- argsArguments of F() - use vector coupling
C++ Type:std::vector
Description:Arguments of F() - use vector coupling
ElasticEnergyMaterial
Free energy material for the elastic energy contributions.
This material generates an elastic free energy contribution consistent with the TensorMechanics stress divergence kernels. This allows for proper coupling of the phase field problem and the mechanics problem. The contribution of the ElasticEnergyMaterial
and the chemical free energy (possibly defined using a DerivativeParsedMaterial
) are then summed up using a DerivativeSumMaterial
to form a _total free energy_ which is passed to the phase field kernels.
The ElasticEnergyMaterial
applies a _linear_ elasticity model. It couples in the strain and the elasticity tensor to compute the elastic energy
The material utilizes the derivatives of and to provide the derivatives of , which are required by the phase field equations.
[Materials]
# material subblocks that define stress and elasticity tensor properties
# (and necessary derivatives) are omitted
[./elasticenergy]
type = ElasticEnergyMaterial
args = 'c'
[../]
[]
Input Parameters
- base_nameMaterial property base name
C++ Type:std::string
Options:
Description:Material property base name
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE ELEMENT SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- derivative_order3Maximum order of derivatives taken (2 or 3)
Default:3
C++ Type:unsigned int
Options:
Description:Maximum order of derivatives taken (2 or 3)
- displacement_gradientsVector of displacement gradient variables (see Modules/PhaseField/DisplacementGradients action)
C++ Type:std::vector
Options:
Description:Vector of displacement gradient variables (see Modules/PhaseField/DisplacementGradients action)
- f_nameFBase name of the free energy function (used to name the material properties)
Default:F
C++ Type:std::string
Options:
Description:Base name of the free energy function (used to name the material properties)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
- modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i
- modules/combined/examples/phase_field-mechanics/Pattern1.i
- modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
- modules/combined/examples/mortar/eigenstrain_action.i
- modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
- modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- modules/combined/examples/periodic_strain/global_strain_pfm.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
- modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
- modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/combined/examples/mortar/eigenstrain.i
- modules/combined/examples/phase_field-mechanics/Nonconserved.i
modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cvbubinit cvmatrixinit'
vals = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cgbubinit cgmatrixinit'
vals = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
function = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
f_name = fb
args = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
function = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
f_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
args = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
f_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
function = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
f_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
function = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
f_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
function = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
f_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
function = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[Modules]
[./PhaseField]
[./DisplacementGradients]
[../]
[../]
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
file_base = nonsplit_gradderiv_out
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Pattern1.i
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 250
ymax = 250
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./c]
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./dummy]
type = MatDiffusion
variable = c
diffusivity = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[./elasticenergy]
type = ElasticEnergyMaterial
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain_action.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = eta
args = 'eta'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/combined/examples/periodic_strain/global_strain_pfm.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[./gxx]
[../]
[./gxy]
[../]
[./gyx]
[../]
[./gyy]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[./gxx]
type = GradientComponent
variable = gxx
v = disp_x
component = 0
[../]
[./gxy]
type = GradientComponent
variable = gxy
v = disp_x
component = 1
[../]
[./gyx]
type = GradientComponent
variable = gyx
v = disp_y
component = 0
[../]
[./gyy]
type = GradientComponent
variable = gyy
v = disp_y
component = 1
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./straingradderiv]
type = StrainGradDispDerivatives
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
f_name = var_dep1
args = 'eta1'
function = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
f_name = var_dep2
args = 'eta2'
function = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[slave_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "slave_x"
[]
[master_x]
input = slave_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "master_x"
[]
[slave_y]
input = master_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "slave_y"
[]
[master_y]
input = slave_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "master_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/examples/phase_field-mechanics/Nonconserved.i
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]