- TTemperature in K
C++ Type:MaterialPropertyName
Description:Temperature in K
- VaAtomic volume of lattice atoms in nm^3
C++ Type:MaterialPropertyName
Description:Atomic volume of lattice atoms in nm^3
- bHard-sphere exclusion volume of van der Waals gas atoms in nm^3
C++ Type:MaterialPropertyName
Description:Hard-sphere exclusion volume of van der Waals gas atoms in nm^3
- cgGas concentration (relative to lattice atoms)
C++ Type:std::vector
Description:Gas concentration (relative to lattice atoms)
Compute Extra Stress van der Waals Gas
Computes a hydrostatic stress corresponding to the pressure of a van der Waals gas that is added as an extra_stress to the stress computed by the constitutive model
Description
The class ComputeExtraStressVDWGas
adds an additional hydrostatic stress term, (), to the residual calculation after the constitutive model calculation of the stress, as shown in Eq. (1). This additional hydrostatic stress represents to the pressure exerted by a van der Waals gas.
The diagonal components of the stress tensor are given by (1) where is Boltzmann's constant, is the temperature, is the atomic volume of the lattice atoms in the solid surrounding the gas phase, is the local gas atomic fraction (relative to the surrounding solid), is the van der Waals gas hard-sphere exclusion volume, and for .
Example Input File Syntax
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)Input Parameters
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- nondim_factor1Optional factor to non-dimensionalize pressure (pressure is calculated in Pa, set this factor to characteristic energy density used for non-dimensionalization if desired)
Default:1
C++ Type:double
Description:Optional factor to non-dimensionalize pressure (pressure is calculated in Pa, set this factor to characteristic energy density used for non-dimensionalization if desired)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object