer_exterior'
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
boundary = outer_exterior
variable = temp
function = '500 + t'
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[../]
[./inner_elastic_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'inner_creep'
block = inner
outputs = all
[../]
[./inner_creep]
type = PowerLawCreepExceptionTest
coefficient = 10e-22
n_exponent = 2
activation_energy = 0
block = inner
[../]
[./outer_stressstress]
type = ComputeFiniteStrainElasticStress
block = outer
[../]
[]
[Executioner]
type = Transient
petsc_options = ' -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
nl_abs_tol = 1e-7
l_max_its = 20
num_steps = 1
dt = 1
dtmin = .1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 30.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
variable = c
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
args = c
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = c
function = '1-0.9*c^2'
outputs = exodus
derivative_order = 1
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/CrossIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 50.0
y1 = 0.0
y2 = 50.0
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
dt = 20.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i
# Test for small strain timoshenko beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.00027846257
# Poisson's ratio (nu) = 0.3
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 204.3734
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = 5.868e-4 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.852e-2m.
# This deflection matches the FEM solution given in Prathap and Bhashyam (1982).
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
modules/navier_stokes/test/tests/ins/pressure_channel/open_bc_pressure_BC_fieldSplit.i
# This input file tests Dirichlet pressure in/outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
integrate_p_by_parts = false
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
integrate_p_by_parts = false
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./inlet_p]
type = DirichletBC
variable = p
boundary = left
value = 1.0
[../]
[./outlet_p]
type = DirichletBC
variable = p
boundary = right
value = 0.0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
active = FSP
[./FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'up' # 'up' should match the following block name
[./up]
splitting = 'u p' # 'u' and 'p' are the names of subsolvers
splitting_type = schur
# Splitting type is set as schur, because the pressure part of Stokes-like systems
# is not diagonally dominant. CAN NOT use additive, multiplicative and etc.
# Original system:
# | A B | | u | = | f_u |
# | C 0 | | p | | f_v |
# is factorized into
# |I 0 | | A 0| | I A^{-1}B | | u | = | f_u |
# |CA^{-1} I | | 0 -S| | 0 I | | p | | f_v |
# S = CA^{-1}B
# The preconditioning is accomplished via the following steps
# (1) p^{(0)} = f_v - CA^{-1}f_u,
# (2) p = (-S)^{-1} p^{(0)}
# (3) u = A^{-1}(f_u-Bp)
petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
petsc_options_value = 'full selfp'
# Factorization type here is full, which means we approximate the original system
# exactly. There are three other options:
# diag:
# | A 0|
# | 0 -S|
# lower:
# |I 0 |
# |CA^{-1} -S |
# upper:
# | I A^{-1}B |
# | 0 -S |
# The preconditioning matrix is set as selfp, which means we explicitly form a
# matrix \hat{S} = C(diag(A))^{-1}B. We do not compute the inverse of A, but instead, we compute
# the inverse of diag(A).
[../]
[./u]
vars = 'vel_x vel_y'
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
petsc_options_iname = '-pc_type -ksp_type -ksp_rtol'
petsc_options_value = ' hypre gmres 1e-4'
# Specify options to solve A^{-1} in the steps (1), (2) and (3).
# Solvers for A^{-1} could be different in different steps. We could
# choose in the following pressure block.
[../]
[./p]
vars = 'p'
# PETSc options for this subsolver in the step (2)
petsc_options_iname = '-pc_type -ksp_type -ksp_rtol'
petsc_options_value = ' jacobi gmres 1e-4'
# Use -inner_ksp_type and -inner_pc_type to override A^{-1} in the step (2)
# Use -lower_ksp_type and -lower_pc_type to override A^{-1} in the step (1)
[../]
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
file_base = open_bc_out_pressure_BC_fieldSplit
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/joule_heating/transient_jouleheating.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 5
ymax = 5
[]
[Variables]
[./T]
initial_condition = 20.0
[../]
[./elec]
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[./HeatSrc]
type = JouleHeatingSource
variable = T
elec = elec
[../]
[./electric]
type = HeatConduction
variable = elec
diffusion_coefficient = electrical_conductivity
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = T
value = 20
[../]
[./elec_left]
type = DirichletBC
variable = elec
boundary = left
value = 1
[../]
[./elec_right]
type = DirichletBC
variable = elec
boundary = right
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
block = 0
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
block = 0
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
block = 0
[../]
[./sigma]
type = ElectricalConductivity
temp = T
ref_temp = 20
ref_resistivity = 0.0168
temp_coeff = 0.00386
length_scale = 1e-02
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 101 preonly ilu 1'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
l_tol = 1e-4
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
perf_graph = true
[]
test/tests/restrictable/boundary_api_test/boundary_restrictable.i
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = BndTestDirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
boundary = 1
prop_names = 'a'
prop_values = '1'
[../]
[./mat1]
type = GenericConstantMaterial
boundary = 2
prop_names = 'a b'
prop_values = '10 20'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/hydrostatic/gravity.i
[GlobalParams]
gravity = '0 -0.001 0'
convective_term = false
integrate_p_by_parts = false
u = vel_x
v = vel_y
p = p
[]
[Mesh]
second_order = true
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 5
ymax = 5
[../]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = top_right
coord = '0 5'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
[../]
[./vel_y]
order = SECOND
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom left right'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top bottom left right'
value = 0.0
[../]
[./p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu'
prop_values = '100 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
execute_on = TIMESTEP_END
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_split.i
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-acceleration
[./a1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-acceleration
[./a2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
# split-momentum, x
[./x_split_momentum]
type = INSSplitMomentum
variable = a1
u = u
v = v
a1 = a1
a2 = a2
component = 0
[../]
# split-momentum, y
[./y_split_momentum]
type = INSSplitMomentum
variable = a2
u = u
v = v
a1 = a1
a2 = a2
component = 1
[../]
# projection-x, space
[./x_proj_space]
type = INSProjection
variable = u
a1 = a1
a2 = a2
p = p
component = 0
[../]
# projection-y, space
[./y_proj_space]
type = INSProjection
variable = v
a1 = a1
a2 = a2
p = p
component = 1
[../]
# projection-x, time
[./x_proj_time]
type = TimeDerivative
variable = u
[../]
# projection-y, time
[./y_proj_time]
type = TimeDerivative
variable = v
[../]
# Pressure
[./pressure_poisson]
type = INSPressurePoisson
variable = p
a1 = a1
a2 = a2
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = u
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = DirichletBC
variable = u
boundary = 'top'
value = 100.0
[../]
[./y_no_slip]
type = DirichletBC
variable = v
boundary = 'bottom right top left'
value = 0.0
[../]
# Acceleration boundary conditions. What should these
# be on the lid? What should they be in general? I tried pinning
# values of acceleration at one node but that didn't seem to work.
# I also tried setting non-zero acceleration values on the lid but
# that didn't converge.
[./x_no_accel]
type = DirichletBC
variable = a1
boundary = 'bottom right top left'
value = 0.0
[../]
[./y_no_accel]
type = DirichletBC
variable = a2
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
# [./FDP_Newton]
# type = FDP
# full = true
# petsc_options = '-snes'
# #petsc_options_iname = '-mat_fd_coloring_err'
# #petsc_options_value = '1.e-10'
# [../]
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Transient
dt = 1.e-4
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 100
start_time = 0.0
num_steps = 1000
[]
[Outputs]
file_base = lid_driven_split_out
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/update_orientation.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 5
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = -12
xmax = 12
ymin = -12
ymax = 12
elem_type = QUAD4
[]
[GlobalParams]
# let's output all material properties for demonstration purposes
outputs = exodus
# prefactor on the penalty function kernels. The higher this value is, the
# more rigorously the constraint is enforced
penalty = 1e3
[]
#
# These AuxVariables hold the directly calculated free energy density in the
# simulation cell. They are provided for visualization purposes.
#
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
#
# Helper kernel to cpompute the gradient contribution from interfaces of order
# parameters evolved using the ACMultiInterface kernel
#
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
#
# The interface coefficient matrix. This should be symmetrical!
#
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#
# We set up a smooth cradial concentrtaion gradient
# The concentration will quickly change to adapt to the preset order
# parameters eta1, eta2, and eta3
#
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 5.0
invalue = 1.0
outvalue = 0.01
int_width = 10.0
[../]
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
#
# Note: this initial conditions sets up a _sharp_ interface. Ideally
# we should start with a smooth interface with a width consistent
# with the kappa parameter supplied for the given interface.
#
function = 'r:=sqrt(x^2+y^2);if(r<=4,1,0)'
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>4&r<=7,1,0)'
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>7,1,0)'
[../]
[../]
[]
[Kernels]
#
# Cahn-Hilliard kernel for the concentration variable.
# Note that we are not using an interfcae kernel on this variable, but rather
# rely on the interface width enforced on the order parameters. This allows us
# to use a direct solve using the CahnHilliard kernel _despite_ only using first
# order elements.
#
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
#
# Order parameter eta1
# Each order parameter is acted on by 4 kernels:
# 1. The stock time derivative deta_i/dt kernel
# 2. The Allen-Cahn kernel that takes a Dervative Material for the free energy
# 3. A gradient interface kernel that includes cross terms
# see http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/ACMultiInterface/
# 4. A penalty contribution that forces the interface contributions h(eta)
# to sum up to unity
#
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta2
#
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta3
#
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./penalty3]
type = SwitchingFunctionPenalty
variable = eta3
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# here we declare some of the model parameters: the mobilities and interface
# gradient prefactors. For this example we use arbitrary numbers. In an actual simulation
# physical mobilities would be used, and the interface gradient prefactors would
# be readjusted to the free energy magnitudes.
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.75 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 '
[../]
# This material sums up the individual phase contributions. It is written to the output file
# (see GlobalParams section above) and can be used to check the constraint enforcement.
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3'
[../]
# The phase contribution factors for each material point are computed using the
# SwitchingFunctionMaterials. Each phase with an order parameter eta contributes h(eta)
# to the global free energy density. h is a function that switches smoothly from 0 to 1
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
# The barrier function adds a phase transformation energy barrier. It also
# Drives order parameters toward the [0:1] interval to avoid negative or larger than 1
# order parameters (these are set to 0 and 1 contribution by the switching functions
# above)
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# We use DerivativeParsedMaterials to specify three (very) simple free energy
# expressions for the three phases. All necessary derivatives are built automatically.
# In a real problem these expressions can be arbitrarily complex (or even provided
# by custom kernels).
[./phase_free_energy_1]
type = DerivativeParsedMaterial
f_name = F1
function = '(c-1)^2'
args = 'c'
[../]
[./phase_free_energy_2]
type = DerivativeParsedMaterial
f_name = F2
function = '(c-0.5)^2'
args = 'c'
[../]
[./phase_free_energy_3]
type = DerivativeParsedMaterial
f_name = F3
function = 'c^2'
args = 'c'
[../]
# The DerivativeMultiPhaseMaterial ties the phase free energies together into a global free energy.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 1
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provedes a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-6
start_time = 0.0
end_time = 150.0
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/inertial_torque/residual.i
# Checking that the InertialTorque calculates the correct residual.
# This input file does not have any physical meaning! It is simply checking
# the residual is computed correctly in a very simple setting.
#
# The following displacements are prescribed
# disp_x = 1+t
# disp_y = -2(1+t)
# disp_z = 2(1+t)
# along with the velocities (which don't follow from the displacements!)
# vel_x = -2(t+1)
# vel_y = -5(t+1)
# vel_z = t+1
# and accelerations
# accel_x = -t+2
# accel_y = -5t+2
# accel_z = t+2
#
# Using the Newmark + Damping parameters
# beta = 1/4
# gamma = 1/2
# eta = 1/4
# alpha = 1/2
# There give
# accel_x = 11.75
# accel_y = 11
# accel_z = 3
#
# The InertialTorque should compute
# Residual_0 = rho * eps_0jk * disp_j * accel_k
# = rho * (disp_y * accel_z - disp_z * accel_y)
# = -56 * rho
# Residual_1 = rho * eps_0jk * disp_j * accel_k
# = rho * (disp_z * accel_x - disp_x * accel_z)
# = 41 * rho
# Residual_2 = rho * eps_2jk * disp_j * accel_k
# = rho * (disp_x * accel_y - disp_y * accel_x)
# = 69 * rho
# These get integrated over the unit element to give (1/8)^th of these
# values at each node
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
beta = 0.25
gamma = 0.5
alpha = 0.5
eta = 0.25
[]
[Variables]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./icm_x]
type = InertialTorque
component = 0
variable = wc_x
save_in = res_x
[../]
[./icm_y]
type = InertialTorque
component = 1
variable = wc_y
density = another_density
save_in = res_y
[../]
[./icm_z]
type = InertialTorque
component = 2
variable = wc_z
density = yet_another_density
save_in = res_z
[../]
[]
[AuxVariables]
[./res_x]
[../]
[./res_y]
[../]
[./res_z]
[../]
[./disp_x]
initial_condition = 1
[../]
[./disp_y]
initial_condition = -2
[../]
[./disp_z]
initial_condition = 2
[../]
[./vel_x]
initial_condition = -2
[../]
[./vel_y]
initial_condition = -5
[../]
[./vel_z]
initial_condition = 1
[../]
[./accel_x]
initial_condition = 2
[../]
[./accel_y]
initial_condition = 2
[../]
[./accel_z]
initial_condition = 2
[../]
[]
[AuxKernels]
[./disp_x]
type = FunctionAux
variable = disp_x
function = '1+t'
[../]
[./disp_y]
type = FunctionAux
variable = disp_y
function = '-2*(1+t)'
[../]
[./disp_z]
type = FunctionAux
variable = disp_z
function = '2*(1+t)'
[../]
[./vel_x]
type = FunctionAux
variable = vel_x
function = '-2*t'
[../]
[./vel_y]
type = FunctionAux
variable = vel_y
function = '-5*t'
[../]
[./vel_z]
type = FunctionAux
variable = vel_z
function = 't'
[../]
[./accel_x]
type = FunctionAux
variable = accel_x
function = '-t+2'
[../]
[./accel_y]
type = FunctionAux
variable = accel_y
function = '-5*t+2'
[../]
[./accel_z]
type = FunctionAux
variable = accel_z
function = 't+2'
[../]
[]
[Postprocessors]
[./res_x]
type = PointValue
point = '0 0 0'
variable = res_x
[../]
[./res_y]
type = PointValue
point = '0 0 0'
variable = res_y
[../]
[./res_z]
type = PointValue
point = '0 0 0'
variable = res_z
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density another_density yet_another_density'
prop_values = '2.0 8.0 16.0'
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
nl_abs_tol = 1E30 # large because there is no way of getting to residual=0 here
[]
[Outputs]
csv = true
[]
modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
file_base = AllenCahn_out
exodus = true
[]
modules/phase_field/test/tests/conserved_noise/uniform.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 10.0
ymin = 0.0
ymax = 10.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHMath
variable = c
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./conserved_langevin]
type = ConservedLangevinNoise
amplitude = 0.5
variable = w
noise = uniform_noise
[]
[]
[BCs]
[./Periodic]
[./all]
variable = 'c w'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[]
[UserObjects]
[./uniform_noise]
type = ConservedUniformNoise
[../]
[]
[Postprocessors]
[./total_c]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial timestep_end'
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 30
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
dt = 10.0
num_steps = 4
[]
[Outputs]
file_base = uniform
exodus = true
[./csv]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.422
gamma = 0.8
[../]
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/free_energy_material/MathFreeEnergy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[./free_energy]
type = MathFreeEnergy
f_name = F
c = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
type = Exodus
refinements = 2
[../]
[]
test/tests/controls/tag_based_naming_access/system_object_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i
# Constraining slave nodes to move a linear combination of master nodes
#
# The test consists of a 2D rectangular block divided into two Quad elements
# (along its height) which have different material properties.
# A displacement of 2 m is applied to the top surface of the block in x direction and the
# bottom surface is held fixed.
# The nodes of the interface between the two elements will tend to move as
# dictated by the material models of the two elements.
# LinearNodalConstraint forces the interface nodes to move as a linear combination
# of the nodes on the top and bottom of the block.
# master node ids and the corresponding weights are taken as input by the LinearNodalConstraint
# along with the slave node set or slave node ids.
# The constraint can be applied using either penalty or kinematic formulation.
# In this example, the final x displacement of the top surface is 2m and bottom surface is 0m.
# Therefore, the final x displacement of the interface nodes would be 0.25*top+0.75*bottom = 0.5m
[Mesh]
file=rect_mid.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./top_2x]
type = DirichletBC
variable = disp_x
boundary = 10
value = 2.0
[../]
[./top_2y]
type = DirichletBC
variable = disp_y
boundary = 10
value = 0.0
[../]
[./bottom_1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_2]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor_1]
type = ComputeElasticityTensor
block = 1
fill_method = 'symmetric_isotropic'
C_ijkl = '400. 200.'
[../]
[./strain_1]
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
block = 1
[../]
[./density_1]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = '10.'
[../]
[./Elasticity_tensor_2]
type = ComputeElasticityTensor
block = 2
fill_method = 'symmetric_isotropic'
C_ijkl = '1000. 500.'
[../]
[./strain_2]
type = ComputeSmallStrain
block = 2
displacements = 'disp_x disp_y'
[../]
[./stress_2]
type = ComputeLinearElasticStress
block = 2
[../]
[./density_2]
type = GenericConstantMaterial
block = 2
prop_names = 'density'
prop_values = '10.'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = ''
petsc_options_value = ''
line_search = 'none'
[]
[Constraints]
[./disp_x_1]
type = LinearNodalConstraint
variable = disp_x
master = '0 5'
weights = '0.25 0.75'
# slave_node_set = '2'
slave_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[./disp_y_1]
type = LinearNodalConstraint
variable = disp_y
master = '0 5'
weights = '0.25 0.75'
# slave_node_set = '2'
slave_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_6]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
type = Exodus
refinements = 2
[../]
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 22
ny = 22
nz = 22
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = LatticeSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
circles_per_side = '3 3 3'
pos_variation = 0.0
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[]
[Kernels]
active = 'ie_c diff'
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[]
[Materials]
active = 'Dv'
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
active = 'bubbles'
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps =1
dt = 100.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
# Time integrator scheme
schem = "newmark-beta"
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
file_base = "AccelerationBC_test_out"
csv = true
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/heat_source_bar/heat_source_bar.i
# This is a simple 1D test of the volumetric heat source with material properties
# of a representative ceramic material. A bar is uniformly heated, and a temperature
# boundary condition is applied to the left side of the bar.
# Important properties of problem:
# Length: 0.01 m
# Thermal conductivity = 3.0 W/(mK)
# Specific heat = 300.0 J/K
# density = 10431.0 kg/m^3
# Prescribed temperature on left side: 600 K
# When it has reached steady state, the temperature as a function of position is:
# T = -q/(2*k) (x^2 - 2*x*length) + 600
# or
# T = -6.3333e+7 * (x^2 - 0.02*x) + 600
# on left side: T=600, on right side, T=6933.3
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 0.01
nx = 20
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 600
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '10431.0 3.0'
[../]
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
value = 3.8e+8
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./right]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./error]
type = NodalL2Error
function = '-3.8e+8/(2*3) * (x^2 - 2*x*0.01) + 600'
variable = temp
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/acmultiinterface_aux.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
nz = 0
xmin = -10
xmax = 10
ymin = -5
ymax = 5
elem_type = QUAD4
[]
[AuxVariables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[]
[Variables]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '-4.0 4.0'
y_positions = ' 0.0 0.0'
z_positions = ' 0.0 0.0'
radii = '4.0 4.0'
invalue = 0.1
outvalue = 0.9
int_width = 2.0
[../]
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 0
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'Fx L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 1 1 1 1 1 1 1 1 1 1 1 1 '
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'Fx Fx Fx'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
# the free energy is given by the MultiBarrierFunctionMaterial only
W = 1
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.2
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_forcesum.i
# test file for showing summing forces and torques obtained from other userobjects
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces_dns]
type = GrainForcesPostprocessor
grain_force = grain_force_dns
[../]
[./forces_cosnt]
type = GrainForcesPostprocessor
grain_force = grain_force_const
[../]
[./forces_total]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force_dns]
type = ComputeGrainForceAndTorque
c = c
etas = 'eta0 eta1'
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
[../]
[./grain_force_const]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '2.0 0.0 0.0 0.0 0.0 0.0'
torque = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./grain_force]
type = GrainForceAndTorqueSum
execute_on = 'linear nonlinear'
grain_forces = 'grain_force_dns grain_force_const'
grain_num = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 20
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/navier_stokes/test/tests/ins/RZ_cone/RZ_cone_stab_jac_test.i
[GlobalParams]
gravity = '0 0 0'
laplace = true
transient_term = true
supg = true
pspg = true
family = LAGRANGE
order = SECOND
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1.1
ymin = -1.1
ymax = 1.1
elem_type = QUAD9
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1.1
# petsc_options = '-snes_test_display'
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1.1 1.1'
[../]
[]
[ICs]
[./vel_x]
type = RandomIC
variable = vel_x
min = 0.1
max = 0.9
[../]
[./vel_y]
type = RandomIC
variable = vel_y
min = 0.1
max = 0.9
[../]
[./p]
type = RandomIC
variable = p
min = 0.1
max = 0.9
[../]
[]
[Outputs]
dofmap = true
[]
test/tests/materials/has_material/has_block_prop.i
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = MatCoefDiffusion
variable = u
block = '1 2'
conductivity = k
[../]
[]
[BCs]
[./left]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 0
[../]
[]
[Materials]
[./right]
type = GenericConstantMaterial
block = 2
prop_names = 'k k_right'
prop_values = '1 2'
[../]
[./left]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects.i
# This input file contains objects only available in phase_field
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
xmax = 50
ymax = 25
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
[Problem]
register_objects_from = 'PhaseFieldApp'
library_path = '../../../../../phase_field/lib'
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/sm/HHT_test_sm.i
# Test for HHT time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters The
# equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force
# kernel The next two terms on the left involving alpha is evaluated
# using the StressDivergence Kernel The residual due to Pressure is
# evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./stiffness_x]
type = StressDivergence
variable = disp_x
component = 0
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./stiffness_y]
type = StressDivergence
variable = disp_y
component = 1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[./stiffness_z]
type = StressDivergence
variable = disp_z
component = 2
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = MaterialTensorAux
variable = stress_yy
tensor = stress
index = 1
[../]
[./strain_yy]
type = MaterialTensorAux
variable = strain_yy
tensor = total_strain
index = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 210e+09
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_stabilized_test.i
# This input file tests the jacobians of many of the INS kernels
[GlobalParams]
gravity = '1.1 1.1 1.1'
u = vel_x
v = vel_y
w = vel_z
p = p
integrate_p_by_parts = true
laplace = true
pspg = true
supg = true
alpha = 1.1
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.5
zmax = 1.1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./vel_z]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
[../]
[./z_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_z
component = 2
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '0.5 1.5'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[]
[ICs]
[./p]
type = RandomIC
variable = p
min = 0.5
max = 1.5
[../]
[./vel_x]
type = RandomIC
variable = vel_x
min = 0.5
max = 1.5
[../]
[./vel_y]
type = RandomIC
variable = vel_y
min = 0.5
max = 1.5
[../]
[./vel_z]
type = RandomIC
variable = vel_z
min = 0.5
max = 1.5
[../]
[]
modules/phase_field/examples/rigidbodymotion/grain_forcedensity_ext.i
# example showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 20
nz = 0
xmin = 0.0
xmax = 40.0
ymin = 0.0
ymax = 20.0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.0
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./load]
type = ConstantFunction
value = -0.01
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
etas = 'eta0 eta1'
k = 1.0
force_y = load
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
component = 1
property = force_density_ext
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density_ext
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
property = force_density_ext
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
property = force_density_ext
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
c = c
etas = 'eta0 eta1'
grain_data = grain_center
force_density = force_density_ext
execute_on = 'initial linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.1
[./Adaptivity]
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
initial_adaptivity = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/BimodalSuperellipsoidsIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = BimodalSuperellipsoidsIC
variable = c
x_positions = '10.0 40.0'
y_positions = '25.0 25.0'
z_positions = '0.0 0.0'
as = '8.0 8.0'
bs = '8.0 8.0'
cs = '1 1'
ns = '3.5 3.5'
npart = 5
invalue = 1.0
outvalue = -0.8
int_width = 4.0
large_spac = 5
small_spac = 2
small_a = 5
small_b = 5
small_c = 5
small_n = 2
size_variation_type = normal
size_variation = 0.5
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
test/tests/materials/get_material_property_names/get_material_property_any_block_id.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
prop_names = block_prop
block = ANY_BLOCK_ID
prop_values = 12345
[../]
[]
[UserObjects]
[./get_material_block_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'ANY_BLOCK_ID'
property_name = 'block_prop'
test_type = 'block'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[./gxx]
[../]
[./gxy]
[../]
[./gyx]
[../]
[./gyy]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[./gxx]
type = GradientComponent
variable = gxx
v = disp_x
component = 0
[../]
[./gxy]
type = GradientComponent
variable = gxy
v = disp_x
component = 1
[../]
[./gyx]
type = GradientComponent
variable = gyx
v = disp_y
component = 0
[../]
[./gyy]
type = GradientComponent
variable = gyy
v = disp_y
component = 1
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./straingradderiv]
type = StrainGradDispDerivatives
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i
#
# Test the non-split parsed function free enery Cahn-Hilliard kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = SimpleCHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see Drucker-Prager parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# Weak-plane cohesion = 0.1 MPa
# Weak-plane friction angle = 20 deg
# Weak-plane dilation angle = 10 deg
# Weak-plane tensile strength = 0.1 MPa
# Weak-plane compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_wp_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) The number of y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in y
# 3) The Functional Expansion order for the flux term was increased to 7
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 23
bias_y = 1.2
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '7'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
test/tests/materials/material/coupled_material_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = mp1
[../]
[./conv]
type = MatConvection
variable = u
x = 1
y = 0
mat_prop = some_prop
[../]
[]
[BCs]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[]
[Materials]
# order is switched intentionally, so we won't get luck and dep-resolver has to do its job
[./mat2]
type = CoupledMaterial
block = 0
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
[../]
[./mat1]
type = GenericConstantMaterial
block = 0
prop_names = 'mp1'
prop_values = '2'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_coupled
exodus = true
[]
test/tests/misc/check_error/missing_material_prop_test2.i
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_km_kernel]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat11]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[./mat12]
type = GenericConstantMaterial
block = 1
prop_names = 'diff2'
prop_values = '1'
[../]
[./mat22]
type = GenericConstantMaterial
block = 2
prop_names = 'diff2'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
[Debug]
show_material_props = true
[]
modules/navier_stokes/test/tests/ins/mms/supg/supg_adv_dominated_mms.i
mu=1.5e-2
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
convective_term = true
integrate_p_by_parts = false
transient_term = true
laplace = true
u = vel_x
v = vel_y
p = p
alpha = 1e0
order = SECOND
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
[../]
[./x_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
value = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
value = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
value = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
value = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
value = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
value = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
value = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-14
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
[./TimeStepper]
dt = .05
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
execute_on = 'final'
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
[]
[Mesh]
file = 2squares.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
use_displaced_mesh = true
[../]
[../]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempramp]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./x]
type = DirichletBC
boundary = '4 6'
variable = disp_x
value = 0.0
[../]
[./y]
type = DirichletBC
boundary = '4 6'
variable = disp_y
value = 0.0
[../]
[./t]
type = DirichletBC
boundary = '4'
variable = temp
value = 0.0
[../]
[./tramp]
type = FunctionDirichletBC
variable = temp
boundary = '6'
function = tempramp
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Contact]
[./mech]
master = 8
slave = 2
penalty = 1e+10
normalize_penalty = true
system = Constraint
tangential_tolerance = .1
normal_smoothing_distance = .1
model = frictionless
formulation = kinematic
[../]
[]
[ThermalContact]
[./thermal]
type = GapHeatTransfer
master = 8
slave = 2
variable = temp
tangential_tolerance = .1
normal_smoothing_distance = .1
gap_conductivity = 0.01
min_gap = 0.001
quadrature = true
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain]
type = ComputePlaneSmallStrain
eigenstrain_names = eigenstrain
block = '1 2'
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.0
eigenstrain_name = eigenstrain
block = '1 2'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./heatcond]
type = HeatConductionMaterial
thermal_conductivity = 3.0
specific_heat = 300.0
block = '1 2'
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
petsc_options_iname = '-pc_type -ps_sub_type -pc_factor_mat_solver_package'
petsc_options_value = 'asm lu superlu_dist'
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 2.0
[]
[Outputs]
exodus = true
[]
test/tests/materials/get_material_property_names/get_material_property_any_boundary_id.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./boundary]
type = GenericConstantMaterial
prop_names = boundary_prop
boundary = ANY_BOUNDARY_ID
prop_values = 54321
[../]
[]
[UserObjects]
[./get_material_boundary_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'ANY_BOUNDARY_ID'
property_name = 'boundary_prop'
test_type = 'boundary'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_Newmark/sm/wave_bc_1d_sm.i
# Wave propogation in 1-D using Newmark time integration in the
# presence of Rayleigh damping
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the
# other end. beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh
# damping coefficients, respectively. The equation of motion in terms
# of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
zeta = 0.1
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 1
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
# l_tol = 1e-8
# nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/porous_flow/examples/tidal/atm_tides.i
# A 10m x 10m "column" of height 100m is subjected to cyclic pressure at its top
# Assumptions:
# the boundaries are impermeable, except the top boundary
# only vertical displacement is allowed
# the atmospheric pressure sets the total stress at the top of the model
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = 0
xmax = 10
ymin = 0
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.6
multiply_by_density = false
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E11
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = '-10000*z' # approximately correct
[../]
[]
[Functions]
[./ini_stress_zz]
type = ParsedFunction
value = '(25000 - 0.6*10000)*z' # remember this is effective stress
[../]
[./cyclic_porepressure]
type = ParsedFunction
value = 'if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[../]
[./neg_cyclic_porepressure]
type = ParsedFunction
value = '-if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[../]
[]
[BCs]
# zmin is called 'back'
# zmax is called 'front'
# ymin is called 'bottom'
# ymax is called 'top'
# xmin is called 'left'
# xmax is called 'right'
[./no_x_disp]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_x=0 everywhere
[../]
[./no_y_disp]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_y=0 everywhere
[../]
[./no_z_disp_at_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./pp]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure
boundary = front
[../]
[./total_stress_at_top]
type = FunctionNeumannBC
variable = disp_z
function = neg_cyclic_porepressure
boundary = front
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
gravity = '0 0 -10'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 10.0E9 # drained bulk modulus
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 0 0 0 ini_stress_zz'
eigenstrain_name = ini_stress
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-14'
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500.0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./uz0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = disp_z
[../]
[./p100]
type = PointValue
outputs = csv
point = '0 0 -100'
variable = porepressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = -3600 # so postprocessors get recorded correctly at t=0
dt = 3600
end_time = 360000
nl_abs_tol = 5E-7
nl_rel_tol = 1E-10
[]
[Outputs]
csv = true
[]
modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/HHT_test.i
# Test for HHT time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters The
# equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force
# kernel The next two terms on the left involving alpha is evaluated
# using the StressDivergence Kernel The residual due to Pressure is
# evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = true
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
test/tests/materials/boundary_material/bnd_coupling_vol.i
#
# Coupling volumetric material property inside boundary restricted material
# Also bringing boundary restricted material inside another boundary restricted
# material
#
# Solving: k \Laplace u + u - f = 0
#
# u = x^2 + y^2
# k = 3, but is decomposed as k3vol = k1vol + k2vol, where k1vol = 1 and k2vol = 2
#
# Boundary material property is computed as k3bnd = k1vol + k2bnd
#
# The material properties with suffix `vol` are volumetric, the ones with suffix `bnd`
# are boundary restricted
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
value = x*x+y*y
[../]
[./f_fn]
type = ParsedFunction
value = -4*3+x*x+y*y
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
offset = 0
mat_prop = k3vol
[../]
[./r]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[BCs]
[./all]
type = MatDivergenceBC
variable = u
prop_name = k3bnd
boundary = 'left right top bottom'
[../]
[]
[Materials]
[./k1vol]
type = GenericConstantMaterial
prop_names = 'k1vol'
prop_values = 1
block = 0
[../]
[./k2vol]
type = GenericConstantMaterial
prop_names = 'k2vol'
prop_values = 2
block = 0
[../]
[./k2bnd]
type = GenericConstantMaterial
prop_names = 'k2bnd'
prop_values = 2
boundary = 'left right top bottom'
[../]
[./k3vol]
type = SumMaterial
sum_prop_name = k3vol
mp1 = k1vol
mp2 = k2vol
block = 0
val1 = 1
val2 = 2
[../]
[./k3bnd]
type = SumMaterial
sum_prop_name = 'k3bnd'
mp1 = k1vol
mp2 = k2bnd
boundary = 'left right top bottom'
val1 = 1
val2 = 2
[../]
[]
[Postprocessors]
[./l2err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/crosstermfreeenergy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = -8
xmax = 8
ymin = -8
ymax = 8
elem_type = QUAD4
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
f_name = F0
variable = local_energy
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 5.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -4.0
y1 = -2.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 4.0
y1 = -2.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[]
[Kernels]
[./dummy_diff1]
type = Diffusion
variable = eta1
[../]
[./dummy_time1]
type = TimeDerivative
variable = eta1
[../]
[./dummy_diff2]
type = Diffusion
variable = eta2
[../]
[./dummy_time2]
type = TimeDerivative
variable = eta2
[../]
[./dummy_diff3]
type = Diffusion
variable = eta3
[../]
[./dummy_tim3]
type = TimeDerivative
variable = eta3
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'F0 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 11 12 13 12 22 23 13 23 33 '
[../]
[]
[Executioner]
type = Transient
dt = 0.001
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
hide = 'eta1 eta2 eta3 local_energy'
[../]
[]
test/tests/materials/discrete/recompute_warning.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '22 24'
block = 0
compute = true # the default, but should trigger a warning because newton is calling getMaterial on this
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = recompute_props
max_iterations = 0
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/calcium_bicarbonate.i
# Calcium (Ca++) and bicarbonate (HCO3-) batch equilibrium reaction at 25C
#
# Aqueous equilibrium reactions:
# a) H+ + HCO3- = CO2(aq), Keq = 10^(6.3447)
# b) HCO3- = H+ + CO3--, Keq = 10^(-10.3288)
# c) Ca++ + HCO3- = H+ + CaCO3(aq), Keq = 10^(-7.0017)
# d) Ca++ + HCO3- = CaHCO3+, Keq = 10^(1.0467)
# e) Ca++ = H+ + CaOH+, Keq = 10^(-12.85)
# c) - H+ = OH-, Keq = 10^(-13.9951)
# d)
#
# The primary chemical species are Ca++, H+ and HCO3-, and the secondary equilibrium
# species are CO2(aq), CO3--, CaCO3(aq), CaHCO3+, CaOH+ and OH-
[Mesh]
type = GeneratedMesh
dim = 2
[]
[AuxVariables]
[./ph]
[../]
[./total_ca++]
[../]
[./total_h+]
[../]
[./total_hco3-]
[../]
[]
[AuxKernels]
[./ph]
type = PHAux
variable = ph
h_conc = h+
[../]
[./total_ca++]
type = TotalConcentrationAux
variable = total_ca++
primary_species = ca++
v = 'caco3_aq cahco3+ caoh+'
sto_v = '1 1 1'
[../]
[./total_h+]
type = TotalConcentrationAux
variable = total_h+
primary_species = h+
v = 'co2_aq co3-- caco3_aq oh-'
sto_v = '1 -1 -1 -1'
[../]
[./total_hco3-]
type = TotalConcentrationAux
variable = total_hco3-
primary_species = hco3-
v = 'co2_aq co3-- caco3_aq cahco3+'
sto_v = '1 1 1 1'
[../]
[]
[Variables]
[./ca++]
initial_condition = 1.0e-5
[../]
[./h+]
initial_condition = 1.0e-5
[../]
[./hco3-]
initial_condition = 3.0e-5
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'ca++ hco3- h+'
secondary_species = 'co2_aq co3-- caco3_aq cahco3+ caoh+ oh-'
reactions = 'h+ + hco3- = co2_aq 6.3447,
hco3- - h+ = co3-- -10.3288,
ca++ + hco3- - h+ = caco3_aq -7.0017,
ca++ + hco3- = cahco3+ 1.0467,
ca++ - h+ = caoh+ -12.85,
- h+ = oh- -13.9951'
[../]
[]
[Kernels]
[./ca++_ie]
type = PrimaryTimeDerivative
variable = ca++
[../]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity porosity'
prop_values = '1e-7 0.25'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 1
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./ca++]
type = ElementIntegralVariablePostprocessor
variable = ca++
execute_on = 'initial timestep_end'
[../]
[./h+]
type = ElementIntegralVariablePostprocessor
variable = h+
execute_on = 'initial timestep_end'
[../]
[./hco3-]
type = ElementIntegralVariablePostprocessor
variable = hco3-
execute_on = 'initial timestep_end'
[../]
[./co2_aq]
type = ElementIntegralVariablePostprocessor
variable = co2_aq
execute_on = 'initial timestep_end'
[../]
[./co3--]
type = ElementIntegralVariablePostprocessor
variable = co3--
execute_on = 'initial timestep_end'
[../]
[./caco3_aq]
type = ElementIntegralVariablePostprocessor
variable = caco3_aq
execute_on = 'initial timestep_end'
[../]
[./cahco3+]
type = ElementIntegralVariablePostprocessor
variable = cahco3+
execute_on = 'initial timestep_end'
[../]
[./caoh+]
type = ElementIntegralVariablePostprocessor
variable = caoh+
execute_on = 'initial timestep_end'
[../]
[./oh-]
type = ElementIntegralVariablePostprocessor
variable = oh-
execute_on = 'initial timestep_end'
[../]
[./ph]
type = ElementIntegralVariablePostprocessor
variable = ph
execute_on = 'initial timestep_end'
[../]
[./total_ca++]
type = ElementIntegralVariablePostprocessor
variable = total_ca++
execute_on = 'initial timestep_end'
[../]
[./total_hco3-]
type = ElementIntegralVariablePostprocessor
variable = total_hco3-
execute_on = 'initial timestep_end'
[../]
[./total_h+]
type = ElementIntegralVariablePostprocessor
variable = total_h+
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0
xmax = 30
ymin = 0
ymax = 30
[]
[GlobalParams]
block = 0
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./eta1]
[../]
[./eta2]
[../]
[./eta3]
[../]
[./eta0]
[../]
[]
[ICs]
[./IC_eta2]
x1 = 0
y1 = 15
x2 = 30
y2 = 30
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta2
int_width = 0
[../]
[./IC_eta3]
x1 = 15
y1 = 0
x2 = 30
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta3
int_width = 0
[../]
[./IC_eta4]
x1 = 0
y1 = 0
x2 = 15
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta0
int_width = 0
[../]
[./IC_c]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.05
variable = c
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[./IC_eta1]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[]
# Not evalulating time evolution to improve test performance, since we are only testing
# the material property. However, the kernel and free energy are left in place to allow
# this test to be easily turned in to a working example
#[Kernels]
# [./c_dot]
# type = CoupledTimeDerivative
# variable = w
# v = c
# [../]
# [./c_res]
# type = SplitCHParsed
# variable = c
# f_name = F
# kappa_name = kappa_c
# w = w
# args = 'eta1 eta2 eta3 eta0'
# [../]
# [./w_res]
# # args = 'c'
# type = SplitCHWRes
# variable = w
# mob_name = M
# [../]
# [./AC1_bulk]
# type = AllenCahn
# variable = eta1
# f_name = F
# args = 'c eta2 eta3 eta0'
# [../]
# [./AC1_int]
# type = ACInterface
# variable = eta1
# kappa_name = kappa_s
# [../]
# [./e1_dot]
# type = TimeDerivative
# variable = eta1
# [../]
# [./AC2_bulk]
# type = AllenCahn
# variable = eta2
# f_name = F
# args = 'c eta1 eta3 eta0'
# [../]
# [./AC2_int]
# type = ACInterface
# variable = eta2
# [../]
# [./e2_dot]
# type = TimeDerivative
# variable = eta2
# [../]
# [./AC3_bulk]
# type = AllenCahn
# variable = eta3
# f_name = F
# args = 'c eta2 eta1 eta0'
# [../]
# [./AC3_int]
# type = ACInterface
# variable = eta3
# [../]
# [./e3_dot]
# type = TimeDerivative
# variable = eta3
# [../]
# [./AC4_bulk]
# type = AllenCahn
# variable = eta0
# f_name = F
# args = 'c eta2 eta3 eta1'
# [../]
# [./AC4_int]
# type = ACInterface
# variable = eta0
# [../]
# [./e4_dot]
# type = TimeDerivative
# variable = eta0
# [../]
#[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta1'
outputs = exodus
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta0 eta2 eta3'
outputs = exodus
[../]
#[./ha]
# type = DerivativeParsedMaterial
# args = 'eta1 eta2 eta3 eta0'
# f_name = ha_parsed
# function = 'eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./hb]
# type = DerivativeParsedMaterial
# args = 'eta1 eta2 eta3 eta0'
# f_name = hb_parsed
# function = '(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./FreeEng]
# type = DerivativeParsedMaterial
# args = 'c eta1 eta2 eta3 eta0'
# f_name = F
# constant_names = 'c1 c2 s g d e h z'
# constant_expressions = '1.0 0.0 1.5 1.5 1.0 1.0 1 1.0'
# material_property_names = 'ha(eta1,eta2,eta3,eta0) hb(eta1,eta2,eta3,eta0)'
# function = 'a:=eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2);f1:=ha*(c-c1)^2;b:=(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2);f2:=hb*(c-c2)^2
# ;f3:=1/4*eta1^4-1/2*eta1^2+1/4*eta2^4-1/2*eta2^2+1/4*eta3^4-1/2*eta3^2+1/4*eta0^4-1/2*eta0^2
# ;f4:=z*s*(eta1^2*eta2^2+eta1^2*eta3^2+eta1^2*eta0^2)+g*(eta2^2*eta3^2+eta2^2*eta0^2+eta3^2*eta0^2);f:=1/4+e*f1+d*f2+h*(f3+f4);f'
# derivative_order = 2
#[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa_s kappa_op L M'
prop_values = '0 3 3 1.0 1.0'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Outputs]
exodus = true
[]
test/tests/controls/tag_based_naming_access/param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/pressure_channel/open_bc_pressure_BC.i
# This input file tests Dirichlet pressure in/outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
integrate_p_by_parts = false
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
integrate_p_by_parts = false
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./inlet_p]
type = DirichletBC
variable = p
boundary = left
value = 1.0
[../]
[./outlet_p]
type = DirichletBC
variable = p
boundary = right
value = 0.0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = PJFNK
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
file_base = open_bc_out_pressure_BC
exodus = true
[]
modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/scalar_adr/supg/advection_error_testing.i
velocity=1
[GlobalParams]
u = ${velocity}
p = 0
tau_type = mod
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
xmax = 1
elem_type = EDGE2
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./adv]
type = Advection
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '1-x^2'
[../]
[./c_func]
type = ParsedFunction
value = 'x-x^3/3'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2c]
type = ElementL2Error
variable = c
function = c_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2cx]
type = ElementL2Error
variable = cx
function = ffn
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./cx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./cx]
type = VariableGradientComponent
component = x
variable = cx
gradient_variable = c
[../]
[]
test/tests/bcs/vectorpostprocessor/vectorpostprocessor.i
[Mesh]
type = GeneratedMesh
nx = 10
ny = 10
xmax = 1
ymax = 1
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./conv]
type = ConservativeAdvection
variable = u
velocity = '0 1 0'
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./src]
type = BodyForce
variable = u
function = ffn
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = bottom
value = 2
[../]
[./right]
type = ChannelGradientBC
variable = u
boundary = right
channel_gradient_pps = channel_gradient
axis = y
h_name = h
[../]
[./top]
type = OutflowBC
variable = u
boundary = top
velocity = '0 1 0'
[../]
[./leftv]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./rightv]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'h'
#Nu = 4
#k = 1
#half_channel_length = 0.5
#h=Nu*k/half_channel_length
prop_values = '8'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[VectorPostprocessors]
[./lv1]
num_points = 30
start_point = '0 0 0'
end_point = '0 1 0'
sort_by = 'y'
variable = u
type = LineValueSampler
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[./lv2]
num_points = 30
start_point = '1 0 0'
end_point = '1 1 0'
sort_by = 'y'
variable = v
type = LineValueSampler
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[./channel_gradient]
lv1 = lv1
lv2 = lv2
var1 = u
var2 = v
axis = y
type = ChannelGradientVectorPostprocessor
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '1'
[../]
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 12
variable = c
int_width = 3
invalue = 1
outvalue = 0
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0
x2 = 15
y1 = 0
y2 = 30
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
args = d
[../]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
args = d
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = 'c d'
function = if(d>0.001,d,0.001)*if(c<0,0.5,if(c>1,0.5,1-0.5*c^2))
derivative_order = 2
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 1.0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = BDF2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 0.25
num_steps = 2
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
refinements = 2
type = Exodus
[../]
[]
modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
p = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = 'cp'
density_name = 'rho'
[../]
[./temperature_advection]
type = INSADTemperatureAdvection
variable = T
velocity = velocity
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
transient_term = true
integrate_p_by_parts = true
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
test/tests/mesh_modifiers/subdomain_bounding_box/oriented_subdomain_bounding_box_outside.i
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -6
xmax = 4
nx = 10
ymin = -2
ymax = 10
ny = 12
zmin = -5
zmax = 7
nz = 12
[]
[MeshModifiers]
[./subdomains]
type = OrientedSubdomainBoundingBox
center = '-1 4 1'
width = 5
length = 10
height = 4
width_direction = '2 1 0'
length_direction = '-1 2 2'
block_id = 10
location = OUTSIDE
[../]
[]
[Problem]
type = FEProblem
solve = false
kernel_coverage_check = false
[]
[Variables]
[./u]
[../]
[]
[Materials]
[./mat10]
type = GenericConstantMaterial
block = 10
outputs = all
prop_values = 6.24
prop_names = prop
[../]
[./mat0]
type = GenericConstantMaterial
block = 0
prop_names = prop
prop_values = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
test/tests/materials/generic_constant_material/generic_constant_material_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff1 diff2'
[./diff1]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./diff2]
type = DiffMKernel
variable = v
mat_prop = diff2
[../]
[]
[BCs]
active = 'left_u right_u left_v right_v'
# Mesh Generation produces boundaries in counter-clockwise fashion
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Materials]
active = 'dm1 dm2'
[./dm1]
type = GenericConstantMaterial
block = 0
prop_names = 'diff1'
prop_values = '2'
[../]
[./dm2]
type = GenericConstantMaterial
block = 0
prop_names = 'diff2'
prop_values = '4'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
modules/navier_stokes/test/tests/ins/jacobian_test/jacobian_traction_stabilized.i
# This input file tests the jacobians of many of the INS kernels
[GlobalParams]
gravity = '1.1 1.1 1.1'
u = vel_x
v = vel_y
w = vel_z
p = p
integrate_p_by_parts = false
laplace = false
supg = true
pspg = true
alpha = 1.1
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.5
zmax = 1.1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./vel_z]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
[../]
[./x_momentum_space]
type = INSMomentumTractionForm
variable = vel_x
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionForm
variable = vel_y
component = 1
[../]
[./z_momentum_space]
type = INSMomentumTractionForm
variable = vel_z
component = 2
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '0.5 1.5'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[]
[ICs]
[./p]
type = RandomIC
variable = p
min = 0.5
max = 1.5
[../]
[./vel_x]
type = RandomIC
variable = vel_x
min = 0.5
max = 1.5
[../]
[./vel_y]
type = RandomIC
variable = vel_y
min = 0.5
max = 1.5
[../]
[./vel_z]
type = RandomIC
variable = vel_z
min = 0.5
max = 1.5
[../]
[]
test/tests/outputs/debug/show_material_props.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./subdomains]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
block = '0 1'
prop_names = 'property0 property1 property2 property3 property4 property5 property6 property7 property8 property9 property10'
prop_values = '0 1 2 3 4 5 6 7 8 9 10'
[../]
[./boundary]
type = GenericConstantMaterial
prop_names = bnd_prop
boundary = top
prop_values = 12345
[../]
[./restricted]
type = GenericConstantMaterial
block = 1
prop_names = 'restricted0 restricted1'
prop_values = '10 11'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./debug] # This is only a test, you should turn this on via [Debug] block
type = MaterialPropertyDebugOutput
[../]
[]
modules/heat_conduction/test/tests/sideset_heat_transfer/gap_thermal_ktemp_1D.i
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[split]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = split
master_block = 1
paired_block = 0
new_boundary = 'interface0'
[]
uniform_refine = 4
[]
[Variables]
[T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxVariables]
[Tbulk]
order = FIRST
family = LAGRANGE
initial_condition = 300 # K
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = T
diffusivity = conductivity
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[DGKernels]
[dg_diff]
type = DGDiffusion
variable = T
epsilon = -1
sigma = 6
diff = conductivity
exclude_boundary = 'interface0'
[]
[]
[InterfaceKernels]
[gap_var]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
Tbulk_var = Tbulk
[]
[]
[Functions]
# Defining temperature dependent fucntion for conductivity across side set
[kgap]
type = ParsedFunction
value = 't / 200'
[]
[bc_func]
type = ConstantFunction
value = 300
[]
[exact]
type = ParsedFunction
value = '
A := if(x < 1, -0.5, -0.25);
B := if(x < 1, -0.293209850655001, 0.0545267662299068);
C := if(x < 1, 300.206790149345, 300.19547323377);
d := -1;
A * (x+d) * (x+d) + B * (x+d) + C'
[]
[]
[BCs]
[bc_left]
type = DGFunctionDiffusionDirichletBC
boundary = 'left'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[bc_right]
type = DGFunctionDiffusionDirichletBC
boundary = 'right'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[]
[Materials]
[k0]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 1.0
block = 0
[]
[k1]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 2.0
block = 1
[]
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface0'
# Using temperature dependent function for gap conductivity
conductivity_temperature_function = kgap
# Variable to evaluate conductivity with
gap_temperature = Tbulk
gap_length = 1.0
h_master = 1
h_neighbor = 1
emissivity_master = 1
emissivity_neighbor = 1
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = exact
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/coarse.i
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '17.0 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '17.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5 # this gives min(disp_z)=-4.3, use dt=0.0625 if you want to restrict disp_z>=-3.2
end_time = 17.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/chemical_reactions/test/tests/parser/equilibrium_without_action.i
# Test AqueousEquilibriumReactions parser
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./pa2]
[../]
[./pab]
[../]
[]
[AuxKernels]
[./pa2]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
log_k = 2
sto_v = 2
[../]
[./pab]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
log_k = -2
sto_v = '1 1'
[../]
[]
[ICs]
[./a]
type = BoundingBoxIC
variable = a
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./b]
type = BoundingBoxIC
variable = b
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1_eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1_diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1_conv]
type = CoupledConvectionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
p = pressure
[../]
[./a2_eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2_diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2_conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2_eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2_diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2_conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 10
dt = 10
[]
[Outputs]
file_base = equilibrium_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/HHT_time_integration/sm/wave_bc_1d_sm.i
# Wave propogation in 1-D using HHT time integration
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*((1+alpha)*disp-alpha*disp_old) = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.097405701570538350e-02, 2.113131879547342634e-02 and -5.182787688751439893e-03, respectively.
[GlobalParams]
volumetric_locking_correction = false
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
alpha = -0.3
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 1
poissons_ratio = 0
thermal_expansion = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-8
nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 3
nx = 14
ny = 7
nz = 7
xmax = 40
ymax = 25
zmax = 25
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[./angle_check]
type = EulerAngleUpdaterCheck
grain_tracker_object = grain_center
euler_angle_updater = euler_angle
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '-200.0 -120.0 1000.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
seed = 12356
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 2
[]
[Outputs]
csv = true
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
z1 = 5.0
z2 = 20.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
z1 = 5.0
z2 = 20.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 30.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
variable = c
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0.0
x2 = 15.0
y1 = 0.0
y2 = 30.0
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
args = 'c d'
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = 'c d'
function = 'if(d>0.001,d,0.001)*(1-0.5*c^2)'
outputs = exodus
derivative_order = 1
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 0.1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i
#
# Tests the Rigid Body Motion of grains due to applied forces.
# Concenterated forces and torques have been applied and corresponding
# advection velocities are calculated.
# Grain motion kernels make the grains translate and rotate as a rigidbody,
# applicable to grain movement in porous media
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 25
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
# advection kernel corrsponding to CH equation
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
# advection kernel corrsponding to AC equation
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
# VectorPostprocessor for outputting grain forces and torques
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.2 0.0 0.0 ' # size should be 3 * no. of grains
torque = '0.0 0.0 5.0 ' # size should be 3 * no. of grains
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.1
end_time = 10
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_chorin.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-star velocity
[./u_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-star velocity
[./v_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./x_chorin_predictor]
type = INSChorinPredictor
variable = u_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 0
predictor_type = 'new'
[../]
[./y_chorin_predictor]
type = INSChorinPredictor
variable = v_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 1
predictor_type = 'new'
[../]
[./x_chorin_corrector]
type = INSChorinCorrector
variable = u
u_star = u_star
v_star = v_star
p = p
component = 0
[../]
[./y_chorin_corrector]
type = INSChorinCorrector
variable = v
u_star = u_star
v_star = v_star
p = p
component = 1
[../]
[./chorin_pressure_poisson]
type = INSChorinPressurePoisson
variable = p
u_star = u_star
v_star = v_star
[../]
[]
[BCs]
[./u_no_slip]
type = DirichletBC
variable = u
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_lid]
type = DirichletBC
variable = u
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_no_slip]
type = DirichletBC
variable = v
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# Make u_star satsify all the same variables as the real velocity.
[./u_star_no_slip]
type = DirichletBC
variable = u_star
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_star_lid]
type = DirichletBC
variable = u_star
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_star_no_slip]
type = DirichletBC
variable = v_star
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
preset = false
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
#active = 'FDP_Newton'
#active = 'SMP_PJFNK'
active = 'SMP_Newton'
[./FDP_Newton]
type = FDP
full = true
solve_type = 'NEWTON'
#petsc_options_iname = '-mat_fd_coloring_err'
#petsc_options_value = '1.e-10'
[../]
# For some reason, nonlinear convergence with JFNK is poor, but it
# seems to be OK for SMP_Newton. This may indicate a a scaling issue
# in the JFNK case....
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[./SMP_Newton]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Note: the explicit case with lid velocity = 100 and a 40x40 was unstable
# for dt=1.e-4, even though the restriction should be dt < dx/|u| = 1/4000 = 2.5e-4
#
dt = 1.e-3
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
start_time = 0.0
num_steps = 5
[]
[Outputs]
file_base = lid_driven_chorin_out
exodus = true
[]
modules/phase_field/examples/cahn-hilliard/Math_CH.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmax = 60
ymax = 60
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = RandomIC
min = -0.1
max = 0.1
[../]
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./CHbulk]
type = CHMath
variable = c
[../]
[./CHint]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = bdf2
# Preconditioning using the additive Schwartz method and LU decomposition
petsc_options_iname = '-pc_type -sub_ksp_type -sub_pc_type'
petsc_options_value = 'asm preonly lu '
# Alternative preconditioning options using Hypre (algebraic multi-grid)
#petsc_options_iname = '-pc_type -pc_hypre_type'
#petsc_options_value = 'hypre boomeramg'
l_tol = 1e-4
l_max_its = 30
dt = 2.0
end_time = 80.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/chemical_reactions/test/tests/jacobian/coupled_diffreact2.i
# Test the Jacobian terms for the CoupledDiffusionReactionSub Kernel using
# activity coefficients not equal to unity
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = 2
weight = 2
sto_v = 1.5
sto_u = 2
gamma_eq = 2
gamma_u = 2.5
gamma_v = 1.5
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
test/tests/misc/check_error/missing_material_prop_test.i
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/polycrystal_action.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./PolycrystalVariables]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = F
mob_name = M
kappa_name = kappa_eta
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./MultiAuxVariables]
order = CONSTANT
family = MONOMIAL
variable_base = 'df'
data_type = 'RealGradient'
grain_num = 2
[../]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./MaterialVectorGradAuxKernel]
variable_base = 'df'
grain_num = 2
property = 'force_density'
[../]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'initial linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/combined/examples/periodic_strain/global_strain_pfm.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven_stabilized.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 64
ny = 64
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
p = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
transient_term = false
integrate_p_by_parts = true
alpha = .1
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
file_base = lid_driven_stabilized_out
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[lin]
type = NumLinearIterations
[]
[nl]
type = NumNonlinearIterations
[]
[lin_tot]
type = CumulativeValuePostprocessor
postprocessor = 'lin'
[]
[nl_tot]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008118
# 0.6 520 520.0038529
# 0.8 560 560.0089177
# 1.0 600 600.0133344
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + 200*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothSuperellipsoidIC
variable = c
x1 = 25.0
y1 = 25.0
a = 8.0
b = 12.0
n = 3.5
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i
#
# KKS ternary (3 chemical component) system example in the split form
# We track c1 and c2 only, since c1 + c2 + c3 = 1
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute 1 concentration
[./c1]
order = FIRST
family = LAGRANGE
[../]
# solute 2 concentration
[./c2]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 1
[./w1]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 2
[./w2]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute 1 concentration
[./c1l]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Liquid phase solute 2 concentration
[./c2l]
order = FIRST
family = LAGRANGE
initial_condition = 0.05
[../]
# Solid phase solute 1 concentration
[./c1s]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Solid phase solute 2 concentration
[./c2s]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c1]
type = ParsedFunction
value = '0.8*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[./ic_func_c2]
type = ParsedFunction
value = '0.1*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.05*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c1]
variable = c1
type = FunctionIC
function = ic_func_c1
[../]
[./c2]
variable = c2
type = FunctionIC
function = ic_func_c2
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'c1l c2l'
function = '(0.1-c1l)^2+(0.05-c2l)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'c1s c2s'
function = '(0.8-c1s)^2+(0.1-c2s)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c1 = (1-h(eta))*c1l + h(eta)*c1s
[./PhaseConc1]
type = KKSPhaseConcentration
ca = c1l
variable = c1s
c = c1
eta = eta
[../]
# enforce c2 = (1-h(eta))*c2l + h(eta)*c2s
[./PhaseConc2]
type = KKSPhaseConcentration
ca = c2l
variable = c2s
c = c2
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute1]
type = KKSPhaseChemicalPotential
variable = c1l
cb = c1s
fa_name = fl
fb_name = fs
args_a = 'c2l'
args_b = 'c2s'
[../]
[./ChemPotSolute2]
type = KKSPhaseChemicalPotential
variable = c2l
cb = c2s
fa_name = fl
fb_name = fs
args_a = 'c1l'
args_b = 'c1s'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk1]
type = KKSSplitCHCRes
variable = c1
ca = c1l
fa_name = fl
w = w1
args_a = 'c2l'
[../]
[./CHBulk2]
type = KKSSplitCHCRes
variable = c2
ca = c2l
fa_name = fl
w = w2
args_a = 'c1l'
[../]
[./dc1dt]
type = CoupledTimeDerivative
variable = w1
v = c1
[../]
[./dc2dt]
type = CoupledTimeDerivative
variable = w2
v = c2
[../]
[./w1kernel]
type = SplitCHWRes
mob_name = M
variable = w1
[../]
[./w2kernel]
type = SplitCHWRes
mob_name = M
variable = w2
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'c1l c1s c2l c2s'
[../]
[./ACBulkC1]
type = KKSACBulkC
variable = eta
ca = c1l
cb = c1s
fa_name = fl
args = 'c2l'
[../]
[./ACBulkC2]
type = KKSACBulkC
variable = eta
ca = c2l
cb = c2s
fa_name = fl
args = 'c1l'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/rdg/test/tests/advection_1d/block_restrictable.i
############################################################
[GlobalParams]
order = CONSTANT
family = MONOMIAL
u = u
slope_limiting = lslope
implicit = false
[]
############################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 100
[]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
block_id = 1
top_right = '1.0 1.0 0'
input = gen
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = subdomain1
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
master_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
input = interface
[../]
[]
############################################################
[Functions]
[./ic_u]
type = PiecewiseConstant
axis = x
direction = right
xy_data = '0.1 0.5
0.4 1.0
0.5 0.5'
[../]
[]
############################################################
[UserObjects]
[./lslope]
type = AEFVSlopeLimitingOneD
execute_on = 'linear'
scheme = 'superbee' #none | minmod | mc | superbee
block = 0
[../]
[./internal_side_flux]
type = AEFVUpwindInternalSideFlux
execute_on = 'linear'
[../]
[./free_outflow_bc]
type = AEFVFreeOutflowBoundaryFlux
execute_on = 'linear'
[../]
[]
############################################################
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
family = LAGRANGE
order = FIRST
[../]
[]
############################################################
[ICs]
[./u_ic]
type = FunctionIC
variable = 'u'
function = ic_u
[../]
[]
############################################################
[Kernels]
[./time_u]
implicit = true
type = TimeDerivative
variable = u
block = 0
[../]
[./diff_v]
implicit = true
type = Diffusion
variable = v
block = 1
[../]
[./time_v]
implicit = true
type = TimeDerivative
variable = v
block = 1
[../]
[]
############################################################
[DGKernels]
[./concentration]
type = AEFVKernel
variable = u
component = 'concentration'
flux = internal_side_flux
block = 0
[../]
[]
############################################################
[BCs]
[./concentration]
type = AEFVBC
boundary = 'left master0_interface'
variable = u
component = 'concentration'
flux = free_outflow_bc
[../]
[./v_left]
type = DirichletBC
boundary = 'master1_interface'
variable = v
value = 1
[../]
[./v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[../]
[]
############################################################
[Materials]
[./aefv]
type = AEFVMaterial
block = 0
[../]
[./dummy_1]
type = GenericConstantMaterial
block = 1
prop_names = ''
prop_values = ''
[../]
[]
############################################################
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
start_time = 0.0
num_steps = 4 # 4 | 400 for complete run
dt = 5e-4
dtmin = 1e-6
[]
[Outputs]
[./out]
type = Exodus
interval = 2
[../]
perf_graph = true
[]
test/tests/dirackernels/multiplicity/multiplicity.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./u1]
[../]
[./u2]
[../]
[./u3]
[../]
[]
[Kernels]
[./diff1]
type = Diffusion
variable = u1
[../]
[./diff2]
type = Diffusion
variable = u2
[../]
[./diff3]
type = Diffusion
variable = u3
[../]
[./dt1]
type = TimeDerivative
variable = u1
[../]
[./dt2]
type = TimeDerivative
variable = u2
[../]
[./dt3]
type = TimeDerivative
variable = u3
[../]
[]
[DiracKernels]
[./material_source1]
type = MaterialMultiPointSource
variable = u1
points = '0.2 0.3 0.0
0.7 0.5 0.0'
[../]
[./material_source2]
type = MaterialMultiPointSource
variable = u2
points = '0.2 0.3 0.0
0.2 0.3 0.0'
[../]
[./material_source3]
type = MaterialMultiPointSource
variable = u3
drop_duplicate_points = false
points = '0.2 0.3 0.0
0.2 0.3 0.0'
[../]
[]
[Postprocessors]
[./u1]
type = ElementIntegralVariablePostprocessor
variable = u1
[../]
[./u2]
type = ElementIntegralVariablePostprocessor
variable = u2
[../]
[./u3]
type = ElementIntegralVariablePostprocessor
variable = u3
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = matp
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i
# This material tests the kernels ACBarrierFunction and ACKappaFunction for a
# multiphase system.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -200
xmax = 200
ymin = -200
ymax = 200
uniform_refine = 0
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0_IC]
type = BoundingBoxIC
variable = gr0
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 0
outside = 1
[../]
[./gr1_IC]
type = BoundingBoxIC
variable = gr1
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 1
outside = 0
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'L gamma E0 E1'
prop_values = '0.1 1.5 3 1'
[../]
[./h0]
type = DerivativeParsedMaterial
f_name = h0
args = 'gr0 gr1'
function = 'gr0^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./h1]
type = DerivativeParsedMaterial
f_name = h1
args = 'gr0 gr1'
function = 'gr1^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./mu]
type = DerivativeParsedMaterial
f_name = mu
args = 'gr0 gr1'
constant_names = 'mag'
constant_expressions = '16'
function = 'mag * (gr0^2 * gr1^2 + 0.1)'
derivative_order = 2
[../]
[./kappa]
type = DerivativeParsedMaterial
f_name = kappa
args = 'gr0 gr1'
material_property_names = 'h0(gr0,gr1) h1(gr0,gr1)'
constant_names = 'mag0 mag1'
constant_expressions = '200 100'
function = 'h0*mag0 + h1*mag1'
derivative_order = 2
[../]
[]
[Kernels]
[./gr0_time]
type = TimeDerivative
variable = gr0
[../]
[./gr0_interface]
type = ACInterface
variable = gr0
args = 'gr1'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr0_switching]
type = ACSwitching
variable = gr0
args = 'gr1'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr0_multi]
type = ACGrGrMulti
variable = gr0
v = 'gr1'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr0_barrier]
type = ACBarrierFunction
variable = gr0
mob_name = L
gamma = gamma
v = 'gr1'
[../]
[./gr0_kappa]
type = ACKappaFunction
variable = gr0
mob_name = L
kappa_name = kappa
v = 'gr1'
[../]
[./gr1_time]
type = TimeDerivative
variable = gr1
[../]
[./gr1_interface]
type = ACInterface
variable = gr1
args = 'gr0'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr1_switching]
type = ACSwitching
variable = gr1
args = 'gr0'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr1_multi]
type = ACGrGrMulti
variable = gr1
v = 'gr0'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr1_barrier]
type = ACBarrierFunction
variable = gr1
mob_name = L
gamma = gamma
v = 'gr0'
[../]
[./gr1_kappa]
type = ACKappaFunction
variable = gr1
mob_name = L
kappa_name = kappa
v = 'gr0'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm ilu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
start_time = 0
num_steps = 3
dt = 1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/new_initial_conditions/GrainGrowth_initial_from_file.i
[Mesh]
file = prepare_mesh_out.e
[]
[Modules]
[./PhaseField]
[./GrainGrowth]
op_num = 4
var_name_base = gr
initial_from_file = true
variable_mobility = false
[../]
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'L mu gamma_asymm kappa_op'
prop_values = '0 0 0 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 2
[]
[Problem]
kernel_coverage_check = false
solve = false
[]
[Outputs]
exodus = true
execute_on = FINAL
hide = bnds
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
derivative_order = 2
enable_jit = false
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa dkappadgrad_etaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab dkappadgrad_etab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1.0e-5
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-12
num_steps = 2
dt = 0.001
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Newmark_time_integration/wave_bc_1d.i
# Wave propogation in 1-D using Newmark time integration
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
eta = 0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
eta = 0
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
use_displaced_mesh = false
beta = 0.3025
gamma = 0.6
eta = 0
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 1.0
poissons_ratio = 0.0
[../]
[./constant_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = '0'
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-12
nl_rel_tol = 1e-12
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
test/tests/controls/output/controllable.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
[./controls]
type = ControlOutput
clear_after_output = false
[../]
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/phase_field/test/tests/anisotropic_mobility/split.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./w]
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWResAniso
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = ConstantAnisotropicMobility
tensor = '0.1 0 0
0 1 0
0 0 0'
M_name = M
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
test/tests/auxkernels/diffusion_flux/diffusion_flux.i
[Mesh]
type = GeneratedMesh # Can generate simple lines, rectangles and rectangular prisms
dim = 2 # Dimension of the mesh
nx = 10 # Number of elements in the x direction
ny = 10 # Number of elements in the y direction
xmax = 1.0
ymax = 1.0
[]
[Variables]
[./T]
[../]
[]
[AuxVariables]
[./flux_x]
order = FIRST
family = MONOMIAL
[../]
[./flux_y]
order = FIRST
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest # A Laplacian operator
variable = T
prop_name = 'thermal_conductivity'
[../]
[]
[AuxKernels]
[./flux_x]
type = DiffusionFluxAux
diffusivity = 'thermal_conductivity'
variable = flux_x
diffusion_variable = T
component = x
[../]
[./flux_y]
type = DiffusionFluxAux
diffusivity = 'thermal_conductivity'
variable = flux_y
diffusion_variable = T
component = y
[../]
[]
[BCs]
[./inlet]
type = DirichletBC # Simple u=value BC
variable = T
boundary = left
value = 4000 # K
[../]
[./outlet]
type = DirichletBC
variable = T
boundary = right
value = 400 # K
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '10' # in W/mK
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'T flux_x flux_y'
start_point = '0 0. 0'
end_point = '1.0 0. 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady # Steady state problem
solve_type = PJFNK #Preconditioned Jacobian Free Newton Krylov
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type' #Matches with the values below
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true # Output Exodus format
execute_on = 'initial timestep_end'
csv = true
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998717
# 0.6 520 519.9994963
# 0.8 560 559.9989217
# 1.0 600 599.9986735
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + t*(-2.5*y/(2.04*x) + 155/x - t/(2.04*x)
- 7.5/2.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/2.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/2.04)*(-2.5*x-2.5*y-t) + 1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
args = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = SIMPLE
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2*(c-1)^2 + c*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = 'c^2*(c-0.9)^2 + (1-c)*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = Fa
fb_name = Fb
args = 'c'
eta = eta
derivative_order = 2
outputs = exodus
output_properties = 'F dF/dc dF/deta d^2F/dc^2 d^2F/dcdeta d^2F/deta^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_with_density.i
# Simple equilibrium reaction example with fluid density and gravity included
# in calculation of the Darcy velocity. For details about reaction network,
# see documentation in 2species.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
a + b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
gravity = '-1 0 0'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
gravity = '-1 0 0'
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
gravity = '-1 0 0'
[../]
[./p]
type = DarcyFluxPressure
variable = pressure
gravity = '-1 0 0'
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[./pleft]
type = DirichletBC
variable = pressure
preset = false
value = 2
boundary = left
[../]
[./pright]
type = DirichletBC
variable = pressure
preset = false
value = 1
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity density'
prop_values = '1e-4 1e-4 0.2 4'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_outside.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
uniform_refine = 2
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
location = OUTSIDE
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
test/tests/controls/syntax_based_naming_access/system_object_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'DiracKernels/test_object/point'
execute_on = 'initial'
[../]
[]
modules/chemical_reactions/test/tests/jacobian/coupled_convreact2.i
# Test the Jacobian terms for the CoupledConvectionReactionSub Kernel using
# activity coefficients not equal to unity
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = 2
weight = 1
sto_v = 2.5
sto_u = 2
p = pressure
gamma_eq = 2
gamma_u = 2.5
gamma_v = 1.5
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/combined/test/tests/solid_mechanics/HHT_time_integrator/one_element_b_0_3025_g_0_6_cubic.i
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = one_element.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = pull
[../]
[]
[Materials]
[./constant]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.26e6
poissons_ratio = .33
[../]
[./constant_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = '0.00023832'
[../]
[]
[Executioner]
type = Transient
# PETSC options
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
start_time = 0
end_time = 1
dtmax = 0.1
dtmin = 0.1
# control for adaptive time steping
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0'
y = '0.0 0.000167 0.00133 0.0045 0.010667 0.020833 0.036 0.057167 0.0853 0.1215 0.16667'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nonlinear_its]
type = NumNonlinearIterations
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
# Wave propogation in 1D using Newmark time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.0
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/exceptions/missing_sto3.i
# Missing stoichiometric coefficient in AqueousEquilibriumRxnAux AuxKernel
# Simple reaction-diffusion example without using the action.
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate
# This simulation is identical to 2species.i, but explicitly includes the AuxVariables,
# AuxKernels, and Kernels that the action in 2species.i adds
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./mineral]
[../]
[]
[AuxKernels]
[./mineral_conc]
type = KineticDisPreConcAux
variable = mineral
sto_v = 1
v = 'a b'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a longitudinal section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between -300<=y<=1800. The excavation sits in 0<=y<=1500. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=-300 and y=1800
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=300 and y=1800.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 140 # 15m elements
ymin = -300
ymax = 1800
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 1500 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 1500.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 1500.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 100
start_time = 0.0
dt = 0.01 # 1 element per step
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky_longitudinal
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_without_action.i
# Simple equilibrium reaction example to illustrate the use of the AqueousEquilibriumReactions
# action.
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# This example is identical to 2species.i, except that it explicitly includes all AuxKernels
# and Kernels that are set up by the action in 2species.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./pa2]
[../]
[./pab]
[../]
[]
[AuxKernels]
[./pa2eq]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
sto_v = 2
log_k = 2
[../]
[./pabeq]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
sto_v = '1 1'
log_k = -2
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
p = pressure
[../]
[./a2eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/phase_field/examples/anisotropic_interfaces/snow.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 14
xmax = 9
ymax = 9
uniform_refine = 3
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 4.5
y1 = 4.5
radius = 0.07
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
args = T
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = 'w T'
constant_names = pi
constant_expressions = 4*atan(1)
function = 'm:=0.9 * atan(10 * (1 - T)) / pi; 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-08
l_max_its = 30
end_time = 1
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
iteration_window = 2
dt = 0.0005
growth_factor = 1.1
cutback_factor = 0.75
[../]
[./Adaptivity]
initial_adaptivity = 3 # Number of times mesh is adapted to initial condition
refine_fraction = 0.7 # Fraction of high error that will be refined
coarsen_fraction = 0.1 # Fraction of low error that will coarsened
max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform refinement)
weight_names = 'w T'
weight_values = '1 0.5'
[../]
[]
[Outputs]
interval = 5
exodus = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9999722
# 0.6 520 519.9998726
# 0.8 560 559.9997314
# 1.0 600 599.9996885
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'rhoCp*(-200*x+200)-(0.05*200*t/1.04)'
vars = 'rhoCp'
vals = 10
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '1.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
test/tests/kernels/simple_transient_diffusion/ill_conditioned_simple_diffusion.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
preset = false
boundary = right
function = constant
[../]
[]
[Functions]
[constant]
type = ParsedFunction
value = '1'
[]
[ramp]
type = ParsedFunction
value = 't'
[]
[]
[Materials]
active = 'constant'
[constant]
type = GenericConstantMaterial
prop_names = 'D'
prop_values = '1e20'
[]
[function]
type = GenericFunctionMaterial
prop_names = 'D'
prop_values = '10^(t-1)'
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 2
dtmin = 2
solve_type = NEWTON
petsc_options = '-pc_svd_monitor -ksp_view_pmat -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -snes_stol'
petsc_options_value = 'svd 0'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
use_current_history_variable = true
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/SpecifiedSmoothSuperellipsoidIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothSuperellipsoidIC
variable = c
x_positions = '15 35'
y_positions = '25.0 25.0'
z_positions = '0 0'
as = '8.0 8.0'
bs = '12.0 8.0'
cs = '60.0 8.0'
ns = '3.5 2.0'
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/functional_expansion_tools/examples/2D_interface_different_submesh/main.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) The number of y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in y
# 3) The Functional Expansion order for the flux term was increased to 7
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[Materials]
[./Impervium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.00001 50.0 100.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '7'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# This is an elastic simulation, but the weak-plane and Drucker-Prager
# parameters and AuxVariables may be found below. They are irrelevant
# in this simulation. The weak-plane and Drucker-Prager cohesions,
# tensile strengths and compressive strengths have been set very high
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str
compressive_strength = wp_compressive_str
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'Linear'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = cosserat_elastic
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
use_automatic_differentiation = true
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ADComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i
# This example problem demonstrates coupling heat conduction with mechanics.
# A circular domain has as uniform heat source that increases with time
# and a fixed temperature on the outer boundary, resulting in a temperature gradient.
# This results in heterogeneous thermal expansion, where it is pinned in the center.
# Looking at the hoop stress demonstrates why fuel pellets have radial cracks
# that extend from the outer boundary to about halfway through the radius.
# The problem is run with length units of microns.
[Mesh]
#Circle mesh has a radius of 1000 units
type = FileMesh
file = circle.e
uniform_refine = 1
[]
[Variables]
# We solve for the temperature and the displacements
[./T]
initial_condition = 800
scaling = 1e7
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./radial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop_stress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'TensorMechanics htcond Q_function'
[./htcond] #Heat conduction equation
type = HeatConduction
variable = T
[../]
[./TensorMechanics] #Action that creates equations for disp_x and disp_y
displacements = 'disp_x disp_y'
[../]
[./Q_function] #Heat generation term
type = BodyForce
variable = T
value = 1
function = 0.8e-9*t
[../]
[]
[AuxKernels]
[./radial_stress] #Calculates radial stress from cartesian
type = CylindricalRankTwoAux
variable = radial_stress
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./hoop_stress] #Calculates hoop stress from cartesian
type = CylindricalRankTwoAux
variable = hoop_stress
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_T] #Temperature on outer edge is fixed at 800K
type = DirichletBC
variable = T
boundary = 1
value = 800
[../]
[./outer_x] #Displacements in the x-direction are fixed in the center
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y] #Displacements in the y-direction are fixed in the center
type = DirichletBC
variable = disp_y
boundary = 2
value = 0
[../]
[]
[Materials]
[./thcond] #Thermal conductivity is set to 5 W/mK
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./iso_C] #Sets isotropic elastic constants
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress] #We use linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/initial_conditions/BimodalInverseSuperellipsoidsIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = BimodalInverseSuperellipsoidsIC
variable = c
x_positions = '25.0'
y_positions = '25.0'
z_positions = '0.0'
as = '20.0'
bs = '20.0'
cs = '1'
ns = '3.5'
npart = 8
invalue = 1.0
outvalue = -0.8
nestedvalue = -1.5
int_width = 0.0
large_spac = 5
small_spac = 2
small_a = 3
small_b = 3
small_c = 3
small_n = 2
size_variation_type = none
numtries = 10000
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/phase_field/test/tests/SplitCH/forward_split_math_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 25.0
ymax = 25.0
elem_type = QUAD
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
variable = c
x1 = 0
x2 = 25
y1 = 0
y2 = 25
[../]
[]
[Kernels]
[./cdot]
type = TimeDerivative
variable = c
[../]
[./grad_w]
type = MatDiffusion
variable = c
v = w
diffusivity = 1.0
[../]
[./grad_c]
type = MatDiffusion
variable = w
v = c
diffusivity = 2.0
[../]
[./w2]
type = CoupledMaterialDerivative
variable = w
v = c
f_name = F
[../]
[./w3]
type = CoefReaction
variable = w
coefficient = -1.0
[../]
[]
[AuxVariables]
[./local_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = F
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./kappa_c]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
function = '(1 - c)^2 * (1 + c)^2'
f_name = F
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'initial TIMESTEP_END'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 150.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 150.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.01
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/heat_conduction/test/tests/sideset_heat_transfer/gap_thermal_1D.i
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[split]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = split
master_block = 1
paired_block = 0
new_boundary = 'interface0'
[]
uniform_refine = 4
[]
[Variables]
# Defining a DFEM variable to handle gap discontinuity
[T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxVariables]
# Auxvariable containing bulk temperature of gap
[Tbulk]
order = FIRST
family = LAGRANGE
initial_condition = 300 # K
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = T
diffusivity = conductivity
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[DGKernels]
# DG kernel to represent diffusion accross element faces
[./dg_diff]
type = DGDiffusion
variable = T
epsilon = -1
sigma = 6
diff = conductivity
# Ignoring gap side set because no diffusion accross there
exclude_boundary = 'interface0'
[../]
[]
[InterfaceKernels]
active = 'gap'
# Heat transfer kernel using Tbulk as material
[gap]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
[]
# Heat transfer kernel using Tbulk as auxvariable
[gap_var]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
Tbulk_var = Tbulk
[]
[]
[Functions]
[bc_func]
type = ConstantFunction
value = 300
[]
[exact]
type = ParsedFunction
value = '
A := if(x < 1, -0.5, -0.25);
B := if(x < 1, -0.293209850655001, 0.0545267662299068);
C := if(x < 1, 300.206790149345, 300.19547323377);
d := -1;
A * (x+d) * (x+d) + B * (x+d) + C'
[]
[]
[BCs]
[bc_left]
type = DGFunctionDiffusionDirichletBC
boundary = 'left'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[bc_right]
type = DGFunctionDiffusionDirichletBC
boundary = 'right'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[]
[Materials]
[k0]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 1.0
block = 0
[]
[k1]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 2.0
block = 1
[]
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface0'
conductivity = 1.5
gap_length = 1.0
h_master = 1
h_neighbor = 1
Tbulk = 300
emissivity_master = 1
emissivity_neighbor = 1
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = exact
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i
# One 3D element under ramped displacement loading.
#
# loading in z direction:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# Gravity is applied in y direction. To equilibrate the system
# under gravity, a static analysis is run in the first time step
# by turning off the inertial terms. (see controls block and
# DynamicTensorMechanics block).
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
# The y displacement would be offset by the gravity displacement.
# Also the y acceleration and velocity should be zero until the loading in
# the z direction starts (i.e, until 0.1s)
# Note: The time step used in the displacement data file should match
# the simulation time step (dt and dtmin in the Executioner block).
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
static_initialization = true #turns off rayliegh damping for the first time step to stabilize system under gravity
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./gravity]
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./prescribed_displacement]
type = PresetDisplacement
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
boundary = front
function = displacement_front
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Controls] # turns off inertial terms for the first time step
[./period0]
type = TimePeriod
disable_objects = '*/vel_x */vel_y */vel_z */accel_x */accel_y */accel_z */inertia_x */inertia_y */inertia_z'
start_time = 0.0
end_time = 0.1 # dt used in the simulation
[../]
[../]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/phase_field/test/tests/KKS_system/kks_example_offset.i
#
# KKS toy problem in the split form
# This has an offset in the minima of the free energies so there will be a shift
# in equilibrium composition
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2+0.5'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_offset
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 'zeta_rayleigh'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[./material_zeta]
type = GenericConstantMaterial
block = 0
prop_names = 'zeta_rayleigh'
prop_values = '0.1'
[../]
[./material_eta]
type = GenericConstantMaterial
block = 0
prop_names = 'eta_rayleigh'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_newmark_out'
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/nonmatching.i
[Mesh]
file = nonmatching.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 1000
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
slave = leftright
quadrature = true
master = rightleft
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[./gap_conductance]
type = GenericConstantMaterial
prop_names = 'gap_conductance gap_conductance_dT'
boundary = 'leftright rightleft'
prop_values = '1 0'
[../]
[]
[Postprocessors]
[./left]
type = SideFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/bridge/bridge.i
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_concrete stress strain elasticity_tensor_concrete'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
[]
[Outputs]
exodus = true
perf_graph = true
[]
tutorials/darcy_thermo_mech/step05_heat_conduction/tests/bcs/outflow/outflow.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 5
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = SpecificHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[steel]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/verify_against_analytical/1D_transient.i
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1e-6
dt = 2
end_time = 100
[]
[Outputs]
exodus = true
[]
tutorials/darcy_thermo_mech/step04_velocity_aux/tests/auxkernels/velocity_aux/velocity_aux.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[pressure]
[]
[]
[AuxVariables]
[velocity_x]
order = CONSTANT
family = MONOMIAL
[]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[velocity_x]
type = VectorVariableComponentAux
variable = velocity_x
component = x
execute_on = timestep_end
vector_variable = velocity
[]
[]
[Functions]
[pressure_ic_func]
type = ParsedFunction
value = 2000*x*y*x*y
[]
[]
[ICs]
[pressure_ic]
type = FunctionIC
variable = pressure
function = pressure_ic_func
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
solve = false
[]
[Materials]
[pressure]
type = GenericConstantMaterial
prop_values = '0.8451e-9 7.98e-4'
prop_names = 'permeability viscosity'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/2species.i
# Simple equilibrium reaction example to illustrate the use of the AqueousEquilibriumReactions
# action.
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# The AqueousEquilibriumReactions action creates all the required kernels and auxkernels
# to compute the reaction given by the above equilibrium reaction equation.
#
# Specifically, it adds to following:
# * An AuxVariable named 'pa2' (given in the reactions equations)
# * An AuxVariable named 'pab' (given in the reactions equations)
# * A AqueousEquilibriumRxnAux AuxKernel for each AuxVariable with all parameters
# * A CoupledBEEquilibriumSub Kernel for each primary species with all parameters
# * A CoupledDiffusionReactionSub Kernel for each primary species with all parameters
# * A CoupledConvectionReactionSub Kernel for each primary species with all parameters if
# pressure is a coupled variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
a + b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 32
ny = 32
xmax = 0.7
ymax = 0.7
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 0.35
y1 = 0.35
radius = 0.08
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
args = 'T'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8 #This is -K from kobayashi's paper
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = 'w T'
constant_names = 'alpha gamma T_e pi'
constant_expressions = '0.9 10 1 4*atan(1)'
function = 'm:=alpha/pi * atan(gamma * (T_e - T)); 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
scheme = bdf2
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-08
l_tol = 1e-4
l_max_its = 30
dt = 0.001
num_steps = 6
[]
[Outputs]
exodus = true
perf_graph = true
execute_on = 'INITIAL FINAL'
[]
modules/chemical_reactions/test/tests/exceptions/missing_sto2.i
# Missing stoichiometric coefficient in CoupledBEEquilibriumSub Kernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[./c]
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./c_ie]
type = PrimaryTimeDerivative
variable = c
[../]
[./aeq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 1
weight = 2
sto_u = 2
v = 'b c'
sto_v = 1
gamma_v = '2 2'
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/phase_field/test/tests/initial_conditions/BoundingBoxIC.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
xmax = 50
ymax = 25
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
test/tests/controls/tag_based_naming_access/object_param.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag::*/point'
execute_on = 'initial'
[../]
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 3D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux_with_jump_material.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
input = gen
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[../]
[]
[InterfaceKernels]
[./penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = master0_interface
penalty = 1e6
jump_prop_name = jump
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[]
[Materials]
[./jump]
type = JumpInterfaceMaterial
var = u
neighbor_var = v
boundary = master0_interface
[../]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = master0_interface
[../]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008131
# 0.6 520 520.0038333
# 0.8 560 560.0088286
# 1.0 600 600.0131612
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + (1/x)*(310*t - (10/1.02)*x*t - (1/1.02)*t^2)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/2.04)*(2.04-x-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/2.04)*(2.04-x-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i
# this input file test the implementation of the grand-potential phase-field model based on M.Plapp PRE 84,031601(2011)
# in this simple example, the liquid and solid free energies are parabola with the same curvature and the material properties are constant
# Note that this example also test The SusceptibilityTimeDerivative kernels
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 32
ymax = 32
[]
[GlobalParams]
radius = 20.0
int_width = 4.0
x1 = 0
y1 = 0
[]
[Variables]
[./w]
[../]
[./eta]
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -0.2
invalue = 0.2
[../]
[./eta]
type = SmoothCircleIC
variable = eta
outvalue = 0.0
invalue = 1.0
[../]
[]
[Kernels]
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = D
args = ''
[../]
[./coupled_etadot]
type = CoupledSusceptibilityTimeDerivative
variable = w
v = eta
f_name = ft
args = 'eta'
[../]
[./AC_bulk]
type = AllenCahn
variable = eta
f_name = F
args = 'w'
[../]
[./AC_int]
type = ACInterface
variable = eta
[../]
[./e_dot]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_op D L chi cs cl A'
prop_values = '4.0 1.0 1.0 1.0 0.0 1.0 1.0'
[../]
[./liquid_GrandPotential]
type = DerivativeParsedMaterial
function = '-0.5 * w^2/A - cl * w'
args = 'w'
f_name = f1
material_property_names = 'cl A'
[../]
[./solid_GrandPotential]
type = DerivativeParsedMaterial
function = '-0.5 * w^2/A - cs * w'
args = 'w'
f_name = f2
material_property_names = 'cs A'
[../]
[./switching_function]
type = SwitchingFunctionMaterial
eta = eta
h_order = HIGH
[../]
[./barrier_function]
type = BarrierFunctionMaterial
eta = eta
[../]
[./total_GrandPotential]
type = DerivativeTwoPhaseMaterial
args = 'w'
eta = eta
fa_name = f1
fb_name = f2
derivative_order = 2
W = 1.0
[../]
[./coupled_eta_function]
type = DerivativeParsedMaterial
function = '(cs - cl) * dh'
args = 'eta'
f_name = ft
material_property_names = 'cs cl dh:=D[h,eta]'
derivative_order = 1
outputs = exodus
[../]
[./concentration]
type = ParsedMaterial
f_name = c
material_property_names = 'dF:=D[F,w]'
function = '-dF'
outputs = exodus
[../]
[]
[Postprocessors]
[./C]
type = ElementIntegralMaterialProperty
mat_prop = c
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
l_max_its = 15
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
num_steps = 5
dt = 10.0
[]
[Outputs]
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
test/tests/materials/get_material_property_names/get_material_property_boundary_names.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./material]
type = GenericConstantMaterial
prop_names = combo
boundary = 'left right'
prop_values = 12345
[../]
[]
[UserObjects]
[./get_material_boundary_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'left right'
property_name = combo
test_type = 'boundary'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/actions/addmaterials.i
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# materials are added with the default add_nodes parameter, as well as
# at_nodes = true, to make sure that the action doesn't add a duplicate material
[Mesh]
type = GeneratedMesh
dim = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pwater]
initial_condition = 1e6
[../]
[./sgas]
initial_condition = 0.3
[../]
[./temperature]
initial_condition = 50
[../]
[]
[AuxVariables]
[./x0]
initial_condition = 0.1
[../]
[./x1]
initial_condition = 0.5
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = sgas
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[../]
[./heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater sgas temperature'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-5
pc_max = 1e7
sat_lr = 0.1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
cv = 2
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1e9
viscosity = 1e-4
density0 = 20
thermal_expansion = 0
cv = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = 50
[../]
[./temperature_nodal]
type = PorousFlowTemperature
at_nodes = true
temperature = 50
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[../]
[./ppss_nodal]
type = PorousFlow2PhasePS
at_nodes = true
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'x0 x1'
[../]
[./massfrac_nodal]
type = PorousFlowMassFraction
at_nodes = true
mass_fraction_vars = 'x0 x1'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid0_nodal]
type = PorousFlowSingleComponentFluid
at_nodes = true
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./simple_fluid1_nodal]
type = PorousFlowSingleComponentFluid
at_nodes = true
fp = simple_fluid1
phase = 1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[../]
[./relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.11
[../]
[./relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
s_res = 0.01
sum_s_res = 0.11
[../]
[./relperm0_nodal]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
at_nodes = true
[../]
[./relperm1_nodal]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
at_nodes = true
[../]
[./porosity_nodal]
type = PorousFlowPorosityConst
porosity = 0.1
at_nodes = true
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[../]
[./unused]
type = GenericConstantMaterial
prop_names = unused
prop_values = 0
[../]
[]
[Executioner]
type = Transient
end_time = 1
nl_abs_tol = 1e-14
[]
test/tests/dgkernels/adaptivity/adaptivity.i
# This input file is used for two tests:
# 1) Check that DGKernels work with mesh adaptivity
# 2) Error out when DGKernels are used with adaptivity
# and stateful material prpoerties
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
parallel_type = 'replicated'
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = (x*x*x)-6.0*x
[../]
[./bc_fn]
type = ParsedFunction
value = (x*x*x)
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
[../]
[./abs]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dgdiff]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1.0
diff = diffusivity
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGMDDBC
variable = u
boundary = '1 2 3 4'
function = bc_fn
prop_name = diffusivity
sigma = 6
epsilon = -1.0
[../]
[]
[Materials]
active = 'constant'
[./stateful]
type = StatefulTest
prop_names = 'diffusivity'
prop_values = '1'
[../]
[./constant]
type = GenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
marker = 'marker'
steps = 1
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.5
indicator = error
refine = 0.5
[../]
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/inertial_torque/simple.i
# A single element is stretched.
#
# For all time:
# disp_x = 0
# disp_z = 3
#
# The velocities are initialised to zero
# The accelerations are initialised to
# accel_x = 0
# accel_y = 2
# accel_z = 0
#
# The only degree of freedom is disp_y.
# It is initialised to zero.
# The DE is the ZEROTH component of
# density * disp x accel = BodyForce
# (Choosing the zeroth component is unusual: this
# is to illustrate correct behaviour of the
# InertialTorque Kernel, rather than being
# relevant to any particular solid-mechanics problem.)
# The LHS = - density * disp_z * accel_y
# With density = 0.5 and BodyForce = -3 the solution is
# accel_y = 2, vel_y = 2 * t, and disp_y = t^2
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
gamma = 0.5
beta = 0.25
alpha = 0.0
eta = 0.0
[]
[Variables]
[./disp_y]
[../]
[]
[Kernels]
[./icm_x]
type = InertialTorque
component = 0
variable = disp_y
[../]
[./source_x]
type = BodyForce
variable = disp_y
function = -3
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_z]
initial_condition = 3
[../]
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
initial_condition = 2
[../]
[./accel_z]
[../]
[]
[AuxKernels]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 0.5
[../]
[]
[Postprocessors]
[./y_disp]
type = PointValue
point = '0 0 0'
use_displaced_mesh = false
variable = disp_y
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
num_steps = 10
[]
[Outputs]
csv = true
[]
modules/xfem/test/tests/moving_interface/moving_diffusion.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
elem_type = QUAD4
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'x-0.76+0.21*t'
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = u
jump = 0
use_penalty = true
alpha = 1e5
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[../]
[./diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 0.5
[../]
[./diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
start_time = 0.0
dt = 1
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/misc/test/tests/kernels/thermo_diffusion/thermo_diffusion.i
# Steady-state test for the ThermoDiffusion kernel.
#
# This test applies a constant temperature gradient to drive thermo-diffusion
# in the variable u. At steady state, the thermo-diffusion is balanced by
# diffusion due to Fick's Law, so the total flux is
#
# J = -D ( grad(u) - ( Qstar u / R ) grad(1/T) )
#
# If there are no fluxes at the boundaries, then there is no background flux and
# these two terms must balance each other everywhere:
#
# grad(u) = ( Qstar u / R ) grad(1/T)
#
# The dx can be eliminated to give
#
# d(ln u) / d(1/T) = Qstar / R
#
# This can be solved to give the profile for u as a function of temperature:
#
# u = A exp( Qstar / R T )
#
# Here, we are using simple heat conduction with Dirichlet boundaries on 0 <= x <= 1
# to give a linear profile for temperature: T = x + 1. We also need to apply one
# boundary condition on u, which is u(x=0) = 1. These conditions give:
#
# u = exp( -(Qstar/R) (x/(x+1)) )
#
# This analytical result is tracked by the aux variable "correct_u".
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[Variables]
[./u]
initial_condition = 1
[../]
[./temp]
initial_condition = 1
[../]
[]
[Kernels]
[./soret]
type = ThermoDiffusion
variable = u
temp = temp
gas_constant = 1
[../]
[./diffC]
type = Diffusion
variable = u
[../]
# Heat diffusion gives a linear temperature profile to drive the Soret diffusion.
[./diffT]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 1
[../]
[./leftt]
type = DirichletBC
variable = temp
preset = false
boundary = left
value = 1
[../]
[./rightt]
type = DirichletBC
variable = temp
preset = false
boundary = right
value = 2
[../]
[]
[Materials]
[./fake_material]
type = GenericConstantMaterial
block = 0
prop_names = 'mass_diffusivity heat_of_transport'
prop_values = '1 1'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = u
function = 'exp(-x/(x+1))'
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
test/tests/materials/stateful_prop/implicit_stateful.i
# This test checks that material properties are correctly implicitly be
# promoted to "stateful" when a stateful old or older value is requested for
# them even when the properties were never explicitly declared with old/older
# support. So the ImplicitStateful material simply requests stateful
# old/older values from a generic constant material that doesn't declare its
# material property with old/older support. This material adds the current
# simulation time to that to calculate its own material property. A second
# implicit stateful material requests the older value of the firsts stateful
# material - also not declared to support old/older as its material property
# value. The sequence of material properties generated by the second implicit
# stateful material should be delayed by the first's by one time step.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[./prop2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = s1
[../]
[./prop2_output]
type = MaterialRealAux
variable = prop2
property = s2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1.0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1.0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'a'
prop_values = '.42'
[../]
[./stateful1]
type = ImplicitStateful
prop_name = 's1'
coupled_prop_name = 'a'
add_time = true
older = false
[../]
[./stateful2]
type = ImplicitStateful
prop_name = 's2'
coupled_prop_name = 's1'
add_time = false
older = false
[../]
[]
[Postprocessors]
[./integ1]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[./integ2]
type = ElementAverageValue
variable = prop2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0
num_steps = 10
dt = 1
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_eqaux.i
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# This example is identical to 2species.i, except that it explicitly includes all AuxKernels
# and Kernels that are set up by the action in 2species.i, and that the equilbrium constants
# are provided by AuxVariables
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./pa2]
[../]
[./pab]
[../]
[./pa2_logk]
initial_condition = 2
[../]
[./pab_logk]
initial_condition = -2
[../]
[]
[AuxKernels]
[./pa2eq]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
sto_v = 2
log_k = pa2_logk
[../]
[./pabeq]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
sto_v = '1 1'
log_k = pab_logk
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
p = pressure
[../]
[./a2eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
hide = 'pa2_logk pab_logk'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l * 3 / 4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
barrier_energy = 'barrier'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = '3 * gc_prop / (8 * l) * c'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[./barrier_energy]
type = ParsedMaterial
f_name = barrier
material_property_names = 'gc_prop l'
function = '3 * gc_prop / 16 / l'
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 20
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/mms/supg/supg_mms_test.i
mu=1.5
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
convective_term = true
integrate_p_by_parts = false
laplace = true
u = vel_x
v = vel_y
p = p
alpha = 1
order = SECOND
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
value = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
value = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
value = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
value = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
value = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
value = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
value = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
modules/heat_conduction/test/tests/verify_against_analytical/ad_1D_transient.i
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
[../]
[./HeatTdot]
type = ADHeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1e-6
dt = 2
end_time = 100
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
args = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
args = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_end'
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = 'initial timestep_end'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_end'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
variable = 'eta0 eta1'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/KKS_system/kks_multiphase.i
#
# This test is for the 3-phase KKS model
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[AuxVariables]
[./Energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# order parameter 1
[./eta1]
order = FIRST
family = LAGRANGE
[../]
# order parameter 2
[./eta2]
order = FIRST
family = LAGRANGE
[../]
# order parameter 3
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# phase concentration 1
[./c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[../]
# phase concentration 2
[./c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# phase concentration 3
[./c3]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Lagrange multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta1]
variable = eta1
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.9
outvalue = 0.1
int_width = 4
[../]
[./eta2]
variable = eta2
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.1
outvalue = 0.9
int_width = 4
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.2
outvalue = 0.5
int_width = 2
[../]
[]
[Materials]
# simple toy free energies
[./f1]
type = DerivativeParsedMaterial
f_name = F1
args = 'c1'
function = '20*(c1-0.2)^2'
[../]
[./f2]
type = DerivativeParsedMaterial
f_name = F2
args = 'c2'
function = '20*(c2-0.5)^2'
[../]
[./f3]
type = DerivativeParsedMaterial
f_name = F3
args = 'c3'
function = '20*(c3-0.8)^2'
[../]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[./h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
f_name = h1
[../]
# h2(eta1, eta2, eta3)
[./h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
f_name = h2
[../]
# h3(eta1, eta2, eta3)
[./h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
f_name = h3
[../]
# Coefficients for diffusion equation
[./Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1'
function = D*h1
f_name = Dh1
[../]
[./Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2'
function = D*h2
f_name = Dh2
[../]
[./Dh3]
type = DerivativeParsedMaterial
material_property_names = 'D h3'
function = D*h3
f_name = Dh3
[../]
# Barrier functions for each phase
[./g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[../]
[./g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[../]
[./g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L kappa D'
prop_values = '0.7 1.0 1'
[../]
[]
[Kernels]
#Kernels for diffusion equation
[./diff_time]
type = TimeDerivative
variable = c
[../]
[./diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
[../]
[./diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
[../]
[./diff_c3]
type = MatDiffusion
variable = c
diffusivity = Dh3
v = c3
[../]
# Kernels for Allen-Cahn equation for eta1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
args = 'c1 c2 c3 eta2 eta3'
[../]
[./ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[../]
[./multipler1]
type = MatReaction
variable = eta1
v = lambda
mob_name = L
[../]
# Kernels for Allen-Cahn equation for eta2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
args = 'c1 c2 c3 eta1 eta3'
[../]
[./ACBulkC2]
type = KKSMultiACBulkC
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[../]
[./multipler2]
type = MatReaction
variable = eta2
v = lambda
mob_name = L
[../]
# Kernels for the Lagrange multiplier equation
[./mult_lambda]
type = MatReaction
variable = lambda
mob_name = 3
[../]
[./mult_ACBulkF_1]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta2 eta3'
[../]
[./mult_ACBulkC_1]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_1]
type = SimpleCoupledACInterface
variable = lambda
v = eta1
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_2]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta3'
[../]
[./mult_ACBulkC_2]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_2]
type = SimpleCoupledACInterface
variable = lambda
v = eta2
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_3]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g3
eta_i = eta3
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta2'
[../]
[./mult_ACBulkC_3]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta3
args = 'eta1 eta2'
mob_name = 1
[../]
[./mult_CoupledACint_3]
type = SimpleCoupledACInterface
variable = lambda
v = eta3
kappa_name = kappa
mob_name = 1
[../]
# Kernels for constraint equation eta1 + eta2 + eta3 = 1
# eta3 is the nonlinear variable for the constraint equation
[./eta3reaction]
type = MatReaction
variable = eta3
mob_name = 1
[../]
[./eta1reaction]
type = MatReaction
variable = eta3
v = eta1
mob_name = 1
[../]
[./eta2reaction]
type = MatReaction
variable = eta3
v = eta2
mob_name = 1
[../]
[./one]
type = BodyForce
variable = eta3
value = -1.0
[../]
# Phase concentration constraints
[./chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[../]
[./chempot23]
type = KKSPhaseChemicalPotential
variable = c2
cb = c3
fa_name = F2
fb_name = F3
[../]
[./phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c3
cj = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
c = c
[../]
[]
[AuxKernels]
[./Energy_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gj_names = 'g1 g2 g3'
variable = Energy
w = 1
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa kappa kappa'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 2
dt = 0.5
[]
[Preconditioning]
active = 'full'
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/void2d_iso.i
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
value = t
[../]
[./void_prop_func]
type = ParsedFunction
value = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
value = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
test/tests/vectorpostprocessors/material_vector_postprocessor/basic.i
# test that all scalar material properties are properly recorded in basic usage.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 42'
[../]
[]
[VectorPostprocessors]
[./vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '3 4 7 42 88'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
test/tests/dgkernels/2d_diffusion_dg/dg_stateful.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Materials]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = 'left'
[../]
[./general]
type = GenericConstantMaterial
block = '0'
prop_names = 'dummy'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
modules/phase_field/examples/cahn-hilliard/Parsed_SplitCH.i
#
# Example problem showing how to use the DerivativeParsedMaterial with SplitCHParsed.
# The free energy is identical to that from SplitCHMath, f_bulk = 1/4*(1-c)^2*(1+c)^2.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 150
xmax = 60
ymax = 60
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = fbulk
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = RandomIC
variable = c
min = -0.1
max = 0.1
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = fbulk
interfacial_vars = c
kappa_names = kappa_c
execute_on = timestep_end
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = c
constant_names = W
constant_expressions = 1.0/2^2
function = W*(1-c)^2*(1+c)^2
enable_jit = true
outputs = exodus
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Preconditioning]
[./cw_coupling]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
scheme = bdf2
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
l_max_its = 30
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
dt = 2.0
end_time = 20.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
base_name = uncracked
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./elastic]
type = ComputeLinearElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-6
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/scalar_adr/supg/tauOpt.i
velocity=1
[GlobalParams]
u = ${velocity}
p = 0
tau_type = opt
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmax = 15
[]
[Variables]
[./c]
[../]
[]
[Kernels]
[./adv]
type = Advection
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Materials]
[./mat]
# These Materials are required by the INSBase class; we don't use them for anything.
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = 'if(x < 6, 1 - .25 * x, if(x < 8, -2 + .25 * x, 0))'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[../]
[./right]
type = MTBC
variable = u
boundary = right
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./volatile]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = 10
block = 0
[../]
[./stateful_on_boundary]
type = StatefulSpatialTest
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_bnd_only
exodus = true
[]
modules/chemical_reactions/test/tests/aqueous_equilibrium/1species.i
# Simple equilibrium reaction example to illustrate the use of the AqueousEquilibriumReactions
# action.
# In this example, a single primary species a is transported by diffusion and convection
# from the left of the porous medium, reacting to form an equilibrium species pa2 according to
# the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 1'
#
# where the 2 is the weight of the equilibrium species, and the 1 refers to the equilibrium
# constant (log10(Keq) = 1).
#
# The AqueousEquilibriumReactions action creates all the required kernels and auxkernels
# to compute the reaction given by the above equilibrium reaction equation.
#
# Specifically, it adds to following:
# * An AuxVariable named 'pa2' (given in the reactions equations)
# * A AqueousEquilibriumRxnAux AuxKernel for this AuxVariable with all parameters
# * A CoupledBEEquilibriumSub Kernel for each primary species with all parameters
# * A CoupledDiffusionReactionSub Kernel for each primary species with all parameters
# * A CoupledConvectionReactionSub Kernel for each primary species with all parameters if
# pressure is a coupled variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1e-2
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
variable = a
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = a
reactions = '2a = pa2 1'
secondary_species = pa2
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[]
[BCs]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 1species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
test/tests/postprocessors/side_flux_average/side_flux_average.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./right_bc]
# Flux BC for computing the analytical solution in the postprocessor
type = ParsedFunction
value = exp(y)+1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = right
function = right_bc
[../]
[]
[Materials]
[./mat_props]
type = GenericConstantMaterial
block = 0
prop_names = diffusivity
prop_values = 2
[../]
[./mat_props_bnd]
type = GenericConstantMaterial
boundary = right
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
variable_L = false
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/exceptions/extra_gamma.i
# Additional activity coefficient in AqueousEquilibriumRxnAux AuxKernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./c]
[../]
[./gamma_a]
[../]
[./gamma_b]
[../]
[./gamma_c]
[../]
[]
[AuxKernels]
[./c]
type = AqueousEquilibriumRxnAux
variable = c
v = 'a b'
gamma_v = 'gamma_a gamma_b gamma_c'
sto_v = '1 1'
log_k = 1
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
test/tests/userobjects/mat_prop_user_object/mat_prop_user_object.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./uo_e]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./uo_reporter]
type = MatPropUserObjectAux
variable = uo_e
material_user_object = uo
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
[./material]
block = 0
type = GenericConstantMaterial
prop_names = 'e'
prop_values = 2.718281828459
[../]
[]
[UserObjects]
[./uo]
type = MaterialPropertyUserObject
mat_prop = 'e'
execute_on = timestep_end
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = uo_material
exodus = true
[]
test/tests/kernels/ad_mat_diffusion/ad_1D_transient.i
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[../]
[./dt]
type = CoefTimeDerivative
variable = T
Coefficient = 0.82064
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '0.95'
[../]
[]
[Executioner]
type = Transient
dt = 1e-2
end_time = 1
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
outputs = console
[../]
[]
[Outputs]
exodus = true
[]
tutorials/darcy_thermo_mech/step03_darcy_material/tests/kernels/darcy_pressure/darcy_pressure.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First dot for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[pressure]
type = GenericConstantMaterial
prop_values = '0.8451e-9 7.98e-4'
prop_names = 'permeability viscosity'
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/HHT_time_integrator/sm/one_element_b_0_3025_g_0_6_cubic_sm.i
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
[]
[Mesh]
file = one_element.e
# displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
# [./saved_x]
# [../]
# [./saved_y]
# [../]
# [./saved_z]
# [../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
# save_in_disp_x = saved_x
# save_in_disp_y = saved_y
# save_in_disp_z = saved_z
[../]
[]
[Kernels]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
# save_in = saved_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
# save_in = saved_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
# save_in = saved_z
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = pull
[../]
[]
[Materials]
[./constant]
type = Elastic
block = 1
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
youngs_modulus = 1.26e6
poissons_ratio = .33
thermal_expansion = 1e-5
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = '0.00023832'
[../]
[]
[Executioner]
# type = Transient
# #Preconditioned JFNK (default)
# solve_type = 'PJFNK'
# nl_rel_tol = 1e-10
# l_tol = 1e-3
# l_max_its = 100
# dt = 2e-6
# end_time = 2e-5
type = Transient
# PETSC options
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
# controls for linear iterations
# l_max_its = 80
# l_tol = 8e-3
# controls for nonlinear iterations
# nl_max_its = 10
# nl_rel_tol = 1e-4
# nl_abs_tol = 1e-7
# time control
# Time steps set up to match halden data
start_time = 0
end_time = 1
# num_steps = 5000
dtmax = 0.1
dtmin = 0.1
# control for adaptive time steping
[./TimeStepper]
type = ConstantDT
dt = 0.1
# optimal_iterations = 12
# linear_iteration_ratio = 100
# time_t = '-100 0' # direct control of time steps vs time (optional)
# time_dt = '100 900'
[../]
# [./Quadrature]
# order = THIRD
# [../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0'
y = '0.0 0.000167 0.00133 0.0045 0.010667 0.020833 0.036 0.057167 0.0853 0.1215 0.16667'
scale_factor = 1
# type = PiecewiseLinear
# data_file = wave_one_element.csv
# format = columns
[../]
[]
[Postprocessors]
# [./ref_resid_x]
# type = NodalL2Norm
# execute_on = timestep_end
# variable = saved_x
# [../]
# [./ref_resid_y]
# type = NodalL2Norm
# execute_on = timestep_end
# variable = saved_y
# [../]
# [./ref_resid_z]
# type = NodalL2Norm
# execute_on = timestep_end
# variable = saved_z
# [../]
# [./nonlinear_its]
# type = NumNonlinearIterations
# []
[./_dt]
type = TimestepSize
[../]
[./nonlinear_its]
type = NumNonlinearIterations
# [../]
# [./disp_8]
# type =
[../]
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/kinetic_rate/arrhenius.i
# Check the correct temperature dependence of the kinetic rate constant using
# the Arrhenius equation. Two kinetic reactions take place at different system
# temperatures. The Arrhenius equation states that the kinetic rate increases
# with temperature, so more mineral should be precipitated for the higher system
# temperature. In this case, the AuxVariables kinetic_rate1 and mineral1 should
# be larger than kinetic_rate0 and mineral0.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a0]
initial_condition = 0.1
[../]
[./b0]
initial_condition = 0.1
[../]
[./a1]
initial_condition = 0.1
[../]
[./b1]
initial_condition = 0.1
[../]
[]
[AuxVariables]
[./mineral0]
[../]
[./mineral1]
[../]
[./kinetic_rate0]
[../]
[./kinetic_rate1]
[../]
[]
[AuxKernels]
[./kinetic_rate0]
type = KineticDisPreRateAux
variable = kinetic_rate0
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.31434
ref_temp = 298.15
sys_temp = 298.15
sto_v = '1 1'
v = 'a0 b0'
[../]
[./kinetic_rate1]
type = KineticDisPreRateAux
variable = kinetic_rate1
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.31434
ref_temp = 298.15
sys_temp = 323.15
sto_v = '1 1'
v = 'a1 b1'
[../]
[./mineral0_conc]
type = KineticDisPreConcAux
variable = mineral0
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.31434
ref_temp = 298.15
sys_temp = 298.15
sto_v = '1 1'
v = 'a0 b0'
[../]
[./mineral1_conc]
type = KineticDisPreConcAux
variable = mineral1
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.31434
ref_temp = 298.15
sys_temp = 323.15
sto_v = '1 1'
v = 'a1 b1'
[../]
[]
[Kernels]
[./a0_ie]
type = PrimaryTimeDerivative
variable = a0
[../]
[./b0_ie]
type = PrimaryTimeDerivative
variable = b0
[../]
[./a0_r]
type = CoupledBEKinetic
variable = a0
v = mineral0
weight = 1
[../]
[./b0_r]
type = CoupledBEKinetic
variable = b0
v = mineral0
weight = 1
[../]
[./a1_ie]
type = PrimaryTimeDerivative
variable = a1
[../]
[./b1_ie]
type = PrimaryTimeDerivative
variable = b1
[../]
[./a1_r]
type = CoupledBEKinetic
variable = a1
v = mineral1
weight = 1
[../]
[./b1_r]
type = CoupledBEKinetic
variable = b1
v = mineral1
weight = 1
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 1
dt = 1
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
perf_graph = true
print_linear_residuals = true
[]
modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[Modules]
[./PhaseField]
[./DisplacementGradients]
[../]
[../]
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
file_base = nonsplit_gradderiv_out
exodus = true
[]
modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[prop_a]
family = MONOMIAL
order = CONSTANT
[]
[prop_b]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[prop_a]
type = MaterialRealAux
variable = prop_a
property = prop_a
[]
[prop_b]
type = MaterialRealAux
variable = prop_b
property = prop_b
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Materials]
[mat]
type = GenericConstantMaterial
prop_names = 'prop_a prop_b'
prop_values = '100 200'
[]
[mat2]
type = GenericConstantMaterial
prop_names = 'prop_c prop_d prop_e'
prop_values = '300 400 500'
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = NodalVariableValue
variable = u
nodeid = 0
[]
[right_bc]
type = NodalVariableValue
variable = u
nodeid = 10
[]
[prop_a]
type = ElementalVariableValue
variable = prop_a
elementid = 0
[]
[prop_b]
type = ElementalVariableValue
variable = prop_b
elementid = 0
[]
[]
[Outputs]
csv = true
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -4
xmax = 4
ymin = -4
ymax = 4
uniform_refine = 2
[]
[GlobalParams]
radius = 0.5
int_width = 0.3
x1 = 0
y1 = 0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
modules/navier_stokes/test/tests/ins/velocity_channel/velocity_inletBC_no_parts.i
# This input file tests outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
integrate_p_by_parts = false
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = top_right
coord = '3 1'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'left'
function = 'inlet_func'
[../]
[./p_corner]
# Since the pressure is not integrated by parts in this example,
# it is only specified up to a constant by the natural outflow BC.
# Therefore, we need to pin its value at a single location.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * (y - 0.5)^2 + 1'
[../]
[]
modules/chemical_reactions/test/tests/jacobian/2species.i
# Tests the Jacobian when no secondary species are present
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
max = 10
min = 1
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./pressure]
type = DarcyFluxPressure
variable = pressure
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i
# Basic example coupling a master and sub app in a 3D cylindrical mesh from an input file
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable, the recommended approach.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/chemical_reactions/test/tests/jacobian/coupled_diffreact.i
# Test the Jacobian terms for the CoupledDiffusionReactionSub Kernel
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
min = 1
max = 5
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[Kernels]
[./diff]
type = DarcyFluxPressure
variable = pressure
[../]
[./diff_b]
type = Diffusion
variable = b
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = 2
weight = 2
sto_v = 1.5
sto_u = 2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
location = OUTSIDE
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/bridge/bridge_large_strain.i
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_steel stress strain elasticity_tensor_steel'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 1
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_Newmark/wave_bc_1d.i
# Wave propogation in 1-D using Newmark time integration in the
# presence of Rayleigh damping
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the
# other end. beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh
# damping coefficients, respectively. The equation of motion in terms
# of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = false
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
use_displaced_mesh = false
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
use_displaced_mesh = false
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
use_displaced_mesh = false
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 1.0
poissons_ratio = 0.0
[../]
[./constant_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./constant_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = '0'
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
# l_tol = 1e-8
# nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/porous_flow/examples/tidal/atm_tides_open_hole.i
# A 100m x 10m "slab" of height 100m is subjected to cyclic pressure at its top
# Assumptions:
# the boundaries are impermeable, except the top boundary
# only vertical displacement is allowed
# the atmospheric pressure sets the total stress at the top of the model
# at the slab left-hand side there is a borehole that taps into the base of the slab.
[Mesh]
[./the_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 10
xmin = 0
xmax = 100
ymin = -5
ymax = 5
zmin = -100
zmax = 0
[../]
[./bh_back]
type = ExtraNodesetGenerator
coord = '0 -5 -100'
input = the_mesh
new_boundary = 11
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.6
multiply_by_density = false
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E11
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = '-10000*z' # this is only approximately correct
[../]
[]
[Functions]
[./ini_stress_zz]
type = ParsedFunction
value = '(25000 - 0.6*10000)*z' # remember this is effective stress
[../]
[./cyclic_porepressure]
type = ParsedFunction
value = 'if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[../]
[./cyclic_porepressure_at_depth]
type = ParsedFunction
value = '-10000*z + if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[../]
[./neg_cyclic_porepressure]
type = ParsedFunction
value = '-if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[../]
[]
[BCs]
# zmin is called 'back'
# zmax is called 'front'
# ymin is called 'bottom'
# ymax is called 'top'
# xmin is called 'left'
# xmax is called 'right'
[./no_x_disp]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_x=0 everywhere
[../]
[./no_y_disp]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_y=0 everywhere
[../]
[./no_z_disp_at_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./pp]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure
boundary = front
[../]
[./pp_downhole]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure_at_depth
boundary = 11
[../]
[./total_stress_at_top]
type = FunctionNeumannBC
variable = disp_z
function = neg_cyclic_porepressure
boundary = front
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
gravity = '0 0 -10'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 10.0E9 # drained bulk modulus
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 0 0 0 ini_stress_zz'
eigenstrain_name = ini_stress
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500.0
[../]
[]
[Postprocessors]
[./p0_0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./p100_0]
type = PointValue
outputs = csv
point = '100 0 0'
variable = porepressure
[../]
[./p0_100]
type = PointValue
outputs = csv
point = '0 0 -100'
variable = porepressure
[../]
[./p100_100]
type = PointValue
outputs = csv
point = '100 0 -100'
variable = porepressure
[../]
[./uz0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = disp_z
[../]
[./uz100]
type = PointValue
outputs = csv
point = '100 0 0'
variable = disp_z
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = -3600
dt = 3600
end_time = 172800
nl_rel_tol = 1E-10
nl_abs_tol = 1E-5
[]
[Outputs]
print_linear_residuals = false
csv = true
[]
modules/navier_stokes/test/tests/ins/jeffery_hamel/wedge_natural.i
# This input file solves the Jeffery-Hamel problem with the exact
# solution's outlet BC replaced by a natural BC. This problem does
# not converge to the analytical solution, although the flow at the
# outlet still "looks" reasonable.
[GlobalParams]
gravity = '0 0 0'
# Params used by the WedgeFunction for computing the exact solution.
# The value of K is only required for comparing the pressure to the
# exact solution, and is computed by the associated jeffery_hamel.py
# script.
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
file = wedge_8x12.e
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
[]
[BCs]
[./vel_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'inlet'
function = 'vel_x_exact'
[../]
[./vel_y_inlet]
type = FunctionDirichletBC
variable = vel_y
boundary = 'inlet'
function = 'vel_y_exact'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_NEWTON]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
[Functions]
[./f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# function below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[../]
[./vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[../]
[./vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[../]
[]
modules/phase_field/test/tests/free_energy_material/MathFreeEnergy_split.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0.0
xmax = 30.0
ymin = 0.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./w]
[../]
[]
[Preconditioning]
active = 'SMP'
[./PBP]
type = PBP
solve_order = 'w c'
preconditioner = 'AMG ASM'
off_diag_row = 'c '
off_diag_column = 'w '
[../]
[./SMP]
type = SMP
coupled_groups = 'c,w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 0
secondary = 2
translation = '0 30.0 0'
[../]
[./left_right]
primary = 1
secondary = 3
translation = '-30.0 0 0'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[./free_energy]
type = MathFreeEnergy
f_name = F
c = c
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
test/tests/materials/derivative_material_interface/const.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[AuxVariables]
[./dummy]
[../]
[]
[Materials]
[./provider]
type = DerivativeMaterialInterfaceTestProvider
block = 0
[../]
[./client]
type = DerivativeMaterialInterfaceTestClient
prop_name = prop
block = 0
outputs = exodus
[../]
[./client2]
type = DerivativeMaterialInterfaceTestClient
prop_name = 1.0
block = 0
outputs = exodus
[../]
[./dummy]
type = GenericConstantMaterial
prop_names = prop
block = 0
prop_values = 0
[../]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = SimpleACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/semiconductor_linear_conductivity/steinhart-hart_linear.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 1.0
ymax = 1.0
[]
[Variables]
[./T]
initial_condition = 400.0 # unit in Kelvin only!!
[../]
[]
[AuxVariables]
[./elec_conduct]
order = FIRST
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = HeatConduction
variable = T
[../]
[]
[AuxKernels]
[./elec_conduct]
type = MaterialRealAux
variable = elec_conduct
property = electrical_conductivity
execute_on = timestep_end
[../]
[]
[BCs]
[./inlet]
type = DirichletBC
variable = T
boundary = left
value = 1000 # K
[../]
[./outlet]
type = DirichletBC
variable = T
boundary = right
value = 400 # K
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '10' # in W/mK
[../]
[./sigma]
type = SemiconductorLinearConductivity
temp = T
sh_coeff_A = 0.002
sh_coeff_B = 0.001
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'T elec_conduct'
start_point = '0 0. 0'
end_point = '1.0 0. 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
execute_on = 'initial timestep_end'
csv = true
[]
test/tests/vectorpostprocessors/material_vector_postprocessor/boundary-err.i
# check that simulation terminates with an error when trying to use the
# postprocessor on a boundary material.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 42'
boundary = 'left'
[../]
[]
[VectorPostprocessors]
[./vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '3 4 7 42 88'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
test/tests/materials/multiple_materials/multiple_materials_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./diff1]
order = CONSTANT
family = MONOMIAL
[../]
[./diff2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff1]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./diff2]
type = DiffMKernel
variable = v
mat_prop = diff2
[../]
[]
[AuxKernels]
[./diff1]
type = MaterialRealAux
variable = diff1
property = diff1
[../]
[./diff2]
type = MaterialRealAux
variable = diff2
property = diff2
[../]
[]
[BCs]
# Mesh Generation produces boundaries in counter-clockwise fashion
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Materials]
[./dm1]
type = GenericConstantMaterial
block = 0
prop_names = 'diff1'
prop_values = '2'
[../]
[./dm2]
type = GenericConstantMaterial
block = 0
prop_names = 'diff2'
prop_values = '4'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/chemical_reactions/test/tests/exceptions/missing_gamma2.i
# Missing activity coefficient in CoupledBEEquilibriumSub Kernel
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[./c]
[../]
[]
[AuxVariables]
[./gamma_a]
[../]
[./gamma_b]
[../]
[./gamma_c]
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./c_ie]
type = PrimaryTimeDerivative
variable = c
[../]
[./aeq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 1
weight = 2
sto_u = 2
v = 'b c'
sto_v = '1 1'
gamma_v = gamma_b
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.2
[../]
[]
[Executioner]
type = Transient
end_time = 1
[]
modules/tensor_mechanics/test/tests/jacobian/inertial_torque.i
# Check of the InertialTorque Jacobian
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
gamma = 0.4
beta = 0.4
alpha = 0.1
eta = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
[../]
[./disp_y]
type = RandomIC
variable = disp_y
[../]
[./disp_z]
type = RandomIC
variable = disp_z
[../]
[./vel_x]
type = RandomIC
variable = vel_x
[../]
[./vel_y]
type = RandomIC
variable = vel_y
[../]
[./vel_z]
type = RandomIC
variable = vel_z
[../]
[./accel_x]
type = RandomIC
variable = accel_x
[../]
[./accel_y]
type = RandomIC
variable = accel_y
[../]
[./accel_z]
type = RandomIC
variable = accel_z
[../]
[]
[Kernels]
[./icm_x]
type = InertialTorque
component = 0
variable = disp_x
[../]
[./icm_y]
type = InertialTorque
component = 1
variable = disp_y
[../]
[./icm_z]
type = InertialTorque
component = 2
variable = disp_z
[../]
[]
[AuxKernels]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 3.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/heat_conduction/test/tests/parallel_element_pps_test/parallel_element_pps_test.i
[Mesh]
file = block_map.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'heat ie'
[./heat]
type = HeatConduction
variable = u
[../]
[./ie]
type = SpecificHeatConductionTimeDerivative
variable = u
[../]
[]
[BCs]
active = 'bottom top'
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Postprocessors]
active = 'p_1 p_2 p_3 p_all'
[./p_1]
type = ElementIntegralVariablePostprocessor
variable = u
block = '1'
[../]
[./p_2]
type = ElementIntegralVariablePostprocessor
variable = u
block = '2'
[../]
[./p_3]
type = ElementIntegralVariablePostprocessor
variable = u
block = '3'
[../]
[./p_all]
type = ElementIntegralVariablePostprocessor
variable = u
block = '1 2 3'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0'
[../]
[./constant2]
type = GenericConstantMaterial
block = 2
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.8 0.8 0.8'
[../]
[./constant3]
type = GenericConstantMaterial
block = 3
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '5 5 5'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Nonconserved.i
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/conserved_noise/normal.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 10.0
ymin = 0.0
ymax = 10.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Kernels]
[./cres]
type = SplitCHMath
variable = c
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./conserved_langevin]
type = ConservedLangevinNoise
amplitude = 0.5
variable = w
noise = normal_noise
[]
[]
[BCs]
[./Periodic]
[./all]
variable = 'c w'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[]
[UserObjects]
[./normal_noise]
type = ConservedNormalNoise
[../]
[]
[Postprocessors]
[./total_c]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial timestep_end'
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 30
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
dt = 10.0
num_steps = 4
[]
[Outputs]
file_base = normal
exodus = true
[./csv]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pulled
# downwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = max(-10*t,-10)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 1E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
num_steps = 8
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_and_shear
exodus = true
csv = true
[]
test/tests/materials/discrete/recompute.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false # make this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/test/tests/phase_field_kernels/SplitCahnHilliard.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the SplitCHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_Cu_Split_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 60
ymin = 0
ymax = 60
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = -0.5
int_width = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '100 40'
[../]
[./free_energy]
# equivalent to `MathFreeEnergy`
type = DerivativeParsedMaterial
f_name = F
args = 'c'
function = '0.25*(1+c)^2*(1-c)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/porous_flow/examples/coal_mining/coarse_with_fluid.i
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
input = file
[../]
[./xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[../]
[./ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[../]
[./ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[../]
[./zmax]
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
input = ymax
[../]
[./zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsBetweenSubdomainsGenerator
master_block = 3
paired_block = 1
input = excav
new_boundary = roof
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./porepressure]
scaling = 1E-5
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = porepressure
fluid_component = 0
[../]
[]
[AuxVariables]
[./saturation]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_x]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_y]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_z]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[../]
[./darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[../]
[./darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[../]
[./perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[../]
[./perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[../]
[./roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[../]
[./roof_bcs]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[../]
[./ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[../]
[./ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[./roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[../]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[../]
[./permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[../]
[./permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[../]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[./min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[../]
[./max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = perm_zz
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
# petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
# petsc_options_value = ' lu mumps'
# best if you do not have mumps:
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
# best if you do not have mumps or superlu_dist:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.014706
end_time = 0.014706 #0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./elastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./plastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./uncracked_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy vonmises_stress'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./elastic_strain_yy]
type = RankTwoAux
variable = elastic_strain_yy
rank_two_tensor = uncracked_elastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./plastic_strain_yy]
type = RankTwoAux
variable = plastic_strain_yy
rank_two_tensor = uncracked_plastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./uncracked_stress_yy]
type = RankTwoAux
variable = uncracked_stress_yy
rank_two_tensor = uncracked_stress
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.001 0.003 0.023'
y = '0.85 1.0 1.25 1.5'
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 5e-3'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 0.85
hardening_function = hf
base_name = uncracked
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./av_uncracked_stress_yy]
type = ElementAverageValue
variable = uncracked_stress_yy
[../]
[./max_c]
type = ElementExtremeValue
variable = c
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2.0e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Wave_1_D/Rayleigh_HHT/wave_bc_1d.i
# Wave propogation in 1-D using HHT time integration in the presence
# of Rayleigh damping
#
# The test is for an 1-D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the
# other end. alpha, beta and gamma are HHT time integration
# parameters eta and zeta are mass dependent and stiffness dependent
# Rayleigh damping coefficients, respectively. The equation of motion
# in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)+(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = false
zeta = 0.1
alpha = -0.3
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
use_displaced_mesh = false
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
use_displaced_mesh = false
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
use_displaced_mesh = false
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./constant]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 1.0
poissons_ratio = 0.0
[../]
[./constant_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./constant_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = '0'
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
dtmax = 0.1
dtmin = 0.1
l_tol = 1e-8
nl_rel_tol = 1e-8
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.001 1 0.001 0.0 0.0'
scale_factor = 7750
[../]
[./displacement_ic]
type = PiecewiseLinear
axis = y
x = '0.0 0.3 0.4 0.5 0.6 0.7 1.0'
y = '0.0 0.0 0.0001 1.0 0.0001 0.0 0.0'
scale_factor = 0.1
[../]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = true
perf_graph = true
[]
test/tests/mesh_modifiers/subdomain_bounding_box/oriented_subdomain_bounding_box_inside.i
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -6
xmax = 4
nx = 10
ymin = -2
ymax = 10
ny = 12
zmin = -5
zmax = 7
nz = 12
[]
[MeshModifiers]
[./subdomains]
type = OrientedSubdomainBoundingBox
center = '-1 4 1'
width = 5
length = 10
height = 4
width_direction = '2 1 0'
length_direction = '-1 2 2'
block_id = 10
location = INSIDE
[../]
[]
[Problem]
type = FEProblem
solve = false
kernel_coverage_check = false
[]
[Variables]
[./u]
[../]
[]
[Materials]
[./mat10]
type = GenericConstantMaterial
block = 10
outputs = all
prop_values = 6.24
prop_names = prop
[../]
[./mat0]
type = GenericConstantMaterial
block = 0
prop_names = prop
prop_values = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/parser/kinetic_action.i
# Test SolidKineticReactions parser
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
initial_condition = 0.1
[../]
[./b]
initial_condition = 0.1
[../]
[./c]
initial_condition = 0.1
[../]
[./d]
initial_condition = 0.1
[../]
[]
[ReactionNetwork]
[./SolidKineticReactions]
primary_species = 'a b c d'
secondary_species = 'm1 m2 m3'
kin_reactions = '(1.0)a + (1.0)b = m1,
2c + 3d = m2,
a - 2c = m3'
log10_keq = '-8 -8 -8'
specific_reactive_surface_area = '1 2 3'
kinetic_rate_constant = '1e-8 2e-8 3e-8'
activation_energy = '1e4 2e4 3e4'
gas_constant = 8.314
reference_temperature = '298.15 298.15 298.15'
system_temperature = '298.15 298.15 298.15'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./c_ie]
type = PrimaryTimeDerivative
variable = c
[../]
[./d_ie]
type = PrimaryTimeDerivative
variable = d
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = porosity
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 1
l_tol = 1e-10
nl_rel_tol = 1e-10
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kinetic_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = RandomIC
variable = pressure
min = -1
max = 1
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = -1
max = 1
block = centre_block
[../]
[]
[Kernels]
[./p_dot] # this is just so a kernel is defined everywhere
type = TimeDerivative
variable = pressure
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./nothing] # when any block contains a material, all blocks need to
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
prop_names = ''
prop_values = ''
[../]
[./langmuir_params]
type = MollifiedLangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813E-10
one_over_adsorption_time_const = 0.813E-10
langmuir_density = 2.34
langmuir_pressure = 1.5
pressure_var = pressure
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac2
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./elastic]
type = ComputeFiniteStrainElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-5
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 3e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC_3D.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmax = 50
ymax = 50
zmax = 50
elem_type = HEX8
[]
[Variables]
[./c]
[../]
[]
[ICs]
[./c]
type = SmoothSuperellipsoidIC
variable = c
x1 = 25.0
y1 = 25.0
z1 = 25.0
a = 8
b = 12
c = 16
n = 3.5
invalue = 1.0
outvalue = 0
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./Diffusion]
type = MatDiffusion
variable = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/initial_conditions/SmoothCircleIC_3D.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmax = 50
ymax = 50
zmax = 50
elem_type = HEX8
[]
[Variables]
[./c]
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 12
invalue = 1.0
outvalue = 0
int_width = 12
3D_spheres = false
z1 = 25
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./Diffusion]
type = MatDiffusion
variable = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[slave_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "slave_x"
[]
[master_x]
input = slave_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "master_x"
[]
[slave_y]
input = master_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "slave_y"
[]
[master_y]
input = slave_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "master_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/chemical_reactions/test/tests/solid_kinetics/2species.i
# Simple reaction-diffusion example to illustrate the use of the SolidKineticReactions
# action.
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate. The kinetic reaction is specified in the SolidKineticReactions block as:
#
# kin_reactions = '(1.0)a+(1.0)b=mineral'
#
# where a and b are the primary species (reactants), mineral is the precipitate,
# and the values in the parentheses are the stoichiometric coefficients for each
# species in the kinetic reaction.
#
# The SolidKineticReactions action creates all the required kernels and auxkernels
# to compute the reaction given by the above kinetic reaction equation.
#
# Specifically, it adds to following:
# * An AuxVariable named 'mineral' (given in the RHS of the kinetic reaction)
# * A KineticDisPreConcAux AuxKernel for this AuxVariable with all parameters
# * A CoupledBEKinetic Kernel for each primary species with all parameters
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 40
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./b]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[]
[ReactionNetwork]
[./SolidKineticReactions]
primary_species = 'a b'
secondary_species = mineral
kin_reactions = 'a + b = mineral'
log10_keq = '-6'
specific_reactive_surface_area = '1.0'
kinetic_rate_constant = '1.0e-8'
activation_energy = '1.5e4'
gas_constant = 8.314
reference_temperature = '298.15'
system_temperature = '298.15'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_pd]
type = PrimaryDiffusion
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_pd]
type = PrimaryDiffusion
variable = b
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = DirichletBC
variable = a
preset = false
boundary = right
value = 0
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 0
[../]
[./b_right]
type = DirichletBC
variable = b
preset = false
boundary = right
value = 1.0e-2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '5e-4 4e-3 0.4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 50
dt = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
modules/chemical_reactions/test/tests/jacobian/2species_equilibrium_with_density.i
# Tests the Jacobian when equilibrium secondary species are present including density
# in flux calculation
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[../]
[./b]
order = FIRST
family = LAGRANGE
[../]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = RandomIC
variable = pressure
max = 5
min = 1
[../]
[./a]
type = RandomIC
variable = a
max = 1
min = 0
[../]
[./b]
type = RandomIC
variable = b
max = 1
min = 0
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2
a + b = pab 2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
gravity = '0 -10 0'
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
gravity = '0 -10 0'
[../]
[./pressure]
type = DarcyFluxPressure
variable = pressure
gravity = '0 -10 0'
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity density'
prop_values = '1e-4 1e-4 0.2 10'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1
[]
[Outputs]
perf_graph = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
test/tests/vectorpostprocessors/material_vector_postprocessor/block-restrict-err.i
# check that the simulation terminates with an error when you try to use this
# on an element that isn't available/computed on a particular block.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 42'
[../]
[]
[VectorPostprocessors]
[./vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '2112'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
test/tests/materials/boundary_material/elem_aux_bc_on_bnd.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 1
ny = 3
[]
[AuxVariables]
[./foo]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
[./temp]
initial_condition = 1
[../]
[]
[AuxKernels]
[./copy_bar]
type = MaterialRealAux
property = bar
variable = foo
boundary = right
execute_on = timestep_end
[../]
[]
[Kernels]
[./heat]
type = CoefDiffusion
variable = temp
coef = 1
[../]
[]
[BCs]
[./leftt]
type = DirichletBC
boundary = left
value = 2
variable = temp
[../]
[]
[Materials]
[./thermal_cond]
type = GenericConstantMaterial
prop_names = 'bar'
prop_values = '1'
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pushed
# upwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = min(10*t,1)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.5E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 0.5
dt = 0.1
type = Transient
[]
[Outputs]
file_base = push_and_shear
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first and third frequencies of this beam are:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho)
# f2 = 6.268 f1
# This implies that the corresponding time period of this beam are 2.858 s and 0.455s
# The FEM solution for this beam with 10 element gives time periods of 2.856 s and 0.4505s with a time step of 0.01.
# A smaller time step is required to obtain a closer match for the lower time periods/higher frequencies.
# A higher time step of 0.05 is used in this test to reduce testing time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0 0.0 0.0 0.0
# 0.05 0.0016523559162602 0.066094236650407 2.6437694660163
# 0.1 0.0051691308901533 0.07457676230532 -2.3044684398197
# 0.15 0.0078956772343372 0.03448509146203 4.7008016060883
# 0.2 0.0096592517031463 0.03605788729033 -0.63788977295649
# 0.25 0.011069233444348 0.020341382357756 0.0092295756535376
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
dim = 1
nx = 10
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.05 0.1 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.05
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The number of x and y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in x and z
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/tensor_mechanics/test/tests/gravity/gravity_test.i
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[Mesh]
type = GeneratedMesh
dim = 3
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./gravity_y]
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2.0387
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5c_outflow.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[steel]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/heat_conduction/test/tests/heat_conduction_ortho/heat_conduction_ortho.i
#
# Three independent cubes are thermally loaded, one in x, one in y, and one in z.
# Each direction has a different thermal conductivity, resulting in a different
# temperature at the side with the Neumann bc.
#
# For x: 100/1000 = 1e-1
# For y: 100/100 = 1e+0
# for z: 100/10 = 1e+1
#
[Mesh]
file = heat_conduction_ortho.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat]
type = AnisoHeatConduction
variable = temp
[../]
[]
[BCs]
[./temps]
type = DirichletBC
variable = temp
boundary = 1
value = 0
[../]
[./neum]
type = NeumannBC
variable = temp
boundary = 2
value = 100
[../]
[]
[Materials]
[./heat]
type = AnisoHeatConductionMaterial
block = 1
specific_heat = 0.116
thermal_conductivity_x_pp = tcx
thermal_conductivity_y_pp = tcy
thermal_conductivity_z_pp = tcz
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = 0.283
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[]
[Outputs]
exodus = true
hide = 'tcx tcy tcz'
[]
[Postprocessors]
[./tcx]
type = FunctionValuePostprocessor
function = 1000
outputs = none
execute_on = 'initial timestep_end'
[../]
[./tcy]
type = FunctionValuePostprocessor
function = 100
outputs = none
execute_on = 'initial timestep_end'
[../]
[./tcz]
type = FunctionValuePostprocessor
function = 10
outputs = none
execute_on = 'initial timestep_end'
[../]
[]
test/tests/restrictable/check_error/check_error.i
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
test/tests/materials/material/material_check_test.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[./block_1]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '0.5 0.5 0'
bottom_left = '0 0 0'
block_id = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./mat]
type = MaterialRealAux
variable = mat
property = prop
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 3
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
block = 1
prop_names = prop
prop_values = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
test/tests/materials/material/three_coupled_mat_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = a
[../]
[./conv]
type = MatConvection
variable = u
x = 1
y = 0
mat_prop = b
[../]
[]
[BCs]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[]
[Materials]
[./matA]
type = CoupledMaterial
block = 0
mat_prop = 'a'
coupled_mat_prop = 'b'
[../]
[./matB]
type = CoupledMaterial
block = 0
mat_prop = 'b'
coupled_mat_prop = 'c'
[../]
[./matC]
type = CoupledMaterial
block = 0
mat_prop = 'c'
coupled_mat_prop = 'd'
[../]
[./matD]
type = GenericConstantMaterial
block = 0
prop_names = 'd'
prop_values = '2'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_three
exodus = true
[]
test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[../]
[]
[InterfaceKernels]
active = 'interface'
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = v
boundary = master0_interface
D = 'D'
D_neighbor = 'D'
[../]
[./penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = master0_interface
penalty = 1e6
[../]
[]
[BCs]
active = 'left right middle'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[./middle]
type = MatchedValueBC
variable = v
boundary = 'master0_interface'
v = u
[../]
[]
[Materials]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = master0_interface
[../]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
modules/solid_mechanics/examples/bridge/bridge_large_strain.i
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[GlobalParams]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[]
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = ../../../tensor_mechanics/examples/bridge/bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[SolidMechanics]
[./solid]
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = MaterialTensorAux
variable = von_mises
tensor = stress
execute_on = timestep_end
quantity = VonMises
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
[./steel_elastic]
type = Elastic
block = 1
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
formulation = Nonlinear3D
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 1
[]
[Outputs]
[./exodus]
#Outputs the result to an exodus file and converts the element stress output to a nodal output
type = Exodus
elemental_as_nodal = true
[../]
[]
test/tests/materials/declare_overlap/error.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./all]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '2 2.5 2.468'
block = ANY_BLOCK_ID
outputs = all
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/solid_mechanics/examples/bridge/bridge.i
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[GlobalParams]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[]
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = ../../../tensor_mechanics/examples/bridge/bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[SolidMechanics]
[./solid]
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = MaterialTensorAux
variable = von_mises
tensor = stress
execute_on = timestep_end
quantity = VonMises
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
[./steel_elastic]
type = Elastic
block = 1
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
formulation = Linear
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
[]
[Outputs]
[./exodus]
#Outputs the result to an exodus file and converts the element stress output to a nodal output
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_test.i
#
# Test the TotalFreeEnergy auxkernel, which outputs both the sum of the bulk and interfacial free energies. This test has only one variable.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
nz = 0
xmin = 0
xmax = 250
ymin = 0
ymax = 250
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_free_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = SmoothCircleIC
variable = c
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 30.0
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_free_energy
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1e-3 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_free_energy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 6
dt = 200
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/ADCHSoretDiffusion/simple_transient_diffusion_with_soret.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[AuxVariables]
[./T]
[./InitialCondition]
type = RampIC
value_left = 900
value_right = 1000
[../]
[../]
[]
[Kernels]
[./conc]
type = ADCHSplitConcentration
variable = c
chemical_potential_var = mu
mobility = chemical_mobility_prop
[../]
[./chempot]
type = ADCHSplitChemicalPotential
variable = mu
chemical_potential = mu_prop
[../]
[./soret]
type = ADCHSoretMobility
variable = c
T = T
mobility = thermal_mobility_prop
[../]
[./time]
type = ADTimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = ADPiecewiseLinearInterpolationMaterial
property = mu_prop
variable = c
x = '0 1'
y = '0 1'
[../]
[./chemical_mobility_prop]
type = GenericConstantMaterial
prop_names = chemical_mobility_prop
prop_values = 0.1
[../]
[./thermal_mobility_prop]
type = GenericConstantMaterial
prop_names = thermal_mobility_prop
prop_values = -20
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 2'
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain_action.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_normal_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = MultiSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
bubspac = 30.0 # This spacing is from bubble center to bubble center
numbub = 10
radius = 10.0
int_width = 12.0
rand_seed = 2000
radius_variation = 2 #This is the standard deviation
radius_variation_type = normal
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -2
xmax = 2
ymin = -2
ymax = 2
uniform_refine = 2
[]
[GlobalParams]
x1 = -2
y1 = -2
x2 = 2
y2 = -1.5
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
#Temperature
[./T]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[./T]
type = FunctionAux
function = 95.0+2.0*(y-1.0*t)
variable = T
execute_on = 'initial timestep_begin'
[../]
[]
[ICs]
[./w]
type = BoundingBoxIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outside = -4.0
inside = 0.0
[../]
[./etaa0]
type = BoundingBoxIC
variable = etaa0
#Solid phase
outside = 0.0
inside = 1.0
[../]
[./etab0]
type = BoundingBoxIC
variable = etab0
#Liquid phase
outside = 1.0
inside = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w T'
f_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 100.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 3
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
test/tests/userobjects/layered_side_integral/layered_side_flux_average.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_side_flux_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./lsfa]
type = SpatialUserObjectAux
variable = layered_side_flux_average
boundary = top
user_object = layered_side_flux_average
[../]
[]
[Materials]
[./gcm]
type = GenericConstantMaterial
prop_values = 2
prop_names = diffusivity
boundary = 'right top'
[../]
[]
[UserObjects]
[./layered_side_flux_average]
type = LayeredSideFluxAverage
direction = y
diffusivity = diffusivity
num_layers = 1
variable = u
execute_on = linear
boundary = top
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
enable_jit = true
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etaa0dot_int]
type = AntitrappingCurrent
variable = w
v = etaa0
f_name = rhodiff
[../]
[./coupled_etab0dot_int]
type = AntitrappingCurrent
variable = w
v = etab0
f_name = rhodiff
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./int]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhodiff
material_property_names = 'rhoa rhob'
constant_names = 'int_width'
constant_expressions = '0.8'
function = 'int_width*(rhob-rhoa)'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_begin'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_begin'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.5
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed linear level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0000064
# 0.6 520 520.0000323
# 0.8 560 560.0000896
# 1.0 600 600.0001870
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+200)'
[../]
[./ls_func]
type = ParsedFunction
value = '1-(x-0.04)-0.2*t'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
Child Objects
test/include/materials/IncrementMaterial.h
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "GenericConstantMaterial.h"
/**
* A material that tracks the number of times computeQpProperties has been called.
*/
class IncrementMaterial : public GenericConstantMaterial
{
public:
static InputParameters validParams();
IncrementMaterial(const InputParameters & parameters);
protected:
virtual void computeQpProperties() override;
unsigned int _inc;
MaterialProperty<Real> & _mat_prop;
};