- functionFParser function expression for the phase free energy
C++ Type:std::string
Description:FParser function expression for the phase free energy
DerivativeParsedMaterial
Parsed Function Material with automatic derivatives.
This material class does everything the ParsedMaterial
does, plus automatic symbolic differentiation of the function expression. The function material property derivatives follow a naming scheme defined in DerivativeMaterialPropertyNameInterface
. The maximum order of derivatives generated is set using the derivative_order
parameter.
Only required derivatives will be evaluated (e.g. the split operator kernel does not require third order derivatives. Second-order derivatives are only required for the Jacobian, as discussed here).
Non linear and auxiliary variables declared in the args
parameter, constants declared in constant_names
and constant_expressions
and material properties declared in material_property_names
may be used in the parsed function expression. Note that the constants can be defined using parsed expressions as long as these expressions only use numbers and/or constants already defined to the left of the current constant, line in this example:
constant_names = 'T kB E'
constant_expressions = '300 8.6173e-5 T*kB'
where E
can be defined in terms of T
and kB
, as those constants are to the left of E
.
If a material property M
is listed in material_property_names
a special syntax (M(c1,c2)
where c1
and c2
are variables) can be used to declare variable dependences as well as selecting derivatives of material properties (for example, d2M:=D[M(c1,c2),c2,c2]
would make the second derivative of M
with respect to c2
available as d2M
in the parsed function expression). If variable dependencies are declared, the necessary derivatives of the coupled material properties will be automatically pulled in when constructing the derivatives of the parsed function.
In phase field, an application would be the definition of a mobility term
containing the second derivative of a free energy as
[./mob]
type = DerivativeParsedMaterial
args = c
f_name = M
material_property_names = 'd2F:=D[F(c),c,c]'
constant_names = D
constant_expressions = 1e-3
function = D/d2F
[../]
The mobility defined above would have accurately constructed automatic derivatives w.r.t. , which contain third and higher derivatives of (make sure to set the derivative_order
of F high enough!).
The material_property_names
are parsed by the FunctionMaterialPropertyDescriptor
class, which understands the following syntax:
Expression | Description |
---|---|
F | A material property called _F_ with no declared variable dependencies (i.e. vanishing derivatives)| |
|F(c,phi) | A material property called _F_ with declared dependence on 'c' and 'phi' (uses DerivativeFunctionMaterial rules to look up the derivatives) using the round-bracket-notation| |
|d3x:=D[x(a,b),a,a,b] | The third derivative \frac{\partial3x}{\partial2a\partial b} of the a,b-dependent material property _x_, which will be referred to as d3x in the function expression| |
|dF:=D[F,c] | Derivative of _F_ w.r.t. _c_. Although the c-dependence of _F_ is not explicitly declared using the round-bracket-notation it is implicitly assumed as a derivative w.r.t. _c_ is requested| |
Add outputs=exodus
to the material block to automatically write all derivatives and the free energy to the exodus output.
Input Parameters
- argsArguments of F() - use vector coupling
C++ Type:std::vector
Options:
Description:Arguments of F() - use vector coupling
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_expressionsVector of values for the constants in constant_names (can be an FParser expression)
C++ Type:std::vector
Options:
Description:Vector of values for the constants in constant_names (can be an FParser expression)
- constant_namesVector of constants used in the parsed function (use this for kB etc.)
C++ Type:std::vector
Options:
Description:Vector of constants used in the parsed function (use this for kB etc.)
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE ELEMENT SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- derivative_order3Maximum order of derivatives taken
Default:3
C++ Type:unsigned int
Options:
Description:Maximum order of derivatives taken
- f_nameFBase name of the free energy function (used to name the material properties)
Default:F
C++ Type:std::string
Options:
Description:Base name of the free energy function (used to name the material properties)
- material_property_namesVector of material properties used in the parsed function
C++ Type:std::vector
Options:
Description:Vector of material properties used in the parsed function
- tol_namesVector of variable names to be protected from being 0 or 1 within a tolerance (needed for log(c) and log(1-c) terms)
C++ Type:std::vector
Options:
Description:Vector of variable names to be protected from being 0 or 1 within a tolerance (needed for log(c) and log(1-c) terms)
- tol_valuesVector of tolerance values for the variables in tol_names
C++ Type:std::vector
Options:
Description:Vector of tolerance values for the variables in tol_names
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- disable_fpoptimizerFalseDisable the function parser algebraic optimizer
Default:False
C++ Type:bool
Options:
Description:Disable the function parser algebraic optimizer
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- enable_ad_cacheTrueEnable cacheing of function derivatives for faster startup time
Default:True
C++ Type:bool
Options:
Description:Enable cacheing of function derivatives for faster startup time
- enable_auto_optimizeTrueEnable automatic immediate optimization of derivatives
Default:True
C++ Type:bool
Options:
Description:Enable automatic immediate optimization of derivatives
- enable_jitTrueEnable just-in-time compilation of function expressions for faster evaluation
Default:True
C++ Type:bool
Options:
Description:Enable just-in-time compilation of function expressions for faster evaluation
- fail_on_evalerrorFalseFail fatally if a function evaluation returns an error code (otherwise just pass on NaN)
Default:False
C++ Type:bool
Options:
Description:Fail fatally if a function evaluation returns an error code (otherwise just pass on NaN)
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i
- modules/phase_field/test/tests/actions/both_split_2vars.i
- modules/phase_field/test/tests/actions/conserved_split_1var.i
- modules/phase_field/examples/rigidbodymotion/grain_forcedensity_ext.i
- modules/phase_field/tutorials/spinodal_decomposition/s2_fasttest.i
- modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
- modules/combined/examples/phase_field-mechanics/Pattern1.i
- modules/combined/test/tests/thermal_elastic/ad-derivatives.i
- modules/phase_field/examples/rigidbodymotion/grain_motion_GT.i
- modules/phase_field/test/tests/actions/Nonconserved_highorder.i
- modules/phase_field/test/tests/phase_field_kernels/SimpleSplitCHWRes.i
- modules/phase_field/examples/multiphase/GrandPotential3Phase.i
- modules/phase_field/test/tests/KKS_system/kks_example.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i
- modules/phase_field/examples/cahn-hilliard/Parsed_CH.i
- modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i
- modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i
- modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i
- modules/phase_field/examples/nucleation/cahn_hilliard.i
- modules/phase_field/test/tests/KKS_system/kks_example_split.i
- modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i
- modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
- modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
- modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
- modules/phase_field/test/tests/MultiPhase/penalty.i
- modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
- test/tests/materials/derivative_material_interface/construction_order.i
- modules/phase_field/test/tests/actions/conserved_split_1var_high_order.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i
- modules/phase_field/test/tests/KKS_system/kks_multiphase.i
- modules/combined/test/tests/phase_field_fracture/void2d_iso.i
- modules/phase_field/test/tests/actions/Nonconserved_2vars.i
- modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i
- modules/phase_field/examples/cahn-hilliard/Parsed_SplitCH.i
- test/tests/kernels/2d_diffusion/matdiffusion.i
- modules/phase_field/examples/rigidbodymotion/AC_CH_Multigrain.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
- modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i
- test/tests/materials/derivative_material_interface/material_chaining.i
- modules/phase_field/tutorials/spinodal_decomposition/s1_testmodel.i
- modules/phase_field/test/tests/KKS_system/derivative_parsed_material.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i
- modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i
- modules/phase_field/test/tests/phase_field_kernels/MatGradSquareCoupled.i
- modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
- modules/combined/test/tests/eigenstrain/variable.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- modules/phase_field/test/tests/mobility_derivative/coupledmatdiffusion.i
- modules/phase_field/test/tests/rigidbodymotion/grain_appliedforcedensity.i
- modules/phase_field/test/tests/actions/gpm_kernel.i
- modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
- modules/combined/test/tests/DiffuseCreep/stress.i
- modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i
- modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i
- modules/tensor_mechanics/test/tests/elasticitytensor/composite.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i
- modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i
- modules/combined/test/tests/CHSplitFlux/flux_gb.i
- modules/phase_field/test/tests/MultiPhase/lagrangemult.i
- modules/combined/test/tests/DiffuseCreep/strain.i
- modules/phase_field/test/tests/actions/both_direct_2vars.i
- modules/phase_field/test/tests/rigidbodymotion/polycrystal_action.i
- modules/phase_field/examples/nucleation/refine.i
- modules/combined/examples/periodic_strain/global_strain_pfm.i
- modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_coupled_test.i
- modules/phase_field/test/tests/rigidbodymotion/grain_maskedforce.i
- modules/phase_field/test/tests/rigidbodymotion/grain_forcesum.i
- modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i
- modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i
- modules/phase_field/tutorials/spinodal_decomposition/s3_decomp.i
- modules/combined/test/tests/eigenstrain/inclusion.i
- modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
- modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i
- modules/phase_field/test/tests/actions/conserved_split_1var_variable_mob.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i
- modules/phase_field/test/tests/rigidbodymotion/grain_motion.i
- modules/phase_field/test/tests/phase_field_kernels/SplitCahnHilliard.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
- modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i
- modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_test.i
- modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i
- modules/phase_field/test/tests/phase_field_kernels/AllenCahnVariableL.i
- modules/combined/test/tests/eigenstrain/variable_finite.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_test.i
- modules/combined/examples/mortar/eigenstrain.i
- modules/phase_field/test/tests/mobility_derivative/matdiffusion.i
- modules/phase_field/test/tests/actions/Nonconserved_1var.i
- modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i
- modules/combined/test/tests/GBDependentTensors/gb_property.i
- modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_2var_test.i
- modules/phase_field/examples/anisotropic_interfaces/snow.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
- modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
- modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
- modules/phase_field/test/tests/rigidbodymotion/update_orientation.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
- modules/phase_field/test/tests/phase_field_kernels/SplitCHWRes.i
- modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
- modules/phase_field/test/tests/DerivativeSumMaterial/DerivativeSumMaterial.i
- modules/phase_field/test/tests/actions/Nonconserved_variableL.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
- modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i
- modules/combined/test/tests/thermal_elastic/derivatives.i
- modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
- modules/phase_field/test/tests/SplitCH/forward_split_math_test.i
- modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_test.i
- modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i
- modules/phase_field/test/tests/KKS_system/kks_phase_concentration.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i
- modules/combined/examples/mortar/eigenstrain_action.i
- modules/phase_field/test/tests/actions/conserved_direct_1var_variable_mob.i
- modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i
- modules/phase_field/test/tests/KKS_system/kks_example_offset.i
- modules/phase_field/test/tests/phase_field_kernels/CoupledCoefAllenCahn.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i
- modules/combined/examples/phase_field-mechanics/interface_stress.i
- modules/phase_field/test/tests/actions/conserved_forward_split_1var.i
- modules/phase_field/test/tests/actions/conserved_direct_1var.i
- modules/combined/test/tests/eigenstrain/composite.i
modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_begin'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_begin'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.5
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/test/tests/actions/both_split_2vars.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 20
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = 1.0
kappa = 20.0
args = 'eta'
solve_type = REVERSE_SPLIT
[../]
[../]
[./Nonconserved]
[./eta]
free_energy = F
mobility = 1.0
kappa = 20
args = 'c'
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = 10
x2 = 25
y1 = 15
y2 = 35
inside = 0.15
outside = 0.85
[../]
[./eta_IC]
type = ConstantIC
variable = eta
value = 0.5
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta c'
function = '(1 - eta)*10.0*(c - 0.1)^2 + eta*(8.0*(c - 0.9)^2) + 10.0*eta^2*(1-eta)^2'
outputs = exodus
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 10
dt = 0.05
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/phase_field/test/tests/actions/conserved_split_1var.i
#
# Test the conserved action with split solve and 1 variable
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 50
ymax = 50
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./cv]
solve_type = REVERSE_SPLIT
free_energy = F
kappa = 2.0
mobility = 1.0
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-5
nl_max_its = 10
nl_rel_tol = 1.0e-12
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/rigidbodymotion/grain_forcedensity_ext.i
# example showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 20
nz = 0
xmin = 0.0
xmax = 40.0
ymin = 0.0
ymax = 20.0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.0
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./load]
type = ConstantFunction
value = -0.01
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
etas = 'eta0 eta1'
k = 1.0
force_y = load
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
component = 1
property = force_density_ext
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density_ext
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
property = force_density_ext
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
property = force_density_ext
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
c = c
etas = 'eta0 eta1'
grain_data = grain_center
force_density = force_density_ext
execute_on = 'initial linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.1
[./Adaptivity]
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
initial_adaptivity = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/tutorials/spinodal_decomposition/s2_fasttest.i
#
# Simulation of an iron-chromium alloy using simple code and a test set of
# initial conditions.
#
[Mesh]
# generate a 2D, 25nm x 25nm mesh
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 100
ny = 100
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
# Use a bounding box IC at equilibrium concentrations to make sure the
# model behaves as expected.
[./testIC]
type = BoundingBoxIC
variable = c
x1 = 5
x2 = 20
y1 = 5
y2 = 20
inside = 0.823
outside = 0.236
[../]
[]
[BCs]
# periodic BC as is usually done on phase-field models
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# See wiki page "Developing Phase Field Models" for more information on Split
# Cahn-Hilliard equation kernels.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the materials and
# must have the same value in each one.
[./constants]
# Define constant values kappa_c and M. Eventually M will be replaced with
# an equation rather than a constant.
type = GenericFunctionMaterial
prop_names = 'kappa_c M'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27
2.2841e-26*1e+09^2/6.24150934e+18/1e-27'
# kappa_c*eV_J*nm_m^2*d
# M*nm_m^2/eV_J/d
[../]
[./local_energy]
# Defines the function for the local free energy density as given in the
# problem, then converts units and adds scaling factor.
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[]
[Postprocessors]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
# Preconditioning is required for Newton's method. See wiki page "Solving
# Phase Field Models" for more information.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/SolvingModels/
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 86400 # 1 day. We only need to run this long enough to verify
# the model is working properly.
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
# Turn on time stepping
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 32
ny = 32
xmax = 0.7
ymax = 0.7
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 0.35
y1 = 0.35
radius = 0.08
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
args = 'T'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8 #This is -K from kobayashi's paper
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = 'w T'
constant_names = 'alpha gamma T_e pi'
constant_expressions = '0.9 10 1 4*atan(1)'
function = 'm:=alpha/pi * atan(gamma * (T_e - T)); 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
scheme = bdf2
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-08
l_tol = 1e-4
l_max_its = 30
dt = 0.001
num_steps = 6
[]
[Outputs]
exodus = true
perf_graph = true
execute_on = 'INITIAL FINAL'
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2e-6
num_steps = 5
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Pattern1.i
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
modules/combined/test/tests/thermal_elastic/ad-derivatives.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./a]
[./InitialCondition]
type = RandomIC
min = -1
max = 1
[../]
[../]
[./b]
[./InitialCondition]
type = RandomIC
min = -1
max = 1
[../]
[../]
[]
[Debug]
[./MaterialDerivativeTest]
[./elastic]
prop_name = elasticity_tensor
prop_type = RankFourTensor
derivative_order = 1
args = 'a b'
[../]
[../]
[]
[Problem]
kernel_coverage_check = false
[]
[Materials]
[./youngs_modulus]
type = DerivativeParsedMaterial
f_name = youngs_modulus
function = '23.1 * a^4 + 10.7 * b^2'
args = 'a b'
[../]
[./poissons_ratio]
type = DerivativeParsedMaterial
f_name = poissons_ratio
function = '0.2 * a^2 + 0.29 * b^3'
args = 'a b'
[../]
[./elasticity_tensor]
type = ADComputeVariableIsotropicElasticityTensor
youngs_modulus = youngs_modulus
poissons_ratio = poissons_ratio
[../]
[]
[Executioner]
type = Steady
[]
modules/phase_field/examples/rigidbodymotion/grain_motion_GT.i
# example showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 4
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 40
nz = 0
xmin = 0.0
xmax = 40.0
ymin = 0.0
ymax = 20.0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./PolycrystalVariables]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta0 eta1 eta2 eta3'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1 eta2 eta3'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = F
mob_name = L
kappa_name = kappa_eta
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
[]
[Functions]
[./load_x]
# Defines the force on the grains in the x-direction
type = ParsedFunction
value = 0.005*cos(x*pi/600)
[../]
[./load_y]
# Defines the force on the grains in the y-direction
type = ConstantFunction
value = 0.002
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '4.5 60 250 4000'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
#args = 'c eta0 eta1 eta2 eta3'
#constant_names = 'barr_height cv_eq'
#constant_expressions = '0.1 1.0e-2'
#function = '16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
# +eta0*(1-eta0)*c+eta1*(1-eta1)*c
# +eta2*(1-eta2)*c+eta3*(1-eta3)*c'
constant_names = 'A B'
constant_expressions = '450 1.5'
args = 'c eta0 eta1 eta2 eta3' #Must be changed as op_num changes. Copy/paste from line 4
function = 'A*c^2*(1-c)^2+B*(c^2+6*(1-c)*(eta0^2+eta1^2+eta2^2+eta3^2)
-4*(2-c)*(eta0^3+eta1^3+eta2^3+eta3^3)
+3*(eta0^2+eta1^2+eta2^2+eta3^2)^2)'
derivative_order = 2
[../]
#[./force_density]
# type = ForceDensityMaterial
# c = c
# etas = 'eta0 eta1 eta2 eta3'
#[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
k = 10.0
etas = 'eta0 eta1 eta2 eta3'
force_x = load_x
force_y = load_y
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
#var_name_base = eta
#op_num = 4.0
v = 'eta0 eta1 eta2 eta3'
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta1]
x_positions = '32.5 24.0'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 14.0'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0
variable = eta1
invalue = 1
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./multip]
x_positions = '5.5 15.5 24.0 32.5 7.0 15.5 24.0 32.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 6.0 6.0 6.0 14.5 14.5 14.0 14.5'
radii = '4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0'
3D_spheres = false
outvalue = 0.001
variable = c
invalue = 0.999
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta0]
x_positions = '5.5 15.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 6.0'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta2]
x_positions = '24.0 7.0'
int_width = 1.0
z_positions = '0 0'
y_positions = '6.0 14.5 '
radii = '4.0 4.0 '
3D_spheres = false
outvalue = 0.0
variable = eta2
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[./ic_eta3]
x_positions = '15.5 32.5'
int_width = 1.0
z_positions = '0 0'
y_positions = '14.5 14.5'
radii = '4.0 4.0'
3D_spheres = false
outvalue = 0.0
variable = eta3
invalue = 1.0
type = SpecifiedSmoothCircleIC
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
c = c
grain_data = grain_center
force_density = force_density_ext
etas = 'eta0 eta1 eta2 eta3'
execute_on = 'initial linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 20
dt = 0.01
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/Nonconserved_highorder.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 40
ymax = 40
elem_type = QUAD
second_order = true
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./eta]
family = LAGRANGE
order = SECOND
free_energy = F
kappa = 2.0
mobility = 1.0
variable_mobility = false
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = SmoothCircleIC
variable = eta
x1 = 20.0
y1 = 20.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/phase_field_kernels/SimpleSplitCHWRes.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the SplitCHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_Cu_Split_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 250
ymin = 0
ymax = 250
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SimpleSplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1e-3 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 6
dt = 10
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/multiphase/GrandPotential3Phase.i
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2019). It includes 3 phases with 1 grain of each phase. This example was used
# to generate the results shown in Fig. 3 of the paper.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmin = -15
xmax = 15
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etad0]
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etad0]
type = ConstantIC
variable = etad0
value = 0.1
[../]
[./IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = '0.9*0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = '0.9*0.5*(1.0+tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_w]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etab0 etad0 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etad0 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_delta0
[./ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[../]
[./ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 w'
[../]
[./ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[../]
[./ed0_dot]
type = TimeDerivative
variable = etad0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = 'etaa0 etab0 etad0'
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etad0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etad0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[../]
[./hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[../]
[./omegad]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegad
material_property_names = 'Vm kd cdeq'
function = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[../]
[./rhod]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhod
material_property_names = 'Vm kd cdeq'
function = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[../]
[./c]
type = ParsedMaterial
material_property_names = 'Vm rhoa rhob rhod ha hb hd'
function = 'Vm * (ha * rhoa + hb * rhob + hd * rhod)'
f_name = c
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
f_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
function = '(ha/ka + hb/kb + hd/kd) / Vm^2'
args = 'etaa0 etab0 etad0'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./etaa0]
type = LineValueSampler
variable = etaa0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etab0]
type = LineValueSampler
variable = etab0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etad0]
type = LineValueSampler
variable = etad0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'initial timestep_end final'
interval = 1
[../]
[./csv]
type = CSV
execute_on = 'initial timestep_end final'
interval = 1
[../]
[]
modules/phase_field/test/tests/KKS_system/kks_example.i
#
# KKS toy problem in the non-split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
nz = 0
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
# order parameter
[./eta]
order = THIRD
family = HERMITE
[../]
# hydrogen concentration
[./c]
order = THIRD
family = HERMITE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.2
outvalue = 0.1
int_width = 0.05
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.6
outvalue = 0.4
int_width = 0.05
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
outputs = oversampling
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2'
outputs = oversampling
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
outputs = oversampling
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = oversampling
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L '
prop_values = '0.7 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSCHBulk
variable = c
ca = cm
cb = cd
fa_name = fm
fb_name = fd
mob_name = 0.7
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 0.4
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-4
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Preconditioning]
[./mydebug]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example
[./oversampling]
type = Exodus
refinements = 3
[../]
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i
# this input file test the implementation of the grand-potential phase-field model based on M.Plapp PRE 84,031601(2011)
# in this simple example, the liquid and solid free energies are parabola with the same curvature and the material properties are constant
# Note that this example also test The SusceptibilityTimeDerivative kernels
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 32
ymax = 32
[]
[GlobalParams]
radius = 20.0
int_width = 4.0
x1 = 0
y1 = 0
[]
[Variables]
[./w]
[../]
[./eta]
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -0.2
invalue = 0.2
[../]
[./eta]
type = SmoothCircleIC
variable = eta
outvalue = 0.0
invalue = 1.0
[../]
[]
[Kernels]
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = D
args = ''
[../]
[./coupled_etadot]
type = CoupledSusceptibilityTimeDerivative
variable = w
v = eta
f_name = ft
args = 'eta'
[../]
[./AC_bulk]
type = AllenCahn
variable = eta
f_name = F
args = 'w'
[../]
[./AC_int]
type = ACInterface
variable = eta
[../]
[./e_dot]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_op D L chi cs cl A'
prop_values = '4.0 1.0 1.0 1.0 0.0 1.0 1.0'
[../]
[./liquid_GrandPotential]
type = DerivativeParsedMaterial
function = '-0.5 * w^2/A - cl * w'
args = 'w'
f_name = f1
material_property_names = 'cl A'
[../]
[./solid_GrandPotential]
type = DerivativeParsedMaterial
function = '-0.5 * w^2/A - cs * w'
args = 'w'
f_name = f2
material_property_names = 'cs A'
[../]
[./switching_function]
type = SwitchingFunctionMaterial
eta = eta
h_order = HIGH
[../]
[./barrier_function]
type = BarrierFunctionMaterial
eta = eta
[../]
[./total_GrandPotential]
type = DerivativeTwoPhaseMaterial
args = 'w'
eta = eta
fa_name = f1
fb_name = f2
derivative_order = 2
W = 1.0
[../]
[./coupled_eta_function]
type = DerivativeParsedMaterial
function = '(cs - cl) * dh'
args = 'eta'
f_name = ft
material_property_names = 'cs cl dh:=D[h,eta]'
derivative_order = 1
outputs = exodus
[../]
[./concentration]
type = ParsedMaterial
f_name = c
material_property_names = 'dF:=D[F,w]'
function = '-dF'
outputs = exodus
[../]
[]
[Postprocessors]
[./C]
type = ElementIntegralMaterialProperty
mat_prop = c
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
l_max_its = 15
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
num_steps = 5
dt = 10.0
[]
[Outputs]
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
modules/phase_field/examples/cahn-hilliard/Parsed_CH.i
#
# Example problem showing how to use the DerivativeParsedMaterial with CahnHilliard.
# The free energy is identical to that from CHMath, f_bulk = 1/4*(1-c)^2*(1+c)^2.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmax = 60
ymax = 60
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = fbulk
mobility = M
kappa = kappa_c
solve_type = DIRECT
[../]
[../]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = RandomIC
variable = c
min = -0.1
max = 0.1
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = fbulk
interfacial_vars = c
kappa_names = kappa_c
execute_on = timestep_end
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = c
constant_names = W
constant_expressions = 1.0/2^2
function = W*(1-c)^2*(1+c)^2
enable_jit = true
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
scheme = bdf2
# Alternative preconditioning using the additive Schwartz method and LU decomposition
#petsc_options_iname = '-pc_type -sub_ksp_type -sub_pc_type'
#petsc_options_value = 'asm preonly lu '
# Preconditioning options using Hypre (algebraic multi-grid)
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 30
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
dt = 2.0
end_time = 20.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i
#
# Test the non-split parsed function free enery Cahn-Hilliard kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = SimpleCHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
f_name = M
args = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
function = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
f_name = prec_indic
args = c
function = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
scaling = 1e+04
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./f_density] # Local energy density (eV/mol)
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[AuxKernels]
# Calculates the energy density by combining the local and gradient energies
[./f_density] # (eV/mol/nm^2)
type = TotalFreeEnergy
variable = f_density
f_name = 'f_loc'
kappa_names = 'kappa_c'
interfacial_vars = c
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
f_name = M
args = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
function = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
f_name = prec_indic
args = c
function = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./total_energy] # Total free energy at each timestep
type = ElementIntegralVariablePostprocessor
variable = f_density
execute_on = 'initial timestep_end'
[../]
[./num_features] # Number of precipitates formed
type = FeatureFloodCount
variable = c
threshold = 0.6
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
modules/phase_field/examples/nucleation/cahn_hilliard.i
#
# Test the DiscreteNucleation material in a toy system. The global
# concentration is above the solubility limit, but below the spinodal.
# Without further intervention no nucleation will occur in a phase
# field model. The DiscreteNucleation material will locally modify the
# free energy to coerce nuclei to grow.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 120
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = RandomIC
variable = c
min = 0.2
max = 0.21
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = c*1e-7
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 100
probability = P
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
radius = 10
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1200
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 5
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/KKS_system/kks_example_split.i
#
# KKS toy problem in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_split
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = strain
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = strain
index_i = 1
index_j = 1
[../]
[./strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./strain]
type = SumTensorIncrements
tensor_name = strain
coupled_tensor_increment_names = gb_relax
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = eta
args = 'eta'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_vol_dev
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l * 3 / 4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
barrier_energy = 'barrier'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = '3 * gc_prop / (8 * l) * c'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[./barrier_energy]
type = ParsedMaterial
f_name = barrier
material_property_names = 'gc_prop l'
function = '3 * gc_prop / 16 / l'
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 20
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/penalty.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[GlobalParams]
penalty = 5
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./hsum]
type = ParsedMaterial
function = h1+h2
f_name = hsum
material_property_names = 'h1 h2'
args = 'c'
outputs = exodus
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2'
derivative_order = 2
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = '(c-0.9)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
args = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 0.05
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
args = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
args = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -20
xmax = 20
ymin = -20
ymax = 20
[]
[GlobalParams]
op_num = 2
var_name_base = etab
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etab1]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etab1]
type = FunctionIC
variable = etab1
function = ic_func_etab1
[../]
[./IC_w]
type = ConstantIC
value = -0.05
variable = w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0-tanh((r-10.0)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0+tanh((y)/sqrt(2.0)))'
[../]
[./ic_func_etab1]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0-tanh((y)/sqrt(2.0)))'
[../]
[]
[BCs]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etab1'
gamma_names = 'gab gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 etab1 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etab1'
gamma_names = 'gab gbb'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab1 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_beta1
[./ACb1_bulk]
type = ACGrGrMulti
variable = etab1
v = 'etaa0 etab0'
gamma_names = 'gab gbb'
[../]
[./ACb1_sw]
type = ACSwitching
variable = etab1
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab0 w'
[../]
[./ACb1_int]
type = ACInterface
variable = etab1
kappa_name = kappa
[../]
[./eb1_dot]
type = TimeDerivative
variable = etab1
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab1dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab1
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etab0 etab1'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
enable_jit = false
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
enable_jit = false
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D chi Vm ka caeq kb cbeq gab gbb mu'
prop_values = '0 1 1.0 1.0 1.0 1.0 10.0 0.1 10.0 0.9 4.5 1.5 1.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
enable_jit = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 2
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
test/tests/materials/derivative_material_interface/construction_order.i
#
# Test the the getDefaultMaterialProperty in DerivativeMaterialInterface.
# This test should only pass, if the construction order of the Materials
# using this interface does not influence the outcome.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
elem_type = QUAD4
[]
[GlobalParams]
derivative_order = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./dummy1]
type = Diffusion
variable = c
[../]
[./dummy2]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
# derivatives used both before and after being declared
[./sum_a_1]
type = DerivativeSumMaterial
f_name = Fa1
sum_materials = 'Fa'
args = 'c'
outputs = exodus
[../]
[./free_energy_a]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = 'c^4'
[../]
[./sum_a_2]
type = DerivativeSumMaterial
f_name = Fa2
sum_materials = 'Fa'
args = 'c'
outputs = exodus
[../]
# derivatives declared after being used
[./sum_b_1]
type = DerivativeSumMaterial
f_name = Fb1
sum_materials = 'Fb'
args = 'c'
outputs = exodus
[../]
[./free_energy_b]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = 'c^4'
[../]
# derivatives declared before being used
[./free_energy_c]
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
function = 'c^4'
[../]
[./sum_c_2]
type = DerivativeSumMaterial
f_name = Fc2
sum_materials = 'Fc'
args = 'c'
outputs = exodus
[../]
# non-existing derivatives
[./free_energy_d]
type = ParsedMaterial
f_name = Fd
args = 'c'
function = 'c^4'
[../]
[./sum_d_1]
type = DerivativeSumMaterial
f_name = Fd1
sum_materials = 'Fd'
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
num_steps = 1
dt = 1e-5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/actions/conserved_split_1var_high_order.i
#
# Test the conserved action with split solve and 1 variable
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD
second_order = true
[]
[Modules]
[./PhaseField]
[./Conserved]
[./cv]
solve_type = REVERSE_SPLIT
family = LAGRANGE
order = SECOND
free_energy = F
kappa = 2.0
mobility = 1.0
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-5
nl_max_its = 10
nl_rel_tol = 1.0e-12
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
args = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
args = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_end'
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = 'initial timestep_end'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_end'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
variable = 'eta0 eta1'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/KKS_system/kks_multiphase.i
#
# This test is for the 3-phase KKS model
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[AuxVariables]
[./Energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# order parameter 1
[./eta1]
order = FIRST
family = LAGRANGE
[../]
# order parameter 2
[./eta2]
order = FIRST
family = LAGRANGE
[../]
# order parameter 3
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# phase concentration 1
[./c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[../]
# phase concentration 2
[./c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# phase concentration 3
[./c3]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Lagrange multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta1]
variable = eta1
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.9
outvalue = 0.1
int_width = 4
[../]
[./eta2]
variable = eta2
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.1
outvalue = 0.9
int_width = 4
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.2
outvalue = 0.5
int_width = 2
[../]
[]
[Materials]
# simple toy free energies
[./f1]
type = DerivativeParsedMaterial
f_name = F1
args = 'c1'
function = '20*(c1-0.2)^2'
[../]
[./f2]
type = DerivativeParsedMaterial
f_name = F2
args = 'c2'
function = '20*(c2-0.5)^2'
[../]
[./f3]
type = DerivativeParsedMaterial
f_name = F3
args = 'c3'
function = '20*(c3-0.8)^2'
[../]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[./h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
f_name = h1
[../]
# h2(eta1, eta2, eta3)
[./h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
f_name = h2
[../]
# h3(eta1, eta2, eta3)
[./h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
f_name = h3
[../]
# Coefficients for diffusion equation
[./Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1'
function = D*h1
f_name = Dh1
[../]
[./Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2'
function = D*h2
f_name = Dh2
[../]
[./Dh3]
type = DerivativeParsedMaterial
material_property_names = 'D h3'
function = D*h3
f_name = Dh3
[../]
# Barrier functions for each phase
[./g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[../]
[./g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[../]
[./g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L kappa D'
prop_values = '0.7 1.0 1'
[../]
[]
[Kernels]
#Kernels for diffusion equation
[./diff_time]
type = TimeDerivative
variable = c
[../]
[./diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
[../]
[./diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
[../]
[./diff_c3]
type = MatDiffusion
variable = c
diffusivity = Dh3
v = c3
[../]
# Kernels for Allen-Cahn equation for eta1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
args = 'c1 c2 c3 eta2 eta3'
[../]
[./ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[../]
[./multipler1]
type = MatReaction
variable = eta1
v = lambda
mob_name = L
[../]
# Kernels for Allen-Cahn equation for eta2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
args = 'c1 c2 c3 eta1 eta3'
[../]
[./ACBulkC2]
type = KKSMultiACBulkC
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[../]
[./multipler2]
type = MatReaction
variable = eta2
v = lambda
mob_name = L
[../]
# Kernels for the Lagrange multiplier equation
[./mult_lambda]
type = MatReaction
variable = lambda
mob_name = 3
[../]
[./mult_ACBulkF_1]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta2 eta3'
[../]
[./mult_ACBulkC_1]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_1]
type = SimpleCoupledACInterface
variable = lambda
v = eta1
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_2]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta3'
[../]
[./mult_ACBulkC_2]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_2]
type = SimpleCoupledACInterface
variable = lambda
v = eta2
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_3]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g3
eta_i = eta3
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta2'
[../]
[./mult_ACBulkC_3]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta3
args = 'eta1 eta2'
mob_name = 1
[../]
[./mult_CoupledACint_3]
type = SimpleCoupledACInterface
variable = lambda
v = eta3
kappa_name = kappa
mob_name = 1
[../]
# Kernels for constraint equation eta1 + eta2 + eta3 = 1
# eta3 is the nonlinear variable for the constraint equation
[./eta3reaction]
type = MatReaction
variable = eta3
mob_name = 1
[../]
[./eta1reaction]
type = MatReaction
variable = eta3
v = eta1
mob_name = 1
[../]
[./eta2reaction]
type = MatReaction
variable = eta3
v = eta2
mob_name = 1
[../]
[./one]
type = BodyForce
variable = eta3
value = -1.0
[../]
# Phase concentration constraints
[./chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[../]
[./chempot23]
type = KKSPhaseChemicalPotential
variable = c2
cb = c3
fa_name = F2
fb_name = F3
[../]
[./phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c3
cj = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
c = c
[../]
[]
[AuxKernels]
[./Energy_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gj_names = 'g1 g2 g3'
variable = Energy
w = 1
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa kappa kappa'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 2
dt = 0.5
[]
[Preconditioning]
active = 'full'
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/void2d_iso.i
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
value = t
[../]
[./void_prop_func]
type = ParsedFunction
value = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
value = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/Nonconserved_2vars.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 40
ymax = 40
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./eta1]
free_energy = F
kappa = 2.0
mobility = 1.0
variable_mobility = false
args = 'eta2'
[../]
[./eta2]
free_energy = F
kappa = 2.0
mobility = 1.0
variable_mobility = false
args = 'eta1'
[../]
[../]
[../]
[]
[ICs]
[./eta1_IC]
type = SmoothCircleIC
variable = eta1
x1 = 20.0
y1 = 20.0
radius = 12.0
invalue = 1.0
outvalue = 0.0
int_width = 3.0
[../]
[./eta2_IC]
type = SmoothCircleIC
variable = eta2
x1 = 20.0
y1 = 20.0
radius = 12.0
invalue = 0.0
outvalue = 1.0
int_width = 3.0
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta1 eta2'
function = '2.5 * (eta1^4/4 - eta1^2/2 + eta2^4/4 - eta2^2/2 + 3/2 * eta1^2 * eta2^2) + 1/4'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
num_steps = 8
dt = 1.0
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0
xmax = 30
ymin = 0
ymax = 30
[]
[GlobalParams]
block = 0
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./eta1]
[../]
[./eta2]
[../]
[./eta3]
[../]
[./eta0]
[../]
[]
[ICs]
[./IC_eta2]
x1 = 0
y1 = 15
x2 = 30
y2 = 30
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta2
int_width = 0
[../]
[./IC_eta3]
x1 = 15
y1 = 0
x2 = 30
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta3
int_width = 0
[../]
[./IC_eta4]
x1 = 0
y1 = 0
x2 = 15
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta0
int_width = 0
[../]
[./IC_c]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.05
variable = c
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[./IC_eta1]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[]
# Not evalulating time evolution to improve test performance, since we are only testing
# the material property. However, the kernel and free energy are left in place to allow
# this test to be easily turned in to a working example
#[Kernels]
# [./c_dot]
# type = CoupledTimeDerivative
# variable = w
# v = c
# [../]
# [./c_res]
# type = SplitCHParsed
# variable = c
# f_name = F
# kappa_name = kappa_c
# w = w
# args = 'eta1 eta2 eta3 eta0'
# [../]
# [./w_res]
# # args = 'c'
# type = SplitCHWRes
# variable = w
# mob_name = M
# [../]
# [./AC1_bulk]
# type = AllenCahn
# variable = eta1
# f_name = F
# args = 'c eta2 eta3 eta0'
# [../]
# [./AC1_int]
# type = ACInterface
# variable = eta1
# kappa_name = kappa_s
# [../]
# [./e1_dot]
# type = TimeDerivative
# variable = eta1
# [../]
# [./AC2_bulk]
# type = AllenCahn
# variable = eta2
# f_name = F
# args = 'c eta1 eta3 eta0'
# [../]
# [./AC2_int]
# type = ACInterface
# variable = eta2
# [../]
# [./e2_dot]
# type = TimeDerivative
# variable = eta2
# [../]
# [./AC3_bulk]
# type = AllenCahn
# variable = eta3
# f_name = F
# args = 'c eta2 eta1 eta0'
# [../]
# [./AC3_int]
# type = ACInterface
# variable = eta3
# [../]
# [./e3_dot]
# type = TimeDerivative
# variable = eta3
# [../]
# [./AC4_bulk]
# type = AllenCahn
# variable = eta0
# f_name = F
# args = 'c eta2 eta3 eta1'
# [../]
# [./AC4_int]
# type = ACInterface
# variable = eta0
# [../]
# [./e4_dot]
# type = TimeDerivative
# variable = eta0
# [../]
#[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta1'
outputs = exodus
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta0 eta2 eta3'
outputs = exodus
[../]
#[./ha]
# type = DerivativeParsedMaterial
# args = 'eta1 eta2 eta3 eta0'
# f_name = ha_parsed
# function = 'eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./hb]
# type = DerivativeParsedMaterial
# args = 'eta1 eta2 eta3 eta0'
# f_name = hb_parsed
# function = '(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./FreeEng]
# type = DerivativeParsedMaterial
# args = 'c eta1 eta2 eta3 eta0'
# f_name = F
# constant_names = 'c1 c2 s g d e h z'
# constant_expressions = '1.0 0.0 1.5 1.5 1.0 1.0 1 1.0'
# material_property_names = 'ha(eta1,eta2,eta3,eta0) hb(eta1,eta2,eta3,eta0)'
# function = 'a:=eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2);f1:=ha*(c-c1)^2;b:=(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2);f2:=hb*(c-c2)^2
# ;f3:=1/4*eta1^4-1/2*eta1^2+1/4*eta2^4-1/2*eta2^2+1/4*eta3^4-1/2*eta3^2+1/4*eta0^4-1/2*eta0^2
# ;f4:=z*s*(eta1^2*eta2^2+eta1^2*eta3^2+eta1^2*eta0^2)+g*(eta2^2*eta3^2+eta2^2*eta0^2+eta3^2*eta0^2);f:=1/4+e*f1+d*f2+h*(f3+f4);f'
# derivative_order = 2
#[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa_s kappa_op L M'
prop_values = '0 3 3 1.0 1.0'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/cahn-hilliard/Parsed_SplitCH.i
#
# Example problem showing how to use the DerivativeParsedMaterial with SplitCHParsed.
# The free energy is identical to that from SplitCHMath, f_bulk = 1/4*(1-c)^2*(1+c)^2.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 150
xmax = 60
ymax = 60
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = fbulk
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = RandomIC
variable = c
min = -0.1
max = 0.1
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = fbulk
interfacial_vars = c
kappa_names = kappa_c
execute_on = timestep_end
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = c
constant_names = W
constant_expressions = 1.0/2^2
function = W*(1-c)^2*(1+c)^2
enable_jit = true
outputs = exodus
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Preconditioning]
[./cw_coupling]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
scheme = bdf2
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
l_max_its = 30
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
dt = 2.0
end_time = 20.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
test/tests/kernels/2d_diffusion/matdiffusion.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./cres]
type = MatDiffusion
variable = u
diffusivity = Du
[../]
[./ctime]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
f_name = Du
function = '0.01+u^2'
args = 'u'
derivative_order = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = 'BDF2'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/rigidbodymotion/AC_CH_Multigrain.i
# Tests the rigid body motion due to applied force of multiple particles.
# ***COPY AND PASTE THESE AS NEEDED***
# 'gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr8 gr9 gr10 gr11 gr12 gr13 gr14 gr15 gr16 gr17 gr18 gr19'
# (gr0^2+gr1^2+gr2^2+gr3^2+gr4^2+gr5^2+gr6^2+gr7^2+gr8^2+gr9^2+gr10^2+gr11^2+gr12^2+gr13^2+gr14^2+gr15^2+gr16^2+gr17^2+gr18^2+gr19^2)
# (gr0^3+gr1^3+gr2^3+gr3^3+gr4^3+gr5^3+gr6^3+gr7^3+gr8^3+gr9^3+gr10^3+gr11^3+gr12^3+gr13^3+gr14^3+gr15^3+gr16^3+gr17^3+gr18^3+gr19^3)
[GlobalParams]
op_num = 4
var_name_base = gr
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = 0
xmax = 600
ymin = 0
ymax = 600
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./PolycrystalVariables] # Automatically creates order parameter variables
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./force]
order = CONSTANT
family = MONOMIAL
[../]
[./free_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./load_x]
# Defines the force on the grains in the x-direction
type = ParsedFunction
value = 0.005*cos(x*pi/600)
[../]
[./load_y]
# Defines the force on the grains in the y-direction
type = ConstantFunction
value = 0.002
[../]
[]
[Kernels]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = f_loc
mob_name = L
kappa_name = kappa_gr
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
# Cahn Hilliard kernels
[./dt_w]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./CH_wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./CH_Parsed]
type = SplitCHParsed
variable = c
f_name = f_loc
w = w
kappa_name = kappa_c
args = 'gr0 gr1 gr2 gr3' # Must be changed as op_num changes. Copy/paste from line 4
[../]
[./CH_RBM]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'gr0 gr1 gr2 gr3'
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
[../]
[]
[AuxKernels]
[./force_x]
type = FunctionAux
variable = force
function = load_x
[../]
[./force_y]
type = FunctionAux
variable = force
function = load_y
[../]
[./energy_density]
type = TotalFreeEnergy
variable = free_energy
f_name = f_loc
kappa_names = kappa_c
interfacial_vars = c
[../]
[./bnds]
type = BndsCalcAux
variable = bnds
[../]
[]
[BCs]
[./bcs]
#zero flux BC
type = NeumannBC
value = 0
variable = c
boundary = '0 1 2 3'
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_gr kappa_c M L'
prop_values = '250 4000 4.5 60'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = f_loc
constant_names = 'A B'
constant_expressions = '450 1.5'
args = 'c gr0 gr1 gr2 gr3' #Must be changed as op_num changes. Copy/paste from line 4
function = 'A*c^2*(1-c)^2+B*(c^2+6*(1-c)*(gr0^2+gr1^2+gr2^2+gr3^2)
-4*(2-c)*(gr0^3+gr1^3+gr2^3+gr3^3)
+3*(gr0^2+gr1^2+gr2^2+gr3^2)^2)'
#Copy/paste from lines 5-6
derivative_order = 2
[../]
[./force_density]
type = ExternalForceDensityMaterial
c = c
k = 10.0
force_x = load_x
force_y = load_y
[../]
[]
[Postprocessors]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = free_energy
execute_on = 'initial timestep_end'
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
grain_data = grain_center
c = c
etas = 'gr0 gr1 gr2 gr3'
force_density = force_density_ext
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 2'
l_tol = 1e-05
nl_max_its = 30
l_max_its = 30
nl_rel_tol = 1e-07
nl_abs_tol = 1e-09
start_time = 0.0
end_time = 4
dt = 0.05
[]
[Outputs]
exodus = true
perf_graph = true
[./display]
type = Console
max_rows = 12
[../]
[]
[ICs]
[./concentration_IC]
type = SpecifiedSmoothCircleIC
x_positions = '150 450 150 450'
y_positions = '150 150 450 450'
z_positions = '0 0 0 0'
radii = '120 120 120 120'
variable = c
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 150
y1 = 150
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 450
y1 = 150
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 150
y1 = 450
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 450
y1 = 450
radius = 120
invalue = 1.0
outvalue = 0.0
int_width = 25
[../]
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./mu_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./mech_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./total_potential]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = total_potential
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./mu_prop]
type = MaterialRealAux
property = mu_prop
variable = mu_prop
[../]
[./mech_prop]
type = MaterialRealAux
property = mech_prop
variable = mech_prop
[../]
[./total_potential]
type = MaterialRealAux
property = total_potential
variable = total_potential
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./mechanical_potential]
type = StressBasedChemicalPotential
property_name = mech_prop
stress_name = stress
direction_tensor_name = aniso_tensor
prefactor_name = 1.0
[../]
[./total_potential]
type = DerivativeSumMaterial
block = 0
f_name = total_potential
sum_materials = 'mu_prop mech_prop'
args = 'c'
derivative_order = 2
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
variable_L = false
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
test/tests/materials/derivative_material_interface/material_chaining.i
#
# This test validates the correct application of the chain rule to coupled
# material properties within DerivativeParsedMaterials
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./eta1]
[../]
[./eta2]
[../]
[]
[BCs]
[./left]
variable = eta1
boundary = left
type = DirichletBC
value = 0
[../]
[./right]
variable = eta1
boundary = right
type = DirichletBC
value = 1
[../]
[./top]
variable = eta2
boundary = top
type = DirichletBC
value = 0
[../]
[./bottom]
variable = eta2
boundary = bottom
type = DirichletBC
value = 1
[../]
[]
[Materials]
# T1 := (eta1+1)^4
[./term]
type = DerivativeParsedMaterial
f_name= T1
args = 'eta1'
function = '(eta1+1)^4'
derivative_order = 4
[../]
# in this material we substitute T1 explicitly
[./full]
type = DerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F1
function = '(1-eta2)^4+(eta1+1)^4'
[../]
# in this material we utilize the T1 derivative material property
[./subs]
type = DerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F2
function = '(1-eta2)^4+T1'
material_property_names = 'T1(eta1)'
[../]
# calculate differences between the explicit and indirect substitution version
# the use if the T1 property should include dT1/deta1 contributions!
# This also demonstrated the explicit use of material property derivatives using
# the D[...] syntax.
[./diff0]
type = ParsedMaterial
f_name = D0
function = '(F1-F2)^2'
material_property_names = 'F1 F2'
[../]
[./diff1]
type = ParsedMaterial
f_name = D1
function = '(dF1-dF2)^2'
material_property_names = 'dF1:=D[F1,eta1] dF2:=D[F2,eta1]'
[../]
[./diff2]
type = ParsedMaterial
f_name = D2
function = '(d2F1-d2F2)^2'
material_property_names = 'd2F1:=D[F1,eta1,eta1] d2F2:=D[F2,eta1,eta1]'
[../]
# check that explicitly pulling a derivative yields the correct result by
# taking the difference of the manually calculated 1st derivative of T1 and the
# automatic derivative dT1 pulled in through dT1:=D[T1,eta1]
[./diff3]
type = ParsedMaterial
f_name = E0
function = '(dTd1-(4*(eta1+1)^3))^2'
args = eta1
material_property_names = 'dTd1:=D[T1,eta1]'
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Postprocessors]
[./D0]
type = ElementIntegralMaterialProperty
mat_prop = D0
[../]
[./D1]
type = ElementIntegralMaterialProperty
mat_prop = D1
[../]
[./D2]
type = ElementIntegralMaterialProperty
mat_prop = D2
[../]
[./E0]
type = ElementIntegralMaterialProperty
mat_prop = E0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_tol = 1e-03
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
print_linear_residuals = false
[]
modules/phase_field/tutorials/spinodal_decomposition/s1_testmodel.i
#
# Simulation of an iron-chromium alloy using simplest possible code and a test
# set of initial conditions.
#
[Mesh]
# generate a 2D, 25nm x 25nm mesh
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 100
ny = 100
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
# Use a bounding box IC at equilibrium concentrations to make sure the
# model behaves as expected.
[./testIC]
type = BoundingBoxIC
variable = c
x1 = 5
x2 = 20
y1 = 5
y2 = 20
inside = 0.823
outside = 0.236
[../]
[]
[BCs]
# periodic BC as is usually done on phase-field models
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# See wiki page "Developing Phase Field Models" for more information on Split
# Cahn-Hilliard equation kernels.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the materials and
# must have the same value in each one.
[./constants]
# Define constant values kappa_c and M. Eventually M will be replaced with
# an equation rather than a constant.
type = GenericFunctionMaterial
prop_names = 'kappa_c M'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27
2.2841e-26*1e+09^2/6.24150934e+18/1e-27'
# kappa_c*eV_J*nm_m^2*d
# M*nm_m^2/eV_J/d
[../]
[./local_energy]
# Defines the function for the local free energy density as given in the
# problem, then converts units and adds scaling factor.
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
[../]
[]
[Preconditioning]
# Preconditioning is required for Newton's method. See wiki page "Solving
# Phase Field Models" for more information.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/SolvingModels/
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 86400 # 1 day. We only need to run this long enough to verify
# the model is working properly.
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
dt = 100
[]
[Outputs]
exodus = true
console = true
[]
modules/phase_field/test/tests/KKS_system/derivative_parsed_material.i
#
# This test validates the free energy material with automatic differentiation for the KKS system
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./left]
type = DirichletBC
variable = c1
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = c1
boundary = 'right'
value = 1
[../]
[./top]
type = DirichletBC
variable = c2
boundary = 'top'
value = 0
[../]
[./bottom]
type = DirichletBC
variable = c2
boundary = 'bottom'
value = 1
[../]
[]
[Variables]
# concentration 1
[./c1]
order = FIRST
family = LAGRANGE
[../]
# concentration 2
[./c2]
order = FIRST
family = LAGRANGE
[../]
[]
[Materials]
[./fa]
type = DerivativeParsedMaterial
f_name = F
args = 'c1 c2'
constant_names = 'T kB'
constant_expressions = '400 .000086173324'
function = 'c1^2+100*T*kB*(c2-0.5)^3+c1^4*c2^5'
outputs = exodus
[../]
[]
[Kernels]
[./c1diff]
type = Diffusion
variable = c1
[../]
[./c2diff]
type = Diffusion
variable = c2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = derivative_parsed_material
exodus = true
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
active = 'PhaseConc ChemPotSolute CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./c]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = c
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[./eta]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = eta
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = final
[../]
[]
modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = '0.1'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
block = 0
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
args = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 12
variable = c
int_width = 3
invalue = 1
outvalue = 0
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0
x2 = 15
y1 = 0
y2 = 30
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
args = d
[../]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
args = d
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = 'c d'
function = if(d>0.001,d,0.001)*if(c<0,0.5,if(c>1,0.5,1-0.5*c^2))
derivative_order = 2
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 1.0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = BDF2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 0.25
num_steps = 2
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
refinements = 2
type = Exodus
[../]
[]
modules/phase_field/test/tests/phase_field_kernels/MatGradSquareCoupled.i
#
# Test the MatGradSquareCoupled kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
mob_name = 1
[../]
[./W]
type = MatReaction
variable = w
mob_name = -1
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
mob_name = L
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
mob_name = L
args = w
[../]
# MatGradSquareCoupled kernel
[./nabla_eta]
type = MatGradSquareCoupled
variable = w
elec_potential = eta
prefactor = 0.5
[../]
[]
[Materials]
[./mobility]
type = DerivativeParsedMaterial
f_name = L
args = 'eta w'
function = '(1.5-eta)^2+(1.5-w)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
hide = w
exodus = true
console = true
[]
modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = 'diffuse gb_relax'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
#This input does not add time derivative kernel for phase field equation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./ACBulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = c
kappa_name = kappa_op
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/eigenstrain/variable.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./eigen_strain00]
type = RankTwoAux
variable = eigen_strain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.5*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.01
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-50
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -4
xmax = 4
ymin = -4
ymax = 4
uniform_refine = 2
[]
[GlobalParams]
radius = 0.5
int_width = 0.3
x1 = 0
y1 = 0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/phase_field/test/tests/mobility_derivative/coupledmatdiffusion.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./d]
[./InitialCondition]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 8
int_width = 3
invalue = 2
outvalue = 0
[../]
[../]
[./u]
[../]
[./w]
[../]
[]
[Kernels]
[./ctime]
type = TimeDerivative
variable = c
[../]
[./umat]
type = MatReaction
variable = c
v = u
mob_name = 1
[../]
[./urxn]
type = Reaction
variable = u
[../]
[./cres]
type = MatDiffusion
variable = u
diffusivity = Dc
args = d
v = c
[../]
[./dtime]
type = TimeDerivative
variable = d
[../]
[./wmat]
type = MatReaction
variable = d
v = w
mob_name = 1
[../]
[./wrxn]
type = Reaction
variable = w
[../]
[./dres]
type = MatDiffusion
variable = w
diffusivity = Dd
args = c
v = d
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
f_name = Dc
function = '0.01+c^2+d'
args = 'c d'
derivative_order = 1
[../]
[./Dd]
type = DerivativeParsedMaterial
f_name = Dd
function = 'd^2+c+1.5'
args = 'c d'
derivative_order = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_appliedforcedensity.i
# test file for showing grain motion due to applied force density on grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 10
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./load]
type = ConstantFunction
value = 0.01
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density_ext]
type = ExternalForceDensityMaterial
c = c
etas = 'eta0 eta1'
k = 1.0
force_y = load
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeExternalGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
c = c
etas = 'eta0 eta1'
force_density = force_density_ext
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/actions/gpm_kernel.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 300
[]
[GlobalParams]
op_num = 1
var_name_base = eta
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./eta0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[ICs]
[./IC_w]
type = BoundingBoxIC
variable = w
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 0.1
outside = 0
[../]
[./IC_phi]
type = BoundingBoxIC
variable = phi
x1 = 0
x2 = 150
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[./IC_eta0]
type = BoundingBoxIC
variable = eta0
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
[../]
[]
[Modules]
[./PhaseField]
[./GrandPotential]
switching_function_names = 'hb hm'
chemical_potentials = 'w'
anisotropic = 'false'
mobilities = 'chiD'
susceptibilities = 'chi'
free_energies_w = 'rhob rhom'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegab omegam'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = L_phi
kappa_op = kappa
free_energies_op = 'omegab omegam'
[../]
[../]
[]
[Materials]
#REFERENCES
[./constants]
type = GenericConstantMaterial
prop_names = 'Va cb_eq cm_eq kb km mu gamma L L_phi kappa kB'
prop_values = '0.04092 1.0 1e-5 1400 140 1.5 1.5 5.3e+3 2.3e+4 295.85 8.6173324e-5'
[../]
#SWITCHING FUNCTIONS
[./switchb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'phi eta0'
phase_etas = 'phi'
[../]
[./switchm]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hm
all_etas = 'phi eta0'
phase_etas = 'eta0'
[../]
[./omegab]
type = DerivativeParsedMaterial
f_name = omegab
args = 'w phi'
material_property_names = 'Va kb cb_eq'
function = '-0.5*w^2/Va^2/kb - w/Va*cb_eq'
derivative_order = 2
[../]
[./omegam]
type = DerivativeParsedMaterial
f_name = omegam
args = 'w eta0'
material_property_names = 'Va km cm_eq'
function = '-0.5*w^2/Va^2/km - w/Va*cm_eq'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
f_name = chi
args = 'w'
material_property_names = 'Va hb hm kb km'
function = '(hm/km + hb/kb)/Va^2'
derivative_order = 2
[../]
#DENSITIES/CONCENTRATION
[./rhob]
type = DerivativeParsedMaterial
f_name = rhob
args = 'w'
material_property_names = 'Va kb cb_eq'
function = 'w/Va^2/kb + cb_eq/Va'
derivative_order = 1
[../]
[./rhom]
type = DerivativeParsedMaterial
f_name = rhom
args = 'w eta0'
material_property_names = 'Va km cm_eq(eta0)'
function = 'w/Va^2/km + cm_eq/Va'
derivative_order = 1
[../]
[./concentration]
type = ParsedMaterial
f_name = c
material_property_names = 'rhom hm rhob hb Va'
function = 'Va*(hm*rhom + hb*rhob)'
outputs = exodus
[../]
[./mobility]
type = DerivativeParsedMaterial
material_property_names = 'chi kB'
constant_names = 'T Em D0'
constant_expressions = '1400 2.4 1.25e2'
f_name = chiD
function = 'chi*D0*exp(-Em/kB/T)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-7
nl_abs_tol = 1e-7
start_time = 0
dt = 2e-5
num_steps = 3
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.01*v'
[../]
[../]
[./mu]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./eigen_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./eigen_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./eigenstrain_xx]
type = RankTwoAux
variable = eigen_strain_xx
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./eigenstrain_yy]
type = RankTwoAux
variable = eigen_strain_yy
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./eigenstrain_prefactor]
type = DerivativeParsedMaterial
block = 0
function = 'c-0.1'
args = c
f_name = eigenstrain_prefactor
derivative_order = 1
[../]
[./eigenstrain]
type = ComputeVariableBaseEigenStrain
base_tensor_property_name = aniso_tensor
prefactor = eigenstrain_prefactor
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/stress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 3
nx = 14
ny = 7
nz = 7
xmax = 40
ymax = 25
zmax = 25
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[./angle_check]
type = EulerAngleUpdaterCheck
grain_tracker_object = grain_center
euler_angle_updater = euler_angle
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '-200.0 -120.0 1000.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
seed = 12356
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 2
[]
[Outputs]
csv = true
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
z1 = 5.0
z2 = 20.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
z1 = 5.0
z2 = 20.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 30.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
variable = c
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0.0
x2 = 15.0
y1 = 0.0
y2 = 30.0
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
args = 'c d'
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = 'c d'
function = 'if(d>0.001,d,0.001)*(1-0.5*c^2)'
outputs = exodus
derivative_order = 1
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 0.1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i
#
# Tests the Rigid Body Motion of grains due to applied forces.
# Concenterated forces and torques have been applied and corresponding
# advection velocities are calculated.
# Grain motion kernels make the grains translate and rotate as a rigidbody,
# applicable to grain movement in porous media
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 25
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
# advection kernel corrsponding to CH equation
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
# advection kernel corrsponding to AC equation
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
# VectorPostprocessor for outputting grain forces and torques
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.2 0.0 0.0 ' # size should be 3 * no. of grains
torque = '0.0 0.0 5.0 ' # size should be 3 * no. of grains
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.1
end_time = 10
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/tensor_mechanics/test/tests/elasticitytensor/composite.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 1
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./C1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
#[Kernels]
# [./diff]
# type = Diffusion
# variable = diffused
# [../]
#[]
[AuxKernels]
[./matl_C1111]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C1111_aux
execute_on = initial
[../]
[./matl_C1122]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C1122_aux
execute_on = initial
[../]
[./matl_C1133]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C1133_aux
execute_on = initial
[../]
[./matl_C3313]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C3313_aux
execute_on = initial
[../]
[./matl_dC1111]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = dC1111_aux
execute_on = initial
[../]
[./matl_dC1122]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = dC1122_aux
execute_on = initial
[../]
[./matl_dC1133]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = dC1133_aux
execute_on = initial
[../]
[./matl_dC3313]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = dC3313_aux
execute_on = initial
[../]
[./matl_d2C1111]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = d2C1111_aux
execute_on = initial
[../]
[./matl_d2C1122]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = d2C1122_aux
execute_on = initial
[../]
[./matl_d2C1133]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = d2C1133_aux
execute_on = initial
[../]
[./matl_d2C3313]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = d2C3313_aux
execute_on = initial
[../]
[]
[Materials]
[./Ca]
type = ComputeElasticityTensor
base_name = Ca
block = 0
fill_method = symmetric21
C_ijkl ='1111 .1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./Cb]
type = ComputeElasticityTensor
base_name = Cb
block = 0
fill_method = symmetric21
C_ijkl ='.1111 1122 .1133 .1123 .1113 .1112 .2222 .2233 .2223 .2213 .2212 .3333 .3323 .3313 .3312 .2323 .2313 .2312 .1313 .1312 .1212'
[../]
[./Fa]
type = DerivativeParsedMaterial
block = 0
f_name = Fa
function = c^2
args = c
[../]
[./Fb]
type = DerivativeParsedMaterial
block = 0
f_name = Fb
function = (1-c)^3
args = c
[../]
[./C]
type = CompositeElasticityTensor
block = 0
args = c
tensors = 'Ca Cb'
weights = 'Fa Fb'
[../]
[]
[Problem]
kernel_coverage_check = false
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = SimpleACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/CHSplitFlux/flux_gb.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./mobility_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./mobility_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./mobility_xx]
type = MaterialRealTensorValueAux
variable = mobility_xx
property = mobility_prop
row = 0
column = 0
[../]
[./mobility_yy]
type = MaterialRealTensorValueAux
variable = mobility_yy
property = mobility_prop
row = 1
column = 1
[../]
[./diffusivity_xx]
type = MaterialRealTensorValueAux
variable = diffusivity_xx
property = diffusivity
row = 0
column = 0
[../]
[./diffusivity_yy]
type = MaterialRealTensorValueAux
variable = diffusivity_yy
property = diffusivity
row = 1
column = 1
[../]
[./aniso_tensor_xx]
type = MaterialRealTensorValueAux
variable = aniso_tensor_xx
property = aniso_tensor
row = 0
column = 0
[../]
[./aniso_tensor_yy]
type = MaterialRealTensorValueAux
variable = aniso_tensor_yy
property = aniso_tensor
row = 1
column = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/lagrangemult.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2'
h_names = 'h1 h2'
epsilon = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
outputs = exodus
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
outputs = exodus
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = '(c-0.9)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
args = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/strain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/both_direct_2vars.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 9
ny = 6
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = 1.0
kappa = 20.0
args = 'eta'
solve_type = direct
[../]
[../]
[./Nonconserved]
[./eta]
free_energy = F
mobility = 1.0
kappa = 20
args = 'c'
family = HERMITE
order = THIRD
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = 10
x2 = 25
y1 = 15
y2 = 35
inside = 0.1
outside = 0.9
[../]
[./eta_IC]
type = ConstantIC
variable = eta
value = 0.5
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta c'
function = '(1 - eta)*10.0*(c - 0.1)^2 + eta*(8.0*(c - 0.9)^2) + 10.0*eta^2*(1-eta)^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 5
dt = 0.05
[]
[Outputs]
perf_graph = true
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/phase_field/test/tests/rigidbodymotion/polycrystal_action.i
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./PolycrystalVariables]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
args = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./RigidBodyMultiKernel]
# Creates all of the necessary Allen Cahn kernels automatically
c = c
f_name = F
mob_name = M
kappa_name = kappa_eta
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./MultiAuxVariables]
order = CONSTANT
family = MONOMIAL
variable_base = 'df'
data_type = 'RealGradient'
grain_num = 2
[../]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./MaterialVectorGradAuxKernel]
variable_base = 'df'
grain_num = 2
property = 'force_density'
[../]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'initial linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/examples/nucleation/refine.i
#
# Example derived from cahn_hilliard.i demonstrating the use of Adaptivity
# with the DiscreteNucleation system. The DiscreteNucleationMarker triggers
# mesh refinement for the nucleus geometry. It is up to the user to specify
# refinement for the physics. In this example this is done using a GradientJumpIndicator
# with a ValueThresholdMarker. The nucleation system marker and the physics marker
# must be combined using a ComboMarker to combine their effect.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = ConstantIC
variable = c
value = 0.2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = 'if(c<0.21,c*1e-8,0)'
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 50
probability = P
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
radius = 10
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./ndof]
type = NumDOFs
[../]
[./rate]
type = DiscreteNucleationData
value = RATE
inserter = inserter
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.0005
dt_max = 10
[../]
[./update]
type = DiscreteNucleationData
value = UPDATE
inserter = inserter
[../]
[./count]
type = DiscreteNucleationData
value = COUNT
inserter = inserter
[../]
[]
[Adaptivity]
[./Indicators]
[./jump]
type = GradientJumpIndicator
variable = c
[../]
[../]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[./grad]
type = ValueThresholdMarker
variable = jump
coarsen = 0.1
refine = 0.2
[../]
[./combo]
type = ComboMarker
markers = 'nuc grad'
[../]
[../]
marker = combo
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 120
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
[]
modules/combined/examples/periodic_strain/global_strain_pfm.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_coupled_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
xmax = 50
ymin = 25
ymax = 50
[]
[Variables]
[./op]
[../]
[./v]
[../]
[]
[ICs]
[./op_IC]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 15.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
variable = op
[../]
[./v_IC]
type = BoundingBoxIC
x1 = 0.0
x2 = 25.0
y1 = 0.0
y2 = 50.0
inside = 1.0
outside = 0.0
variable = v
[../]
[]
[Kernels]
[./op_dot]
type = TimeDerivative
variable = op
[../]
[./op_bulk]
type = AllenCahn
variable = op
f_name = F
mob_name = L
args = v
[../]
[./op_interface]
type = ACInterface
variable = op
kappa_name = 1
mob_name = L
args = v
[../]
[./v_dot]
type = TimeDerivative
variable = v
[../]
[./v_diff]
type = MatDiffusion
variable = v
diffusivity = 50.0
[../]
[]
[Materials]
[./consts]
type = DerivativeParsedMaterial
f_name = L
function = 'l:=0.1+1*(v+op)^2; if(l<0.01, 0.01, l)'
args = 'op v'
outputs = exodus
output_properties = 'L dL/dop dL/dv'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'op'
function = '2*op^2*(1-op)^2 - 0.2*op'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 15
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 10
dt = 0.2
[]
[Outputs]
interval = 5
print_linear_residuals = false
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_maskedforce.i
# test file for showing pinning of grains
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 4.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '10.0 10.0'
3D_spheres = false
variable = c
block = 0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
c = c
variable = w
v = 'eta0 eta1'
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
block = 0
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
block = 0
[../]
[]
[ICs]
[./ic_eta0]
int_width = 4.0
x1 = 20.0
y1 = 0.0
radius = 10.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 4.0
x1 = 30.0
y1 = 25.0
radius = 10.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces_cosnt]
type = GrainForcesPostprocessor
grain_force = grain_force_const
[../]
[./forces_total]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force_const]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '5.0 10.0 0.0 1.0 0.0 0.0'
torque = '0.0 0.0 50.0 0.0 0.0 5.0'
[../]
[./grain_force]
type = MaskedGrainForceAndTorque
grain_force = grain_force_const
pinned_grains = 0
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 20
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 1.0
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_forcesum.i
# test file for showing summing forces and torques obtained from other userobjects
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 6.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./eta0]
[../]
[./eta1]
[../]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./ic_eta0]
int_width = 6.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 6.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[]
[VectorPostprocessors]
[./forces_dns]
type = GrainForcesPostprocessor
grain_force = grain_force_dns
[../]
[./forces_cosnt]
type = GrainForcesPostprocessor
grain_force = grain_force_const
[../]
[./forces_total]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force_dns]
type = ComputeGrainForceAndTorque
c = c
etas = 'eta0 eta1'
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
[../]
[./grain_force_const]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '2.0 0.0 0.0 0.0 0.0 0.0'
torque = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./grain_force]
type = GrainForceAndTorqueSum
execute_on = 'linear nonlinear'
grain_forces = 'grain_force_dns grain_force_const'
grain_num = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 20
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i
#
# KKS ternary (3 chemical component) system example in the split form
# We track c1 and c2 only, since c1 + c2 + c3 = 1
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute 1 concentration
[./c1]
order = FIRST
family = LAGRANGE
[../]
# solute 2 concentration
[./c2]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 1
[./w1]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 2
[./w2]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute 1 concentration
[./c1l]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Liquid phase solute 2 concentration
[./c2l]
order = FIRST
family = LAGRANGE
initial_condition = 0.05
[../]
# Solid phase solute 1 concentration
[./c1s]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Solid phase solute 2 concentration
[./c2s]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c1]
type = ParsedFunction
value = '0.8*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[./ic_func_c2]
type = ParsedFunction
value = '0.1*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.05*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c1]
variable = c1
type = FunctionIC
function = ic_func_c1
[../]
[./c2]
variable = c2
type = FunctionIC
function = ic_func_c2
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'c1l c2l'
function = '(0.1-c1l)^2+(0.05-c2l)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'c1s c2s'
function = '(0.8-c1s)^2+(0.1-c2s)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c1 = (1-h(eta))*c1l + h(eta)*c1s
[./PhaseConc1]
type = KKSPhaseConcentration
ca = c1l
variable = c1s
c = c1
eta = eta
[../]
# enforce c2 = (1-h(eta))*c2l + h(eta)*c2s
[./PhaseConc2]
type = KKSPhaseConcentration
ca = c2l
variable = c2s
c = c2
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute1]
type = KKSPhaseChemicalPotential
variable = c1l
cb = c1s
fa_name = fl
fb_name = fs
args_a = 'c2l'
args_b = 'c2s'
[../]
[./ChemPotSolute2]
type = KKSPhaseChemicalPotential
variable = c2l
cb = c2s
fa_name = fl
fb_name = fs
args_a = 'c1l'
args_b = 'c1s'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk1]
type = KKSSplitCHCRes
variable = c1
ca = c1l
fa_name = fl
w = w1
args_a = 'c2l'
[../]
[./CHBulk2]
type = KKSSplitCHCRes
variable = c2
ca = c2l
fa_name = fl
w = w2
args_a = 'c1l'
[../]
[./dc1dt]
type = CoupledTimeDerivative
variable = w1
v = c1
[../]
[./dc2dt]
type = CoupledTimeDerivative
variable = w2
v = c2
[../]
[./w1kernel]
type = SplitCHWRes
mob_name = M
variable = w1
[../]
[./w2kernel]
type = SplitCHWRes
mob_name = M
variable = w2
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'c1l c1s c2l c2s'
[../]
[./ACBulkC1]
type = KKSACBulkC
variable = eta
ca = c1l
cb = c1s
fa_name = fl
args = 'c2l'
[../]
[./ACBulkC2]
type = KKSACBulkC
variable = eta
ca = c2l
cb = c2s
fa_name = fl
args = 'c1l'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i
#
# Test the non-split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
modules/phase_field/tutorials/spinodal_decomposition/s3_decomp.i
#
# Simulation of iron-chromium alloy decomposition using simplified conditions.
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the materials and
# must have the same value in each one.
[./constants]
# Define constant values kappa_c and M. Eventually M will be replaced with
# an equation rather than a constant.
type = GenericFunctionMaterial
prop_names = 'kappa_c M'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27
2.2841e-26*1e+09^2/6.24150934e+18/1e-27'
# kappa_c*eV_J*nm_m^2*d
# M*nm_m^2/eV_J/d
[../]
[./local_energy]
# Defines the function for the local free energy density as given in the
# problem, then converts units and adds scaling factor.
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
modules/combined/test/tests/eigenstrain/inclusion.i
# This test allows comparison of simulation and analytical solution for a misfitting precipitate
# using ComputeVariableEigenstrain for the simulation and the InclusionProperties material
# for the analytical solution. Increasing mesh resolution will improve agreement.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 1.5
ymax = 1.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./fel_an]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = s11_aux
[../]
[./matl_s12]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = s12_aux
[../]
[./matl_s22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = s22_aux
[../]
[./matl_s11_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 0
variable = s11_an
[../]
[./matl_s12_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 1
variable = s12_an
[../]
[./matl_s22_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 1
index_j = 1
variable = s22_an
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./matl_e11_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 0
variable = e11_an
[../]
[./matl_e12_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 1
variable = e12_an
[../]
[./matl_e22_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 1
index_j = 1
variable = e22_an
[../]
[./matl_fel_an]
type = MaterialRealAux
variable = fel_an
property = fel_an_mat
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.005*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 0 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./analytical]
type = InclusionProperties
a = 0.1
b = 0.1
lambda = 1
mu = 1
misfit_strains = '0.005 0.005'
strain_name = strain_an
stress_name = stress_an
energy_name = fel_an_mat
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 30
nl_max_its = 10
nl_rel_tol = 1.0e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.1
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
f_name = var_dep1
args = 'eta1'
function = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
f_name = var_dep2
args = 'eta2'
function = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i
# This material tests the kernels ACBarrierFunction and ACKappaFunction for a
# multiphase system.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -200
xmax = 200
ymin = -200
ymax = 200
uniform_refine = 0
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0_IC]
type = BoundingBoxIC
variable = gr0
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 0
outside = 1
[../]
[./gr1_IC]
type = BoundingBoxIC
variable = gr1
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 1
outside = 0
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'L gamma E0 E1'
prop_values = '0.1 1.5 3 1'
[../]
[./h0]
type = DerivativeParsedMaterial
f_name = h0
args = 'gr0 gr1'
function = 'gr0^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./h1]
type = DerivativeParsedMaterial
f_name = h1
args = 'gr0 gr1'
function = 'gr1^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./mu]
type = DerivativeParsedMaterial
f_name = mu
args = 'gr0 gr1'
constant_names = 'mag'
constant_expressions = '16'
function = 'mag * (gr0^2 * gr1^2 + 0.1)'
derivative_order = 2
[../]
[./kappa]
type = DerivativeParsedMaterial
f_name = kappa
args = 'gr0 gr1'
material_property_names = 'h0(gr0,gr1) h1(gr0,gr1)'
constant_names = 'mag0 mag1'
constant_expressions = '200 100'
function = 'h0*mag0 + h1*mag1'
derivative_order = 2
[../]
[]
[Kernels]
[./gr0_time]
type = TimeDerivative
variable = gr0
[../]
[./gr0_interface]
type = ACInterface
variable = gr0
args = 'gr1'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr0_switching]
type = ACSwitching
variable = gr0
args = 'gr1'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr0_multi]
type = ACGrGrMulti
variable = gr0
v = 'gr1'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr0_barrier]
type = ACBarrierFunction
variable = gr0
mob_name = L
gamma = gamma
v = 'gr1'
[../]
[./gr0_kappa]
type = ACKappaFunction
variable = gr0
mob_name = L
kappa_name = kappa
v = 'gr1'
[../]
[./gr1_time]
type = TimeDerivative
variable = gr1
[../]
[./gr1_interface]
type = ACInterface
variable = gr1
args = 'gr0'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr1_switching]
type = ACSwitching
variable = gr1
args = 'gr0'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr1_multi]
type = ACGrGrMulti
variable = gr1
v = 'gr0'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr1_barrier]
type = ACBarrierFunction
variable = gr1
mob_name = L
gamma = gamma
v = 'gr0'
[../]
[./gr1_kappa]
type = ACKappaFunction
variable = gr1
mob_name = L
kappa_name = kappa
v = 'gr0'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm ilu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
start_time = 0
num_steps = 3
dt = 1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/conserved_split_1var_variable_mob.i
#
# Test the conserved action with split solve and 1 variable
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 50
ymax = 50
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./cv]
solve_type = REVERSE_SPLIT
free_energy = F
kappa = 2.0
mobility = M
args = 'cv'
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Materials]
[./variable_mob]
type = DerivativeParsedMaterial
f_name = M
args = 'cv'
function = '0.1 + (1 + cv)/2'
outputs = exodus
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
derivative_order = 2
enable_jit = false
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa dkappadgrad_etaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab dkappadgrad_etab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1.0e-5
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-12
num_steps = 2
dt = 0.001
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/grain_motion.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/phase_field/test/tests/phase_field_kernels/SplitCahnHilliard.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the SplitCHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_Cu_Split_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 60
ymin = 0
ymax = 60
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = -0.5
int_width = 30.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '100 40'
[../]
[./free_energy]
# equivalent to `MathFreeEnergy`
type = DerivativeParsedMaterial
f_name = F
args = 'c'
function = '0.25*(1+c)^2*(1-c)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
args = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = 'eta'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = SIMPLE
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = '(c-0.1)^2*(c-1)^2 + c*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = 'c^2*(c-0.9)^2 + (1-c)*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = Fa
fb_name = Fb
args = 'c'
eta = eta
derivative_order = 2
outputs = exodus
output_properties = 'F dF/dc dF/deta d^2F/dc^2 d^2F/dcdeta d^2F/deta^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_test.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
xmax = 25
[]
[Variables]
[./op]
[../]
[]
[ICs]
[./op_IC]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 1
outvalue = 0
int_width = 3.0
variable = op
[../]
[]
[Kernels]
[./op_dot]
type = TimeDerivative
variable = op
[../]
[./op_bulk]
type = AllenCahn
variable = op
f_name = F
mob_name = L
[../]
[./op_interface]
type = ACInterface
variable = op
kappa_name = 1
mob_name = L
[../]
[]
[Materials]
[./consts]
type = DerivativeParsedMaterial
f_name = L
function = 'if(op<0, 0.01, if(op>1, 0.01, 1*op^2*(1-op)^2+0.01))'
args = 'op'
outputs = exodus
output_properties = 'L dL/dop dL/dv'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'op'
function = '2*op^2*(1-op)^2 - 0.2*op'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 15
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 20
dt = 2.0
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledACInterface]
type = SimpleCoupledACInterface
variable = w
v = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 2
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/AllenCahnVariableL.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[AuxVariables]
[./chi]
[./InitialCondition]
type = FunctionIC
function = 'x/24+0.5'
[../]
[../]
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
variable_L = true
args = chi
[../]
[]
[Materials]
[./L]
type = DerivativeParsedMaterial
f_name = L
args = 'eta chi'
function = '0.1 * eta^2 + chi^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/eigenstrain/variable_finite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./stress11]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigenstrain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./c_IC]
int_width = 0.15
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./strain11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain11
[../]
[./stress11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = stress11
[../]
[./eigenstrain00]
type = RankTwoAux
variable = eigenstrain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.01*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
args = c
prefactor = var_dep
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 0.0005*t
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type '
petsc_options_value = lu
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-9
reset_dt = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 30.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
variable = c
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
args = c
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = c
function = '1-0.9*c^2'
outputs = exodus
derivative_order = 1
[../]
[./free_energy]
type = MathEBFreeEnergy
f_name = F
c = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'w c'
off_diag_column = 'c w'
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/examples/mortar/eigenstrain.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[slave_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "slave_x"
[]
[master_x]
input = slave_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "master_x"
[]
[slave_y]
input = master_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "slave_y"
[]
[master_y]
input = slave_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "master_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/test/tests/mobility_derivative/matdiffusion.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./d]
[./InitialCondition]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 8
int_width = 3
invalue = 2
outvalue = 0
[../]
[../]
[]
[Kernels]
[./cres]
type = MatDiffusion
variable = c
diffusivity = Dc
args = d
[../]
[./ctime]
type = TimeDerivative
variable = c
[../]
[./dres]
type = MatDiffusion
variable = d
diffusivity = Dd
args = c
[../]
[./dtime]
type = TimeDerivative
variable = d
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
f_name = Dc
function = '0.01+c^2+d'
args = 'c d'
derivative_order = 1
[../]
[./Dd]
type = DerivativeParsedMaterial
f_name = Dd
function = 'd^2+c+1.5'
args = 'c d'
derivative_order = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/actions/Nonconserved_1var.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 40
ymax = 40
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./eta]
free_energy = F
kappa = 2.0
mobility = 1.0
variable_mobility = false
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = SmoothCircleIC
variable = eta
x1 = 20.0
y1 = 20.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 12
ny = 12
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 10
variable = c
int_width = 3
invalue = 1
outvalue = -1
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
f_name = M
args = c
function = 'if(c<-1,0.1,if(c>1,0.1,1-.9*c^2))'
outputs = exodus
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
dt = 0.9
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/GBDependentTensors/gb_property.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./mobility_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./mobility_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./mobility_xx]
type = MaterialRealTensorValueAux
variable = mobility_xx
property = mobility_prop
row = 0
column = 0
[../]
[./mobility_yy]
type = MaterialRealTensorValueAux
variable = mobility_yy
property = mobility_prop
row = 1
column = 1
[../]
[./diffusivity_xx]
type = MaterialRealTensorValueAux
variable = diffusivity_xx
property = diffusivity
row = 0
column = 0
[../]
[./diffusivity_yy]
type = MaterialRealTensorValueAux
variable = diffusivity_yy
property = diffusivity
row = 1
column = 1
[../]
[./aniso_tensor_xx]
type = MaterialRealTensorValueAux
variable = aniso_tensor_xx
property = aniso_tensor
row = 0
column = 0
[../]
[./aniso_tensor_yy]
type = MaterialRealTensorValueAux
variable = aniso_tensor_yy
property = aniso_tensor
row = 1
column = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 20
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_tol = 1e-3
l_max_its = 20
nl_max_its = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_2var_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 1000
ymin = 0
ymax = 1000
zmin = 0
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 2
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[ICs]
[./PolycrystalICs]
[./BicrystalCircleGrainIC]
radius = 333.333
x = 500
y = 500
int_width = 60
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./gr0dot]
type = TimeDerivative
variable = gr0
[../]
[./gr0bulk]
type = AllenCahn
variable = gr0
f_name = F
args = gr1
[../]
[./gr0int]
type = ACInterface
variable = gr0
kappa_name = kappa_op
[../]
[./gr1dot]
type = TimeDerivative
variable = gr1
[../]
[./gr1bulk]
type = AllenCahn
variable = gr1
f_name = F
args = gr0
[../]
[./gr1int]
type = ACInterface
variable = gr1
kappa_name = kappa_op
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
[../]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = 'kappa_op kappa_op'
interfacial_vars = 'gr0 gr1'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
T = 500 # K
wGB = 60 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'gr0 gr1'
material_property_names = 'mu gamma_asymm'
function = 'mu*( gr0^4/4.0 - gr0^2/2.0 + gr1^4/4.0 - gr1^2/2.0 + gamma_asymm*gr0^2*gr1^2) + 1.0/4.0'
derivative_order = 2
enable_jit = true
[../]
[]
[Postprocessors]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 30
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 7
dt = 80.0
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
exodus = true
[]
modules/phase_field/examples/anisotropic_interfaces/snow.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 14
xmax = 9
ymax = 9
uniform_refine = 3
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 4.5
y1 = 4.5
radius = 0.07
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
args = T
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = fbulk
args = 'w T'
constant_names = pi
constant_expressions = 4*atan(1)
function = 'm:=0.9 * atan(10 * (1 - T)) / pi; 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-08
l_max_its = 30
end_time = 1
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
iteration_window = 2
dt = 0.0005
growth_factor = 1.1
cutback_factor = 0.75
[../]
[./Adaptivity]
initial_adaptivity = 3 # Number of times mesh is adapted to initial condition
refine_fraction = 0.7 # Fraction of high error that will be refined
coarsen_fraction = 0.1 # Fraction of low error that will coarsened
max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform refinement)
weight_names = 'w T'
weight_values = '1 0.5'
[../]
[]
[Outputs]
interval = 5
exodus = true
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/phase_field/examples/measure_interface_energy/1Dinterface_energy.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 100
xmin = 0
elem_type = EDGE
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
scaling = 1e1
[./InitialCondition]
type = RampIC
variable = c
value_left = 0
value_right = 1
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Functions]
[./Int_energy]
type = ParsedFunction
vals = 'total_solute Cleft Cright Fleft Fright volume'
value = '((total_solute-Cleft*volume)/(Cright-Cleft))*Fright+(volume-(total_solute-Cleft*volume)/(Cright-Cleft))*Fleft'
vars = 'total_solute Cleft Cright Fleft Fright volume'
[../]
[./Diff]
type = ParsedFunction
vals = 'total_free_energy total_no_int'
vars = 'total_free_energy total_no_int'
value = total_free_energy-total_no_int
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'kappa_c M'
prop_values = '25 150'
[../]
[./Free_energy]
type = DerivativeParsedMaterial
f_name = F
function = 'c^2*(c-1)^2'
args = c
derivative_order = 2
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved,
# gives Cavg in % for this problem.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
# Get simulation cell size (1D volume) from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
# Find concentration in each phase using SideAverageValue
[./Cleft]
type = SideAverageValue
boundary = left
variable = c
[../]
[./Cright]
type = SideAverageValue
boundary = right
variable = c
[../]
# Find local energy in each phase by checking boundaries
[./Fleft]
type = SideAverageValue
boundary = left
variable = local_energy
[../]
[./Fright]
type = SideAverageValue
boundary = right
variable = local_energy
[../]
# Use concentrations and energies to find total free energy without any interface,
# only applies once equilibrium is reached!!
# Difference between energy with and without interface
# gives interface energy per unit area.
[./total_no_int]
type = FunctionValuePostprocessor
function = Int_energy
[../]
[./Energy_of_Interface]
type = FunctionValuePostprocessor
function = Diff
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provides a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-4
start_time = 0.0
# make sure that the result obtained for the interfacial free energy is fully converged
end_time = 40
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Outputs]
gnuplot = true
csv = true
[./exodus]
type = Exodus
show = 'c local_energy'
execute_on = 'failed initial nonlinear timestep_end final'
[../]
[./console]
type = Console
execute_on = 'FAILED INITIAL NONLINEAR TIMESTEP_END final'
[../]
perf_graph = true
[]
modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 250
ymax = 250
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
# This deprecated material is replaced by the materials below
#
#[./eigenstrain]
# type = SimpleEigenStrainMaterial
# block = 0
# epsilon0 = 0.05
# c = c
# disp_y = disp_y
# disp_x = disp_x
# C_ijkl = '3 1 1 3 1 3 1 1 1 '
# fill_method = symmetric9
#[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/rigidbodymotion/update_orientation.i
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
args = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
args = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
args = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 5
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
use_current_history_variable = true
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/SplitCHWRes.i
#
# Test the split parsed function free enery Cahn-Hilliard Bulk kernel
# with two concentration variables and coupling through off-diagonal Onsager
# matrix coefficients
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 60
ymin = 0
ymax = 60
elem_type = QUAD4
[]
[Variables]
[./c1]
[./InitialCondition]
type = FunctionIC
function = 'cos(x/60*pi)'
[../]
[../]
[./c2]
[./InitialCondition]
type = FunctionIC
function = 'cos(y/60*pi)'
[../]
[../]
[./w1]
[../]
[./w2]
[../]
[]
[Kernels]
[./c1_res]
type = SplitCHParsed
variable = c1
f_name = F
kappa_name = kappa_c
w = w1
[../]
[./w11_res]
type = SplitCHWRes
variable = w1
mob_name = M11
[../]
[./w12_res]
type = SplitCHWRes
variable = w1
w = w2
mob_name = M12
[../]
[./c2_res]
type = SplitCHParsed
variable = c2
f_name = F
kappa_name = kappa_c
w = w2
[../]
[./w22_res]
type = SplitCHWRes
variable = w2
mob_name = M22
[../]
[./w21_res]
type = SplitCHWRes
variable = w2
w = w1
mob_name = M21
[../]
[./time1]
type = CoupledTimeDerivative
variable = w1
v = c1
[../]
[./time2]
type = CoupledTimeDerivative
variable = w2
v = c2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M11 M12 M21 M22 kappa_c'
prop_values = '10 2.5 20 5 40'
[../]
[./free_energy]
# equivalent to `MathFreeEnergy`
type = DerivativeParsedMaterial
f_name = F
args = 'c1 c2'
function = '0.25*(1+c1)^2*(1-c1)^2 + 0.25*(1+c2)^2*(1-c2)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 10
[]
[Outputs]
exodus = true
[]
modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = -12
xmax = 12
ymin = -12
ymax = 12
elem_type = QUAD4
[]
[GlobalParams]
# let's output all material properties for demonstration purposes
outputs = exodus
# prefactor on the penalty function kernels. The higher this value is, the
# more rigorously the constraint is enforced
penalty = 1e3
[]
#
# These AuxVariables hold the directly calculated free energy density in the
# simulation cell. They are provided for visualization purposes.
#
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
#
# Helper kernel to cpompute the gradient contribution from interfaces of order
# parameters evolved using the ACMultiInterface kernel
#
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
#
# The interface coefficient matrix. This should be symmetrical!
#
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#
# We set up a smooth cradial concentrtaion gradient
# The concentration will quickly change to adapt to the preset order
# parameters eta1, eta2, and eta3
#
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 5.0
invalue = 1.0
outvalue = 0.01
int_width = 10.0
[../]
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
#
# Note: this initial conditions sets up a _sharp_ interface. Ideally
# we should start with a smooth interface with a width consistent
# with the kappa parameter supplied for the given interface.
#
function = 'r:=sqrt(x^2+y^2);if(r<=4,1,0)'
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>4&r<=7,1,0)'
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>7,1,0)'
[../]
[../]
[]
[Kernels]
#
# Cahn-Hilliard kernel for the concentration variable.
# Note that we are not using an interfcae kernel on this variable, but rather
# rely on the interface width enforced on the order parameters. This allows us
# to use a direct solve using the CahnHilliard kernel _despite_ only using first
# order elements.
#
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
#
# Order parameter eta1
# Each order parameter is acted on by 4 kernels:
# 1. The stock time derivative deta_i/dt kernel
# 2. The Allen-Cahn kernel that takes a Dervative Material for the free energy
# 3. A gradient interface kernel that includes cross terms
# see http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/ACMultiInterface/
# 4. A penalty contribution that forces the interface contributions h(eta)
# to sum up to unity
#
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta2
#
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta3
#
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./penalty3]
type = SwitchingFunctionPenalty
variable = eta3
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# here we declare some of the model parameters: the mobilities and interface
# gradient prefactors. For this example we use arbitrary numbers. In an actual simulation
# physical mobilities would be used, and the interface gradient prefactors would
# be readjusted to the free energy magnitudes.
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.75 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 '
[../]
# This material sums up the individual phase contributions. It is written to the output file
# (see GlobalParams section above) and can be used to check the constraint enforcement.
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3'
[../]
# The phase contribution factors for each material point are computed using the
# SwitchingFunctionMaterials. Each phase with an order parameter eta contributes h(eta)
# to the global free energy density. h is a function that switches smoothly from 0 to 1
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
# The barrier function adds a phase transformation energy barrier. It also
# Drives order parameters toward the [0:1] interval to avoid negative or larger than 1
# order parameters (these are set to 0 and 1 contribution by the switching functions
# above)
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# We use DerivativeParsedMaterials to specify three (very) simple free energy
# expressions for the three phases. All necessary derivatives are built automatically.
# In a real problem these expressions can be arbitrarily complex (or even provided
# by custom kernels).
[./phase_free_energy_1]
type = DerivativeParsedMaterial
f_name = F1
function = '(c-1)^2'
args = 'c'
[../]
[./phase_free_energy_2]
type = DerivativeParsedMaterial
f_name = F2
function = '(c-0.5)^2'
args = 'c'
[../]
[./phase_free_energy_3]
type = DerivativeParsedMaterial
f_name = F3
function = 'c^2'
args = 'c'
[../]
# The DerivativeMultiPhaseMaterial ties the phase free energies together into a global free energy.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 1
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provedes a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-6
start_time = 0.0
end_time = 150.0
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/test/tests/DerivativeSumMaterial/DerivativeSumMaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 250
ymin = 0
ymax = 250
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 80.0
invalue = 1.0
outvalue = 0.1
int_width = 80.0
[../]
[../]
[]
[Kernels]
[./w_res]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./free_energy1]
type = DerivativeParsedMaterial
f_name = Fa
args = 'c'
function = (c-0.1)^4*(1-0.1-c)^4
[../]
[./free_energy2]
type = DerivativeParsedMaterial
f_name = Fb
args = 'c'
function = -0.25*(c-0.1)^4*(1-0.1-c)^4
[../]
# Fa+Fb+Fb == Fc
[./free_energy3]
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
function = 0.5*(c-0.1)^4*(1-0.1-c)^4
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fa Fb Fb'
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/actions/Nonconserved_variableL.i
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 40
ymax = 40
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./eta]
free_energy = F
kappa = 2.0
mobility = variable_L
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = SmoothCircleIC
variable = eta
x1 = 20.0
y1 = 20.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[]
[Materials]
[./mobility]
type = DerivativeParsedMaterial
f_name = variable_L
args = 'eta'
function = '0.5 * eta + 1.5 * (1 - eta)'
derivative_order = 1
outputs = exodus
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cvbubinit cvmatrixinit'
vals = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cgbubinit cgmatrixinit'
vals = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
function = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
f_name = fb
args = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
function = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
f_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
args = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
f_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
function = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
f_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
function = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
f_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
function = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
f_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
function = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
file_base = AllenCahn_out
exodus = true
[]
modules/combined/test/tests/thermal_elastic/derivatives.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./a]
[./InitialCondition]
type = RandomIC
min = -1
max = 1
[../]
[../]
[./b]
[./InitialCondition]
type = RandomIC
min = -1
max = 1
[../]
[../]
[]
[Debug]
[./MaterialDerivativeTest]
[./elastic]
prop_name = elasticity_tensor
prop_type = RankFourTensor
derivative_order = 1
args = 'a b'
[../]
[../]
[]
[Problem]
kernel_coverage_check = false
[]
[Materials]
[./youngs_modulus]
type = DerivativeParsedMaterial
f_name = youngs_modulus
function = '23.1 * a^4 + 10.7 * b^2'
args = 'a b'
[../]
[./poissons_ratio]
type = DerivativeParsedMaterial
f_name = poissons_ratio
function = '0.2 * a^2 + 0.29 * b^3'
args = 'a b'
[../]
[./elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
args = 'a b'
youngs_modulus = youngs_modulus
poissons_ratio = poissons_ratio
[../]
[]
[Executioner]
type = Steady
[]
modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 250
ymax = 250
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./c]
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./dummy]
type = MatDiffusion
variable = c
diffusivity = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[./elasticenergy]
type = ElasticEnergyMaterial
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/SplitCH/forward_split_math_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 25.0
ymax = 25.0
elem_type = QUAD
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
variable = c
x1 = 0
x2 = 25
y1 = 0
y2 = 25
[../]
[]
[Kernels]
[./cdot]
type = TimeDerivative
variable = c
[../]
[./grad_w]
type = MatDiffusion
variable = c
v = w
diffusivity = 1.0
[../]
[./grad_c]
type = MatDiffusion
variable = w
v = c
diffusivity = 2.0
[../]
[./w2]
type = CoupledMaterialDerivative
variable = w
v = c
f_name = F
[../]
[./w3]
type = CoefReaction
variable = w
coefficient = -1.0
[../]
[]
[AuxVariables]
[./local_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = F
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./kappa_c]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
function = '(1 - c)^2 * (1 + c)^2'
f_name = F
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'initial TIMESTEP_END'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_test.i
#
# Test the TotalFreeEnergy auxkernel, which outputs both the sum of the bulk and interfacial free energies. This test has only one variable.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
nz = 0
xmin = 0
xmax = 250
ymin = 0
ymax = 250
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_free_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./cIC]
type = SmoothCircleIC
variable = c
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 30.0
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_free_energy
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1e-3 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
derivative_order = 2
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_free_energy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 6
dt = 200
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = '0.1'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
args = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_tol = 1e-3
l_max_its = 20
nl_max_its = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/phase_field/test/tests/KKS_system/kks_phase_concentration.i
#
# This test validates the phase concentration calculation for the KKS system
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
# We set c and eta...
[BCs]
# (and ca for debugging purposes)
[./left]
type = DirichletBC
variable = c
boundary = 'left'
value = 0.1
[../]
[./right]
type = DirichletBC
variable = c
boundary = 'right'
value = 0.9
[../]
[./top]
type = DirichletBC
variable = eta
boundary = 'top'
value = 0.1
[../]
[./bottom]
type = DirichletBC
variable = eta
boundary = 'bottom'
value = 0.9
[../]
[]
[Variables]
# concentration
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# phase concentration a
[./ca]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[../]
# phase concentration b
[./cb]
order = FIRST
family = LAGRANGE
initial_condition = 0.3
[../]
[]
[Materials]
# simple toy free energy
[./fa]
type = DerivativeParsedMaterial
f_name = Fa
args = 'ca'
function = 'ca^2'
[../]
[./fb]
type = DerivativeParsedMaterial
f_name = Fb
args = 'cb'
function = '(1-cb)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
outputs = exodus
[../]
[]
[Kernels]
active = 'cdiff etadiff phaseconcentration chempot'
##active = 'cbdiff cdiff etadiff chempot'
#active = 'cadiff cdiff etadiff phaseconcentration'
##active = 'cadiff cbdiff cdiff etadiff'
[./cadiff]
type = Diffusion
variable = ca
[../]
[./cbdiff]
type = Diffusion
variable = cb
[../]
[./cdiff]
type = Diffusion
variable = c
[../]
[./etadiff]
type = Diffusion
variable = eta
[../]
# ...and solve for ca and cb
[./phaseconcentration]
type = KKSPhaseConcentration
ca = ca
variable = cb
c = c
eta = eta
[../]
[./chempot]
type = KKSPhaseChemicalPotential
variable = ca
cb = cb
fa_name = Fa
fb_namee = Fb
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
#solve_type = 'NEWTON'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
[]
[Preconditioning]
active = 'full'
#active = 'mydebug'
#active = ''
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = kks_phase_concentration
exodus = true
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 28
xmin = -7
xmax = 7
ymin = -7
ymax = 7
uniform_refine = 2
[]
[GlobalParams]
radius = 0.2
int_width = 0.1
x1 = 0.0
y1 = 0.0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./T]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w T'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w T'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./etaa0_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = etaa0
coef = -5.0
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w T'
f_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '33.33 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 5.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-10
end_time = 2.0
dtmax = 0.05
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 5
exodus = true
[]
modules/combined/examples/mortar/eigenstrain_action.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/phase_field/test/tests/actions/conserved_direct_1var_variable_mob.i
#
# Test consreved action for direct solve
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./cv]
solve_type = direct
free_energy = F
kappa = 2.0
mobility = M
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Materials]
[./variable_mob]
type = DerivativeParsedMaterial
f_name = M
args = 'cv'
function = '0.1 + (1 + cv)/2'
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.5
[]
[Outputs]
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -2
xmax = 2
ymin = -2
ymax = 2
uniform_refine = 2
[]
[GlobalParams]
x1 = -2
y1 = -2
x2 = 2
y2 = -1.5
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
#Temperature
[./T]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[./T]
type = FunctionAux
function = 95.0+2.0*(y-1.0*t)
variable = T
execute_on = 'initial timestep_begin'
[../]
[]
[ICs]
[./w]
type = BoundingBoxIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outside = -4.0
inside = 0.0
[../]
[./etaa0]
type = BoundingBoxIC
variable = etaa0
#Solid phase
outside = 0.0
inside = 1.0
[../]
[./etab0]
type = BoundingBoxIC
variable = etab0
#Liquid phase
outside = 1.0
inside = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w T'
f_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 100.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 3
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
modules/phase_field/test/tests/KKS_system/kks_example_offset.i
#
# KKS toy problem in the split form
# This has an offset in the minima of the free energies so there will be a shift
# in equilibrium composition
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
f_name = fd
args = 'cd'
function = '(0.9-cd)^2+0.5'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
args = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_offset
exodus = true
[]
modules/phase_field/test/tests/phase_field_kernels/CoupledCoefAllenCahn.i
#
# Test the CoefReaction kernel (which adds -L*v to the residual) for the case
# where v is a coupled variable
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
mob_name = 1
[../]
[./W]
type = MatReaction
variable = w
mob_name = -1
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
mob_name = L
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
mob_name = L
args = w
[../]
[]
[Materials]
[./mobility]
type = DerivativeParsedMaterial
f_name = L
args = 'eta w'
function = '(1.5-eta)^2+(1.5-w)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta'
function = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
hide = w
exodus = true
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
enable_jit = true
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0'
[../]
[./coupled_etaa0dot_int]
type = AntitrappingCurrent
variable = w
v = etaa0
f_name = rhodiff
[../]
[./coupled_etab0dot_int]
type = AntitrappingCurrent
variable = w
v = etab0
f_name = rhodiff
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./int]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhodiff
material_property_names = 'rhoa rhob'
constant_names = 'int_width'
constant_expressions = '0.8'
function = 'int_width*(rhob-rhoa)'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/interface_stress.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 50
ny = 50
nz = 50
xmax = 10
ymax = 10
zmax = 10
xmin = -10
ymin = -10
zmin = -10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./sphere]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2); R:=(4.0-r)/2.0; if(R>1,1,if(R<0,0,3*R^2-2*R^3))'
[../]
[]
[AuxVariables]
[./eta]
[./InitialCondition]
type = FunctionIC
function = sphere
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx'
[../]
[]
[Materials]
[./ym]
type = DerivativeParsedMaterial
f_name = ym
function = (1-eta)*7+0.5
args = eta
[../]
[./elasticity]
type = ComputeVariableIsotropicElasticityTensor
poissons_ratio = 0.45
youngs_modulus = ym
args = eta
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./interface]
type = ComputeInterfaceStress
v = eta
stress = 1.0
[../]
[]
[VectorPostprocessors]
[./line]
type = SphericalAverage
variable = 'hydrostatic_stress'
radius = 10
bin_number = 40
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
modules/phase_field/test/tests/actions/conserved_forward_split_1var.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 25.0
ymax = 25.0
elem_type = QUAD
[]
[Debug]
show_actions = true
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
solve_type = FORWARD_SPLIT
mobility = 1.0
kappa = kappa_c
free_energy = F
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
variable = c
x1 = 0.0
x2 = 25.0
y1 = 0.0
y2 = 25.0
[../]
[]
[AuxVariables]
[./local_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = F
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./kappa_c]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./free_energy]
type = DerivativeParsedMaterial
args = c
function = '(1 - c)^2 * (1 + c)^2'
f_name = F
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'initial TIMESTEP_END'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/phase_field/test/tests/actions/conserved_direct_1var.i
#
# Test consreved action for direct solve
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./cv]
solve_type = direct
free_energy = F
kappa = 2.0
mobility = 1.0
[../]
[../]
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'cv'
function = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/combined/test/tests/eigenstrain/composite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./s11]
family = MONOMIAL
order = CONSTANT
[../]
[./s22]
family = MONOMIAL
order = CONSTANT
[../]
[./ds11]
family = MONOMIAL
order = CONSTANT
[../]
[./ds22]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./ds11]
type = RankTwoAux
variable = ds11
rank_two_tensor = delastic_strain/dc
index_i = 0
index_j = 0
[../]
[./ds22]
type = RankTwoAux
variable = ds22
rank_two_tensor = delastic_strain/dc
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = 'eigenstrain'
[../]
[./eigen1]
type = GenericConstantRankTwoTensor
tensor_values = '1 -1 0 0 0 0'
tensor_name = eigen1
[../]
[./eigen2]
type = GenericConstantRankTwoTensor
tensor_values = '-1 1 0 0 0 0'
tensor_name = eigen2
[../]
[./weight1]
type = DerivativeParsedMaterial
function = 0.02*c^2
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = 0.02*(1-c)^2
f_name = weight2
args = c
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'eigen1 eigen2'
weights = 'weight1 weight2'
args = c
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
execute_on = final
[]