- C_ijklStiffness tensor for material
C++ Type:std::vector
Description:Stiffness tensor for material
Compute Elasticity Tensor
Compute an elasticity tensor.
Description
The material ComputeElasticityTensor
builds the elasticity (stiffness) tensor with various user-selected material symmetry options. ComputeElasticityTensor
also rotates the elasticity tensor during the initial time step only; this class does not rotate the elasticity tensor during the simulation. The initial rotation is only performed if the user provides arguments to the three Euler angle parameters; the Bunge Euler angles provided in this class are used to perform passive (from the sample to the crystal) rotations.
For a general stiffness tensor with 21 independent components, the elasticity tensor within the tensor mechanics module can be represented with the notation shown in Eq. (1). Nonetheless, the full Rank-4 tensor with all 81 components is created by ComputeElasticityTensor
. (1)
There are several different material symmetry options that a user can apply to build the elasticity tensor for a mechanics simulation that are discussed below.
General Symmetry
The fill method symmetric21
is used to create the elasticity tensor for a linear hyperelastic material with 21 independent components: the symmetries shown in Eq. (2) are used to determine the independent components (Slaughter, 2012). (2)
Example Input File Syntax
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl = '1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
(modules/combined/test/tests/linear_elasticity/tensor.i)/opt/civet/build_0/moose/modules/combined/test/tests/linear_elasticity/tensor.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 2'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = '1 3'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 2'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.02
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
which shows the expected order of the elasticity tensor components in the input argument string.
Orthotropic Symmetry
The fill method symmetric9
is appropriate for materials with three orthotropic planes of symmetry (Malvern, 1969), and is often used for simulations of anistropic materials such as cubic crystals. The enginering elasticity tensor notation, Eq. (1), for an orthotropic material is given in Eq. (3) (3)
Example Input File Syntax
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i)/opt/civet/build_0/moose/modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
In the Einstein index notation shown in Eq. (1), the parameter C_ijkl
expects the elasticity components in the order C_ijkl = '1111 1122 1133 2222 2233 3333 2323 3131
1212'
for the symmetric9
fill method option.
Linear Isotropic Symmetry
The two constant istropic symmetry fill methods symmetric_isotropic
and symmetric_isotropic_E_nu
are used in the dedicated isotropic elasticity tensor ComputeIsotropicElasticityTensor. These two fill methods use the symmetries shown in Eq. (4) to build the elasticity tensor. (4) Please see the documentation page for ComputeIsotropicElasticityTensor for details and examples of the input file syntax for linear elastic isotropic elasticity tensors.
Antisymmetric Isotropic Symmetry
The fill method antisymmetric_isotropic
is used for an antisymmetric isotropic material in a shear case. The elasticity tensor is built using the symmetries shown in Eq. (5) (5) where is the permutation tensor and is the summation index.
Transverse Isotropic (Axisymmetric)
The fill method axisymmetric_rz
is used for materials which are isotropic with respect to an axis of symmetry, such as a material composed of fibers which are parallel to the axis of symmetry (Slaughter, 2012). The engineering notation matrix in this case is shown by Eq. (6). (6)
Example Input File Syntax
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
(modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i)/opt/civet/build_0/moose/modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = right
component = 0
factor = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
In the Einstein index notation shown in Eq. (1), the parameter C_ijkl
expects the elasticity components in the order C_ijkl = '1111, 1122, 1133, 3333, 2323'
for the axisymmetric_rz
fill method option.
Principal Directions for Stress and Strain
The fill method principal
is appropriate for the case when the principal directions of strain and stress align. The engineering notation representation of the elasticity tensor is shown in Eq. (7). (7)
In the Einstein index notation shown in Eq. (1), the parameter C_ijkl
expects the elasticity components in the order C_ijkl = '1111 1122 1133 2211 2222 2233 3311 3322
3333'
for the principal
fill method option.
Cosserat Elasticity Specific Fill Methods
The following fill methods are available within ComputeElasticityTensor
, but the use cases for these methods fall within the Cosserat applications which do not preserve the equilibruim of angular momentum.
General Isotropic Symmetry
The fill method general_isotropic
is used for the case of three independent components of an elasticity tensor, Eq. (8). (8)
This fill method case is used in the child class ComputeCosseratElasticityTensor; please see the documentation for ComputeCosseratElasticityTensor for details and examples of the input file syntax.
General Antisymmetric
The fill method antisymmetric
builds an antisymmetric elasticity tensor for a shear-only case. The symmetries shown in Eq. (9) are used to create the complete tensor (9) and the engineering notation representation of the anitsymmetric elasticity tensor is given in Eq. (10). (10)
This fill method case is used in the child class ComputeCosseratElasticityTensor; please see the documentation for ComputeCosseratElasticityTensor for details and examples of the input file syntax.
No Symmetry
The general
fill method for the Compute Elasticity Tensor class does not make any assumptions about symmetry for the elasticity tensor and requires all 81 components of the stiffness tensor as an input string. This fill method case is used in the child class ComputeCosseratElasticityTensor; please see the documentation for ComputeCosseratElasticityTensor for details and examples of the input file syntax.
Input Parameters
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Options:
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE ELEMENT SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- elasticity_tensor_prefactorOptional function to use as a scalar prefactor on the elasticity tensor.
C++ Type:FunctionName
Options:
Description:Optional function to use as a scalar prefactor on the elasticity tensor.
- euler_angle_10Euler angle in direction 1
Default:0
C++ Type:double
Options:
Description:Euler angle in direction 1
- euler_angle_20Euler angle in direction 2
Default:0
C++ Type:double
Options:
Description:Euler angle in direction 2
- euler_angle_30Euler angle in direction 3
Default:0
C++ Type:double
Options:
Description:Euler angle in direction 3
- fill_methodsymmetric9The fill method
Default:symmetric9
C++ Type:MooseEnum
Options:antisymmetric symmetric9 symmetric21 general_isotropic symmetric_isotropic symmetric_isotropic_E_nu antisymmetric_isotropic axisymmetric_rz general principal
Description:The fill method
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- modules/tensor_mechanics/test/tests/tensile/planar4.i
- modules/tensor_mechanics/test/tests/tensile/random_smoothed.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random1.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i
- modules/tensor_mechanics/test/tests/tensile/planar5.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform2.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_tip.i
- modules/porous_flow/test/tests/jacobian/denergy04.i
- modules/tensor_mechanics/test/tests/jacobian/cto09.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i
- modules/porous_flow/test/tests/poro_elasticity/terzaghi_basicthm.i
- modules/tensor_mechanics/test/tests/ad_linear_elasticity/tensor.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
- modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform6.i
- modules/porous_flow/test/tests/jacobian/mass10.i
- modules/tensor_mechanics/test/tests/jacobian/cto16.i
- modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i
- modules/tensor_mechanics/test/tests/finite_strain_jacobian/3d_bar.i
- modules/porous_flow/test/tests/mass_conservation/mass04.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard5.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform24.i
- modules/tensor_mechanics/test/tests/czm/czm_3DC_3D_base_input.i
- modules/porous_flow/test/tests/jacobian/mass_vol_exp01.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/finite_strain_jacobian/bending_jacobian.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform13.i
- modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined2.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_native.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_outer_tip.i
- modules/tensor_mechanics/test/tests/multi/three_surface09.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i
- modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard2.i
- modules/tensor_mechanics/test/tests/tensile/small_deform6_update_version.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard1.i
- modules/tensor_mechanics/test/tests/multi/two_surface01.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i
- modules/tensor_mechanics/test/tests/jacobian/cto10.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i
- modules/tensor_mechanics/test/tests/tensile/small_deform3_update_version.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform17.i
- modules/tensor_mechanics/test/tests/jacobian/cto07.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform2.i
- modules/tensor_mechanics/test/tests/multi/three_surface08.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/throw_test.i
- modules/tensor_mechanics/test/tests/ad_pressure/pressure_test.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i
- modules/tensor_mechanics/test/tests/tensile/small_deform3.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
- modules/combined/test/tests/linear_elasticity/extra_stress.i
- modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i
- modules/tensor_mechanics/test/tests/jacobian/cto05.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_inner_tip.i
- modules/tensor_mechanics/test/tests/multi/paper1.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except5.i
- modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard4.i
- modules/tensor_mechanics/test/tests/auxkernels/tensorelasticenergyaux.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except3.i
- modules/tensor_mechanics/test/tests/multi/three_surface05.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_edge.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform3.i
- modules/tensor_mechanics/test/tests/jacobian/cto22.i
- modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i
- modules/tensor_mechanics/test/tests/multi/three_surface21.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform7.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i
- modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i
- modules/tensor_mechanics/test/tests/tensile/planar8.i
- modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i
- modules/tensor_mechanics/test/tests/j2_plasticity/hard1.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform4.i
- modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except4.i
- modules/tensor_mechanics/test/tests/mean_cap/small_deform1.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
- modules/combined/test/tests/cavity_pressure/initial_temperature.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_basicthm.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform1.i
- modules/porous_flow/test/tests/jacobian/desorped_mass01.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion.i
- modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/many_deforms_cap.i
- modules/tensor_mechanics/test/tests/multi/special_rock1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_fullysat_action.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar1.i
- modules/tensor_mechanics/test/tests/multi/eight_surface14.i
- modules/tensor_mechanics/test/tests/multi/two_surface02.i
- modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_edge.i
- modules/tensor_mechanics/test/tests/tensile/small_deform4.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform4.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random4.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
- modules/combined/examples/phase_field-mechanics/Pattern1.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
- modules/tensor_mechanics/test/tests/anisotropic_patch/anisotropic_patch_test.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_native.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform1_uo.i
- modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i
- modules/tensor_mechanics/test/tests/CylindricalRankTwoAux/test.i
- modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i
- modules/tensor_mechanics/test/tests/multi/three_surface15.i
- modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i
- modules/tensor_mechanics/test/tests/multi/six_surface14.i
- modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i
- modules/porous_flow/test/tests/energy_conservation/heat04_action.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_tip.i
- modules/porous_flow/test/tests/energy_conservation/heat04.i
- modules/porous_flow/test/tests/poro_elasticity/terzaghi_fully_saturated_volume.i
- modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
- modules/tensor_mechanics/test/tests/multi/three_surface00.i
- modules/combined/test/tests/eigenstrain/variable.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except4.i
- modules/combined/test/tests/linear_elasticity/thermal_expansion.i
- modules/porous_flow/test/tests/energy_conservation/heat05.i
- modules/tensor_mechanics/test/tests/jacobian/cto11.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i
- modules/tensor_mechanics/test/tests/jacobian/cto02.i
- modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i
- modules/tensor_mechanics/test/tests/tensile/random_update.i
- modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i
- modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_fake_plastic.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random3.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined5.i
- modules/tensor_mechanics/test/tests/jacobian/poro01.i
- modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i
- modules/combined/test/tests/eigenstrain/inclusion.i
- modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except1.i
- modules/tensor_mechanics/test/tests/multi/two_surface04.i
- modules/tensor_mechanics/test/tests/mean_cap/random.i
- modules/tensor_mechanics/test/tests/multi/three_surface03.i
- modules/tensor_mechanics/test/tests/multi/three_surface16.i
- modules/tensor_mechanics/test/tests/jacobian/cto15.i
- modules/combined/test/tests/multiphase_mechanics/twophasestress.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
- modules/porous_flow/test/tests/poro_elasticity/mandel.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform7.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_lode_zero.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_lode_zero.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform5.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2_small_strain.i
- modules/tensor_mechanics/test/tests/multi/four_surface24.i
- modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i
- modules/tensor_mechanics/test/tests/tensile/planar3.i
- modules/porous_flow/test/tests/jacobian/desorped_mass_vol_exp01.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform23.i
- modules/tensor_mechanics/test/tests/multi/three_surface06.i
- modules/tensor_mechanics/test/tests/multi/rock1.i
- modules/tensor_mechanics/test/tests/jacobian/cto17.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/random03.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i
- modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i
- modules/combined/test/tests/poro_mechanics/borehole_lowres.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except2.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i
- modules/combined/test/tests/linear_elasticity/linear_elastic_material.i
- modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i
- modules/tensor_mechanics/test/tests/tensile/small_deform5_update_version.i
- modules/tensor_mechanics/test/tests/pressure/pressure_test.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform_harden3.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
- modules/tensor_mechanics/test/tests/jacobian/cto23.i
- modules/tensor_mechanics/test/tests/tensile/small_deform5.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i
- modules/tensor_mechanics/test/tests/tensile/small_deform8_update_version.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
- modules/tensor_mechanics/test/tests/jacobian/cto01.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i
- modules/tensor_mechanics/test/tests/jacobian/cto21.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform21.i
- modules/tensor_mechanics/test/tests/multi/three_surface01.i
- modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i
- modules/porous_flow/test/tests/plastic_heating/compressive01.i
- modules/combined/test/tests/poro_mechanics/pp_generation.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i
- modules/porous_flow/test/tests/jacobian/mass08.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform6.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform8.i
- modules/tensor_mechanics/test/tests/multi/two_surface03.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i
- modules/porous_flow/test/tests/jacobian/mass_vol_exp02.i
- modules/porous_flow/test/tests/jacobian/denergy02.i
- modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_outer_tip.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/tensor_mechanics/test/tests/tensile/small_deform7.i
- modules/tensor_mechanics/test/tests/jacobian/cto14.i
- modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform3.i
- modules/tensor_mechanics/test/tests/multi/four_surface14.i
- modules/porous_flow/test/tests/plastic_heating/tensile01.i
- modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform5.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard2.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_lode_zero.i
- modules/combined/test/tests/linear_elasticity/applied_strain.i
- modules/tensor_mechanics/test/tests/jacobian/cto13.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i
- modules/tensor_mechanics/test/tests/ad_finite_strain_jacobian/3d_bar.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard_cubic.i
- modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
- modules/combined/test/tests/poro_mechanics/terzaghi.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform2.i
- modules/tensor_mechanics/test/tests/multi/three_surface22.i
- modules/tensor_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_basicthm.i
- modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform3.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/random.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i
- modules/tensor_mechanics/test/tests/tensile/small_deform_hard3_update_version.i
- modules/tensor_mechanics/test/tests/multi/three_surface14.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform9.i
- modules/tensor_mechanics/test/tests/jacobian/cto18.i
- modules/combined/examples/periodic_strain/global_strain_pfm.i
- modules/tensor_mechanics/test/tests/multi/two_surface05.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/random.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/random04.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_outer_tip.i
- modules/tensor_mechanics/test/tests/multi/three_surface07.i
- modules/tensor_mechanics/test/tests/tensile/small_deform1.i
- modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i
- modules/tensor_mechanics/test/tests/tensile/small_deform2.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except3.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/random02.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform12.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform2.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform3.i
- modules/tensor_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform10.i
- modules/tensor_mechanics/test/tests/multi/special_joint1.i
- modules/combined/test/tests/eigenstrain/variable_finite.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i
- modules/tensor_mechanics/test/tests/multi/three_surface11.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform16.i
- modules/combined/test/tests/poro_mechanics/mandel.i
- modules/combined/test/tests/poro_mechanics/borehole_highres.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_inner_edge.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
- modules/tensor_mechanics/test/tests/multi/three_surface10.i
- modules/tensor_mechanics/test/tests/tensile/small_deform2_update_version.i
- modules/tensor_mechanics/test/tests/jacobian/cto12.i
- modules/tensor_mechanics/test/tests/tensile/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform1.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
- modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform4.i
- modules/porous_flow/test/tests/energy_conservation/heat03.i
- modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i
- modules/tensor_mechanics/test/tests/jacobian/cto08.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform3.i
- modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform2.i
- modules/tensor_mechanics/test/tests/tensile/planar2.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random2.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i
- modules/combined/test/tests/linear_elasticity/tensor.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i
- modules/tensor_mechanics/test/tests/j2_plasticity/hard2.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_native.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except1.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i
- modules/combined/test/tests/poro_mechanics/selected_qp.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard3.i
- modules/tensor_mechanics/test/tests/homogenization/anisoShortFiber.i
- modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
- modules/porous_flow/test/tests/energy_conservation/heat04_fullysat_action.i
- modules/combined/test/tests/phase_field_fracture/void2d_iso.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined3.i
- modules/tensor_mechanics/test/tests/tensile/random_planar.i
- modules/tensor_mechanics/test/tests/homogenization/anisoLongFiber.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
- modules/tensor_mechanics/test/tests/ad_finite_strain_jacobian/bending_jacobian.i
- modules/porous_flow/test/tests/energy_conservation/heat04_action_KT.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform2.i
- modules/combined/test/tests/multiphase_mechanics/multiphasestress.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform1.i
- modules/tensor_mechanics/test/tests/tensile/small_deform1_update_version.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform7.i
- modules/tensor_mechanics/test/tests/multi/three_surface13.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform3.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform4.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform18.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform3.i
- modules/tensor_mechanics/test/tests/multi/three_surface02.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform6.i
- modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_eigen_sol.i
- modules/combined/test/tests/DiffuseCreep/stress.i
- modules/tensor_mechanics/test/tests/jacobian/cto03.i
- modules/tensor_mechanics/test/tests/auxkernels/principalstress.i
- modules/tensor_mechanics/test/tests/elasticitytensor/composite.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/random01.i
- modules/tensor_mechanics/test/tests/tensile/planar1.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_outer_tip.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform5.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_direction.i
- modules/combined/test/tests/linear_elasticity/linear_anisotropic_material.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/random_planar.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar3.i
- modules/tensor_mechanics/test/tests/tensile/small_deform6.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_action.i
- modules/tensor_mechanics/test/tests/jacobian/cto06.i
- modules/tensor_mechanics/test/tests/multi/three_surface12.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
- modules/porous_flow/test/tests/jacobian/denergy05.i
- modules/combined/examples/phase_field-mechanics/Nonconserved.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
- modules/tensor_mechanics/test/tests/multi/three_surface20.i
- modules/tensor_mechanics/test/tests/drucker_prager/random_hyperbolic.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard1.i
- modules/combined/test/tests/poro_mechanics/jacobian1.i
- modules/combined/test/tests/poro_mechanics/undrained_oedometer.i
- modules/tensor_mechanics/test/tests/tensile/planar6.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except2.i
- modules/porous_flow/test/tests/jacobian/fflux08.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
- modules/tensor_mechanics/test/tests/multi/paper3.i
- modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i
- modules/tensor_mechanics/test/tests/multi/paper5.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform_hard13.i
- modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_inner_tip.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
- modules/tensor_mechanics/test/tests/jacobian/cto19.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2.i
- modules/combined/examples/mortar/eigenstrain.i
- modules/porous_flow/test/tests/poro_elasticity/terzaghi.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform6.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
- modules/tensor_mechanics/test/tests/gravity/gravity_test.i
- modules/porous_flow/test/tests/jacobian/denergy03.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform15.i
- modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i
- modules/tensor_mechanics/test/tests/mean_cap/small_deform2.i
- modules/tensor_mechanics/test/tests/multi/three_surface04.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i
- modules/tensor_mechanics/test/tests/tensile/planar7.i
- modules/tensor_mechanics/test/tests/jacobian/cto04.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform11.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_native.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform5.i
- modules/tensor_mechanics/test/tests/jacobian/cto20.i
- modules/combined/examples/mortar/eigenstrain_action.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_action.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform8.i
- modules/porous_flow/test/tests/plastic_heating/shear01.i
- modules/combined/test/tests/eigenstrain/composite.i
modules/tensor_mechanics/test/tests/tensile/planar4.i
# A single unit element is stretched by 1E-6m in z direction.
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_zz = 2.6 Pa
# stress_xx = 0.6 Pa
# stress_yy = 0.6 Pa
# tensile_strength is set to 0.5Pa
#
# The return should be to a plane (but the algorithm
# will try tip-return first), with
# stress_zz = 0.5
# plastic multiplier = 2.1/2.6 E-6
# stress_xx = 0.6 - (2.1/2.6*0.6) = 0.115
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = tens
debug_fspb = none
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/random_smoothed.i
# Plasticity models:
# Smoothed tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 20
min_stepsize = 1E-4
max_stepsize_for_dumb = 1E-3
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random_smoothed
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random1.i
# Using CappedMohrCoulomb with tensile failure only
# Plasticity models:
# Tensile strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 0
internal_limit = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 1E5
max_NR_iterations = 100
yield_function_tol = 1.0E-1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random1
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i
# checking for small deformation
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialRealAux
property = weak_plane_tensile_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = -1.0
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar5.i
# A single unit element is stretched by 1E-6m in z direction.
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_zz = 2.6 Pa
# stress_xx = 0.6 Pa
# stress_yy = 0.6 Pa
# tensile_strength is set to 0.5Pa with cubic hardening to 1Pa at intnl=1E-6
#
# The return should be to a plane (but the algorithm
# will try tip-return first), with, according to mathematica
# plastic_multiplier = 6.655327991E-7
# stress_zz = 0.869613817289
# stress_xx = 0.20068032054
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 1
internal_limit = 1E-6
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = tens
debug_fspb = none
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform2.i
# UserObject J2 test
# apply uniform stretch in z direction to give
# trial stress_zz = 7, so sqrt(3*J2) = 7
# with zero Poisson's ratio, this should return to
# stress_zz = 3, stress_xx = 2 = stress_yy
# (note that stress_zz - stress_xx = stress_zz - stress_yy = 1, so sqrt(3*j2) = 1,
# and that the mean stress remains = 7/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = inner_tip
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/denergy04.i
# 2phase, 1 component, with solid displacements, time derivative of energy-density, THM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pgas]
[../]
[./pwater]
[../]
[./temp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pgas]
type = RandomIC
variable = pgas
max = 1.0
min = 0.0
[../]
[./pwater]
type = RandomIC
variable = pwater
max = 0.0
min = -1.0
[../]
[./temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./dummy_pgas]
type = Diffusion
variable = pgas
[../]
[./dummy_pwater]
type = Diffusion
variable = pwater
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas temp pwater disp_x disp_y disp_z'
number_fluid_phases = 2
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
cv = 0.7
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
ensure_positive = false
porosity_zero = 0.7
thermal_expansion_coeff = 0.7
biot_coefficient = 0.9
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/tensor_mechanics/test/tests/jacobian/cto09.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface14.i
# Plasticity models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 0.15 and stress_zz = 1.5
#
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# Then all three will be active, but there is linear-dependence.
# SimpleTester1 will turn off, since it is closest,
# and the algorithm will return to stress_zz=1, stress_yy=2, but
# then SimpleTester1 will be positive, so it will be turned back
# on, and then SimpleTester0 or SimpleTester2 will be turned off
# (a random choice will be made).
# If SimpleTester2 is turned
# off then algorithm returns to stress_zz=1=stress_yy, but then
# SimpleTester2 violates Kuhn-Tucker (f<0 and pm>0), so the algorithm
# will restart, and return to stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
# If SimpleTester0 is turned off then the algorithm will return to
# stress_zz=2, stress_yy=1, where f0>0. Once again, a random choice
# of turning off SimpleTester1 or SimpleTester2 can be made. Hence,
# oscillations can occur. If too many oscillations occur then the algorithm
# will fail
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 2.1 0 0 0 3.0'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i
# Wave propogation in 1D using HHT time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*((1+alpha)*disp-alpha*disp_old) = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.097405701570538350e-02, 2.113131879547342634e-02 and -5.182787688751439893e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = vel_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = vel_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = vel_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = vel_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/porous_flow/test/tests/poro_elasticity/terzaghi_basicthm.i
# Using a BasicTHM action
# Terzaghi's problem of consolodation of a drained medium
# The FullySaturated Kernels are used, with multiply_by_density = false
# so that this becomes a linear problem with constant Biot Modulus
# Also, since the FullySaturated Kernels are used, we have to
# use consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 8.0
viscosity = 0.96
density0 = 1.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.6
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
fluid_bulk_modulus = 8
solid_bulk_compliance = 0.25
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_basicthm
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_linear_elasticity/tensor.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 2
ymax = 2
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
use_automatic_differentiation = true
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = 'bottom top'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = 'left right'
value = 0.02
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = right
component = 0
constant = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = eta
args = 'eta'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform6.i
# apply repeated stretches in z direction, and smaller stretches in the x and y directions
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# The allows yield surface in meridional plane to be mapped out
# Using cap smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.9E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.9E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0
cap_start = 3
cap_rate = 0.8
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/mass10.i
# 1phase
# vanGenuchten, constant-bulk density, HM porosity, 1component, unsaturated
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pp]
type = RandomIC
variable = pp
min = -1
max = 1
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
strain_at_nearest_qp = true
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
strain_at_nearest_qp = true
[../]
[./nearest_qp]
type = PorousFlowNearestQp
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/tensor_mechanics/test/tests/jacobian/cto16.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the tip of the tensile yield surface
# This is a very nonlinear test and a delicate test because it perturbs around
# a tip of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '15 1 0.2 1 10 -0.3 -0.3 0.2 8'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto16
exodus = false
csv = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_vol_dev
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0 0 0 5e9 5e9 5e9'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e01]
type = ElementL2Error
variable = e01
function = 0.095 #Shear strain check
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/finite_strain_jacobian/3d_bar.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 10
nx = 10
ny = 2
nz = 2
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_side_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./move_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.2
dtmin = 0.2
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/mass_conservation/mass04.i
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
# Fluid mass conservation is checked.
#
# Under these conditions
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it comes from preserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
initial_condition = 0.1
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = mass04
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard5.i
# apply repeated stretches in z direction, and smaller stretches along the y direction, and compression along x direction
# Both return to the plane and edge (lode angle = 30deg, ie 010100) are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E6*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 5
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard5
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform24.i
# apply repeated stretches in z directions, and smaller stretches along the x and y directions,
# so that sigma_mid = sigma_min (approximately),
# which means that lode angle = -30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 5.0
yield_function_tol = 1.0E-7
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform24
csv = true
[]
modules/tensor_mechanics/test/tests/czm/czm_3DC_3D_base_input.i
[Mesh]
[./msh]
type = GeneratedMeshGenerator
[]
[./subdomain_1]
type = SubdomainBoundingBoxGenerator
input = msh
bottom_left = '0 0 0'
block_id = 1
top_right = '0.5 1 1'
[]
[./subdomain_2]
type = SubdomainBoundingBoxGenerator
input = subdomain_1
bottom_left = '0.5 0 0'
block_id = 2
top_right = '1 1 1'
[]
[./breakmesh]
input = subdomain_2
type = BreakMeshByBlockGenerator
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_yz stress_xz stress_xy'
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm1]
boundary = 'interface'
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = left
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = left
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
preset = false
boundary = left
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = right
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = right
[../]
[./right_z]
type = FunctionDirichletBC
variable = disp_z
preset = false
boundary = right
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2'
fill_method = symmetric_isotropic
C_ijkl = '0.3 0.5e8'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./czm_3dc]
type = SalehaniIrani3DCTraction
boundary = 'interface'
normal_gap_at_maximum_normal_traction = 1
tangential_gap_at_maximum_shear_traction = 0.5
maximum_normal_traction = 100
maximum_shear_traction = 70
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
solve_type = NEWTON
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
nl_max_its = 5
l_tol = 1e-10
l_max_its = 50
start_time = 0.0
dt = 0.2
end_time = 5
dtmin = 0.2
line_search = none
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./sxx]
type = SideAverageValue
variable = stress_xx
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./syy]
type = SideAverageValue
variable = stress_yy
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./szz]
type = SideAverageValue
variable = stress_zz
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./syz]
type = SideAverageValue
variable = stress_yz
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./sxz]
type = SideAverageValue
variable = stress_xz
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./sxy]
type = SideAverageValue
variable = stress_xy
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'interface'
[../]
[./disp_x]
type = SideAverageValue
variable = disp_x
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'right'
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'right'
[../]
[./disp_z]
type = SideAverageValue
variable = disp_z
execute_on = 'INITIAL TIMESTEP_END'
boundary = 'right'
[../]
[]
modules/porous_flow/test/tests/jacobian/mass_vol_exp01.i
# Tests the PorousFlowMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, constant porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[./p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[../]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[./disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[../]
[./disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1E20
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i
# Checking evolution tensile strength
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 4
rate = 1E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/finite_strain_jacobian/bending_jacobian.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
nx = 10
ny = 2
elem_type = QUAD4
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '10 0'
input = corner
[]
[mid]
type = ExtraNodesetGenerator
new_boundary = 103
coord = '5 2'
input = side
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./move_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 103
function = '-t'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.1
dtmin = 0.1
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i
# Checking solution of hardening
# A single element is stretched by 1E-6 in z direction.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Exp(-1E6*q) Pa
#
# The trial stress is
# trial_stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
#
# Therefore the equations we have to solve are
# 0 = f = stress_zz - 10 Exp(-1E6*q)
# 0 = epp = ga - (20 - stress_zz)/2E7
# 0 = intnl = q - ga
#
# The result is
# q = 0.76803905E-6
# stress_zz = 4.6392191 Pa
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 0
rate = 1E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform13.i
# Using CappedMohrCoulomb with compressive failure only
# checking for small deformation
# A single element is compressed by "ep" in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# where sigma_I = (E_2222 + E_2200) * ep
# compressive_strength is set to 1Pa, smoothing_tol = 0.1Pa
# The smoothed yield function is
# yf = -sigma_I + ismoother(0) - compressive_strength
# = -sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - compressive_strength
# = -sigma_I - 0.98183
#
# With zero Poisson's ratio, the return stress will be
# stress_00 = stress_22 = 0.98183
# with all other stress components being zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-0.25E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-0.25E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform13
csv = true
[]
modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = 'diffuse gb_relax'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined2.i
# Plastic deformation, tensile failure, with normal=(1,0,0)
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = t
# should yield trial stress:
# stress_xx = 2*t
# Use tensile strength = 1, we should return to stress_xx = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 0
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '1 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined2
csv = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i
# Elastic deformation.
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# should yield stress:
# stress_xz = 8*t
# stress_xy = 6*t
# stress_zz = 2*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = ''
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
csv = true
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_native.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = native
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = cdp
perform_finite_strain_rotations = false
[../]
[./cdp]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 4
smoothing_tol = 1E-5
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_outer_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = outer_tip
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = cdp
perform_finite_strain_rotations = false
[../]
[./cdp]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 4
smoothing_tol = 1E-5
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface09.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0.0E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 0.0
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# However, this will mean that internal2<0, so SimpleTester2 will be deactivated
# and the algorithm will return to stress_yy=1
# internal1 should be 1.0, and internal2 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface09
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/s. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In standard porous_flow, everything is based on mass, eg the source has
# units kg/s/m^3. This is discussed in the other pp_generation_unconfined
# models. In this test, we use the FullySaturated Kernel and set
# multiply_by_density = false
# meaning the fluid Kernel has units of volume, and the source, s, has units 1/time
#
# The ratios are:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
#
# Finally, note that the volumetric strain has
# consistent_with_displaced_mesh = false
# which is needed when using the FullySaturated version of the Kernels
# in order to generate the above results
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
multiply_by_density = false
coupling_type = HydroMechanical
biot_coefficient = 0.3
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature_qp]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated_volume
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./Pressure]
[./top]
boundary = top
function = 0.3
[../]
[./bottom]
boundary = bottom
function = 0.3
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 0.3, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 0.3t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 0.3t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 0.3t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./p_does_not_really_diffuse]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_z
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'p'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = p
capillary_pressure = pc
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard2.i
# apply uniform stretches in x, y and z directions.
# let friction_angle = 60deg, friction_angle_residual=10deg, friction_angle_rate = 0.5E4
# With cohesion = C, friction_angle = phi, tip_smoother = T, the
# algorithm should return to
# sigma_m = (C*Cos(phi) - T)/Sin(phi)
# Or, when T=C,
# phi = 2*pi*n - 2*arctan(sigma_m/C)
# This allows checking of the relationship for phi
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 1.04719755 # 60deg
value_residual = 0.17453293 # 10deg
rate = 0.5E4
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 10
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-3
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform6_update_version.i
# checking for small deformation
# A single element is incrementally stretched in the in the z direction
# This causes the return direction to be along the hypersurface sigma_II = sigma_III,
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = 'y*(t-0.5)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'z*(t-0.5)'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform6_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform1.i
# rotate the mesh by 90degrees
# then pull in the z direction - should be no plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0*y+1*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0*y+1*z-y'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform1
[./csv]
type = CSV
[../]
[./exodus]
type = Exodus
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard1.i
# apply uniform stretches in x, y and z directions.
# let mc_cohesion = 10, mc_cohesion_residual = 2, mc_cohesion_rate =
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (C*Cos(60) - 4)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 2
rate = 1E4
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-4
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-8
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/two_surface01.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in the z directions.
# stress_zz = 1.5
#
# Then only the first SimpleTester should activate, and the final stress
# should have have only nonzero component stress_zz = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface01
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i
# apply repeated stretches to observe cohesion hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 4E4
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i
# Plastic deformation, tensile failure, with normal=(1,0,0)
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = t
# should yield trial stress:
# stress_xx = 2*t
# Use tensile strength = 1, we should return to stress_xx = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 0
[../]
[]
[AuxVariables]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '0 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = except6
csv = true
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto10.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/six_surface14.i
# Plasticity models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 2.1 0 0 0 3.0'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 5Pa
# Since maximum stress which is 2Pa is less than tension cutoff, plastic yeilding shoud not be observed.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 5
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform3_update_version.i
# Using TensileStressUpdate
# checking for small deformation
# A single element is stretched by "ep" in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# where sigma_I = (E_2222 + E_2200) * ep
# tensile_strength is set to 1Pa, smoothing_tol = 0.1Pa
# The smoothed yield function is
# yf = sigma_I + ismoother(0) - tensile_strength
# = sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - tensile_strength
# = sigma_I - 0.98183
#
# With zero Poisson's ratio, the return stress will be
# stress_00 = stress_22 = 0.98183
# with all other stress components being zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.1
yield_function_tol = 1.0E-9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform17.i
# Using CappedMohrCoulomb with compressive failure only
# A single element is incrementally compressed
# This causes the return direction to be along the hypersurface sigma_II = sigma_III
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-2*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-2*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-0.4*z*(t+2*t*t)'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform17
csv = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto07.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface11.i
# Plasticity models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 0 and stress_zz = 2
#
# Then SimpleTester0 should activate and the algorithm will return to
# stress_zz=1
# internal0 should be 1.0E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 0 0 0 2'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source, s, has units m^3/second/m^3. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/second/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
constant_fluid_bulk_modulus = 3.3333333333
constant_biot_modulus = 10.0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_constM
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform2.i
# Plastic deformation, tensile failure
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = t
# should yield trial stress:
# stress_zz = 2*t
# Use tensile strength = 1, we should return to stress_zz = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface08.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0.5E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 0.5
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# internal1 should be 1.0, and internal2 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface08
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/throw_test.i
# Illustrates throwing an Exception from a Material. In this case we
# don't actually recover from the segfault (so it is a RunException
# test) but in practice one could do so. The purpose of this test is
# to ensure that exceptions can be thrown from Materials with stateful
# material properties without reading/writing to/from uninitialized
# memory.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 2
internal_limit = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
dtmin = 1
type = Transient
[]
[Outputs]
file_base = SEGFAULT
csv = true
[]
modules/tensor_mechanics/test/tests/ad_pressure/pressure_test.i
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i
# A beam with its ends fully clamped
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 10
nz = 10
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -50
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./gravity_y]
type = Gravity
use_displaced_mesh = false
variable = disp_y
value = -10
[../]
[]
[BCs]
[./zmax_xfixed]
type = DirichletBC
variable = disp_x
boundary = front
value = 0
[../]
[./zmax_yfixed]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./zmax_zfixed]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./zmin_xfixed]
type = DirichletBC
variable = disp_x
boundary = back
value = 0
[../]
[./zmin_yfixed]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./zmin_zfixed]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 2E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.5
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 0
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 1E5
smoothing_tol = 1E5
yield_function_tol = 1E-5
perfect_guess = true
min_step_size = 0.1
[../]
[./density]
type = GenericFunctionMaterial
block = 0
prop_names = density
prop_values = 1E3*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = beam
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/tensile/small_deform3.i
# checking for small deformation
# A single element is stretched by "ep" in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# tensile_strength is set to 1Pa, tip_smoother = 0, edge_smoother = 25degrees
# Then A + B + C = 0.609965
#
# The trial stress is (la, 0, la), with mean stress 2la/3, and bar(sigma)=sqrt(secondInvariant)=la/sqrt(3)
# If this sits on the yield surface then
# 2la/3 + la*K/sqrt(3) - 1 = 0
# So la = 0.9815. Therefore, with young's modulus = 2MPa, we need "ep" = 0.9815/4. I set
# "ep" = 0.25 and observe a tiny amount of yielding
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.0
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
# This is identical to vol_expansion.i, but uses the PoroMechanics action
#
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./PoroMechanics]
porepressure = p
displacements = 'disp_x disp_y disp_z'
[../]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion_action
exodus = true
[]
modules/combined/test/tests/linear_elasticity/extra_stress.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 128
ny = 1
xmax = 3.2
ymax = 0.025
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = -1
y1 = -1
x2 = 1.6
y2 = 1
inside = 0
outside = 1
block = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '104 74 74 104 74 104 47.65 47.65 47.65'
fill_method = symmetric9
base_name = matrix
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
base_name = matrix
[../]
[./strain]
type = ComputeSmallStrain
block = 0
base_name = matrix
[../]
[./elasticity_tensor_ppt]
type = ComputeElasticityTensor
block = 0
C_ijkl = '0.104 0.074 0.074 0.104 0.074 0.104 0.04765 0.04765 0.04765'
fill_method = symmetric9
base_name = ppt
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
block = 0
base_name = ppt
[../]
[./strain_ppt]
type = ComputeSmallStrain
block = 0
base_name = ppt
[../]
[./const_stress]
type = ComputeExtraStressConstant
block = 0
base_name = ppt
extra_stress_tensor = '-0.288 -0.373 -0.2747 0 0 0'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = c
[../]
[]
[BCs]
active = 'left_x right_x bottom_y top_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i
[Mesh]
displacements = 'disp_x disp_y disp_z'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[node]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = node
[]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = disp_x
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = disp_y
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = disp_y
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = disp_z
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./L2norm]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = Hydrostatic
[../]
[./L2norm]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = L2norm
scalar_type = L2norm
[../]
[./peeq]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
variable = peeq
scalar_type = EffectiveStrain
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
block = 'ANY_BLOCK_ID 0'
[../]
[./hydrostatic]
type = ElementAverageValue
variable = hydrostatic
block = 'ANY_BLOCK_ID 0'
[../]
[./L2norm]
type = ElementAverageValue
variable = L2norm
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 100
slope = 10
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_linear_harden
exodus = true
csv = false
[]
modules/tensor_mechanics/test/tests/jacobian/cto05.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface04.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 0.8 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# internal0 should be 0.2E-6, and internal2 should be 0.3E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0.8 0 0 0 1.5'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform2_inner_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = inner_tip
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = cdp
perform_finite_strain_rotations = false
[../]
[./cdp]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 4
smoothing_tol = 1E-5
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/paper1.i
# This runs the models mentioned in the first example of the Multi-Surface paper
#
# Plasticity models:
# SimpleTester with a = 1 and b = 0 and strength = 1E9 (only does elasticity)
# SimpleTester with a = 1 and b = 0 and strength = 0
# SimpleTester with a = 1 and b = 0 and strength = 1E-3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 125
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = console
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = console
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = console
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1E9
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 0
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1E-3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
active = 'elasticity_tensor strain single'
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./elastic_model]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple0'
[../]
[./single]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple1'
[../]
[./double]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple1 simple2'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper1
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except5.i
# Exception: incorrect userobject types
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = -2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard4.i
# apply repeated stretches in x direction, and smaller stretches along the y and z directions,
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# Both return to the edge (at lode_angle=-30deg, ie 000101) and tip are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.05E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E5*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 2
type = Transient
[]
[Outputs]
file_base = planar_hard4
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/tensor_mechanics/test/tests/auxkernels/tensorelasticenergyaux.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
nz = 0
xmax = 3
ymax = 2
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./disp_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = sin(x)*0.1
[../]
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = cos(y)*0.05
[../]
[../]
[./E]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./elastic_energy]
type = ElasticEnergyAux
variable = E
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1 2 4 3 2 5 1 3 1'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Problem]
kernel_coverage_check = false
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except3.i
# checking for exception error messages on the edge smoothing
# here edge_smoother=5deg, which means the friction_angle must be <= 35.747
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 36
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 5
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface05.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1E-6m in y direction and 1.1E-6 in z direction.
# trial stress_yy = 1 and stress_zz = 1.1
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# However, this will mean internal0 < 0, so SimpleTester0 will be deactivated and
# then the algorithm will return to
# stress_yy=0.7, stress_zz=0.8
# internal0 should be 0.0, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface05
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_edge.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = inner_edge
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_inner_edge
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform3.i
# apply nonuniform compression in x, y and z directions such that
# trial_stress(0, 0) = 2
# trial_stress(1, 1) = -8
# trial_stress(2, 2) = -10
# With compressive_strength = -1, the algorithm should return to trace(stress) = -1, or
# stress(0, 0) = 7
# stress(1, 1) = -3
# stress(2, 2) = -5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-4E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto22.i
# MeanCapTC with tensile failure
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 1
internal_limit = 10
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -10
value_residual = -1
internal_limit = 9
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
use_custom_cto = true
use_custom_returnMap = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4 5 7 2 4 2 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = cap
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i
[Mesh]
displacements = 'x_disp y_disp z_disp'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = cnode
[]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
use_displaced_mesh = true
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block=0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = x_disp
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = y_disp
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = z_disp
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = y_disp
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = z_disp
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./pe11]
order = CONSTANT
family = MONOMIAL
[../]
[./pe22]
order = CONSTANT
family = MONOMIAL
[../]
[./pe33]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./pe11]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe11
index_i = 0
index_j = 0
[../]
[./pe22]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe22
index_i = 1
index_j = 1
[../]
[./pe33]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe33
index_i = 2
index_j = 2
[../]
[./eqv_plastic_strain]
type = MaterialRealAux
property = eqv_plastic_strain
variable = peeq
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full=true
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmax=1
dtmin=0.1
end_time=1.0
nl_abs_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface21.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 2.0
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester1 or SimpleTester0 will be rutned off (they are equi-distant).
# The algorithm will return to one corner point, but there will be negative plastic multipliers
# so the other SimpleTester0 or SimpleTester1 will turn off, and the algorithm will return to
# stress_yy=0.75 and stress_zz=0.75
# internal2=1.25
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface21
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform7.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
# THEN apply a nonuniform compression in x, y, and z so that
# trial_stress(0, 0)
# With compressive_strength = -1, decaying to -0.5 at internal parameter 1E-8
# via a Cubic, the algorithm should return to
# trial_stress(0, 0) = -3.1
# trial_stress(1, 1) = -3.1
# trial_stress(2, 2) = 2.9
# the algorithm should return to trace(stress) = -0.5 = compressive_strength
# stress(0, 0) = -2.1667
# stress(1, 1) = -2.1667
# stress(2, 2) = 3.8333
# and internal parameter = 2.0406E-7
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = 'if(t<1.5,-1E-7*x,1E-7*x)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = 'if(t<1.5,3E-7*y,1E-7*y)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'if(t<1.5,5E-7*z,4E-7*z)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = -0.5
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform7
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
base_name = test
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = test_stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = test_fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
base_name = test
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
base_name = test
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
base_name = test
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
base_name = test
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_base
exodus = true
csv = false
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedMassTimeDerivative kernels
# Note the use of consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
coupling_type = HydroMechanical
variable = porepressure
[../]
[./flux]
type = PorousFlowFullySaturatedDarcyBase
variable = porepressure
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i
# This is identical to pp_generation_unconfined.i but it uses
# and action instead of explicitly writing all the Kernels out
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./PoroMechanics]
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_action
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar8.i
# A single unit element is stretched by (0.5, 0.4, 0.3)E-6m
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_xx = 1.72 Pa
# stress_yy = 1.52 Pa
# stress_zz = 1.32 Pa
# tensile_strength is set to 1.3Pa hardening to 2Pa over intnl=1E-6
#
# The return should be to the edge (the algorithm will first try the tip) with
# according to mathematica
# internal = 1.67234152669E-7
# stress_xx = stress_yy = 1.3522482794
# stress_zz = 1.2195929084
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.4E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.3E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningCubic
value_0 = 1.3
value_residual = 2
internal_limit = 1E-6
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = tens
debug_fspb = none
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar8
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/j2_plasticity/hard1.i
# UserObject J2 test, with hardening, but with rate=0
# apply uniform compression in x direction to give
# trial stress_xx = -5, so sqrt(3*J2) = 5
# with zero Poisson's ratio, this should return to
# stress_xx = -3, stress_yy = -1 = stress_zz,
# for strength = 2
# (note that stress_xx - stress_yy = stress_xx - stress_zz = -2, so sqrt(3*j2) = 2,
# and that the mean stress remains = -5/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-2.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform4.i
# Plastic deformation, compression failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 4*t
# disp_y = 3*t
# disp_z = -t
# should yield trial stress:
# stress_zz = 12*t
# stress_zx = 16*t
# stress_zy = -12*t
# Use compressive strength = 6, we should return to stress_zz = -6,
# and stress_xx = stress_yy = -2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 3*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
csv = true
[]
modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i
#
# Rotation Test
#
# This test is designed to compute a uniaxial stress and then follow that
# stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the x and y directions are prescribed. Poisson's
# ratio is zero.
#
[Mesh]
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./x_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[]
[BCs]
# BCs
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Outputs
modules/tensor_mechanics/test/tests/capped_weak_plane/except4.i
# Exception: incorrect userobject types
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
modules/tensor_mechanics/test/tests/mean_cap/small_deform1.i
# apply uniform stretch in x, y and z directions.
# With a = 1 and strength = 2, the algorithm should return to sigma_m = 2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = 1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cvbubinit cvmatrixinit'
vals = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cgbubinit cgmatrixinit'
vals = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
function = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
f_name = fb
args = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
function = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
f_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
args = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
f_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
function = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
f_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
function = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
f_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
function = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
f_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
function = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/cavity_pressure/initial_temperature.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_basicthm.i
# Identical to pp_generation_unconfined_fullysat_volume.i but using an Action
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/s. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In standard porous_flow, everything is based on mass, eg the source has
# units kg/s/m^3. This is discussed in the other pp_generation_unconfined
# models. In this test, we use the FullySaturated Kernel and set
# multiply_by_density = false
# meaning the fluid Kernel has units of volume, and the source, s, has units 1/time
#
# The ratios are:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
#
# Finally, note that the volumetric strain has
# consistent_with_displaced_mesh = false
# which is needed when using the FullySaturated version of the Kernels
# in order to generate the above results
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 3.3333333333
viscosity = 1.0
density0 = 1.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
PorousFlowDictator = dictator
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
PorousFlowDictator = dictator
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[../]
[./permeability_irrelevant]
type = PorousFlowPermeabilityConst
PorousFlowDictator = dictator
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_basicthm
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform1.i
# UserObject J2 test
# apply uniform stretch in x, y and z directions.
# no plasticity should be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/desorped_mass01.i
# 1phase
# vanGenuchten, constant-bulk density, HM porosity, 1component, unsaturated
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pp]
type = RandomIC
variable = pp
min = -1
max = 1
[../]
[./conc]
type = RandomIC
variable = conc
min = 0
max = 1
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./conc]
type = PorousFlowDesorpedMassTimeDerivative
conc_var = conc
variable = conc
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z conc'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion.i
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 250
ymax = 250
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./c]
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./dummy]
type = MatDiffusion
variable = c
diffusivity = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[./elasticenergy]
type = ElasticEnergyMaterial
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform1.i
# rotate the mesh by 90degrees
# then pull in the z direction - should be no plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0*y+1*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0*y+1*z-y'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0.5
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
debug_fspb = crash
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform1
[./csv]
type = CSV
[../]
[./exodus]
type = Exodus
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-9
nl_rel_tol = 1E-11
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/many_deforms_cap.i
# apply many large deformations, checking that the algorithm returns correctly to
# the yield surface each time
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.05*t)+x)/1E0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(0.04*t)+x*y)/1E0'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/1E2'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0.0
cap_start = 1000
cap_rate = 1E-3
mc_edge_smoother = 10
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-6
plastic_models = mc
debug_fspb = crash
deactivation_scheme = safe
[../]
[]
[Executioner]
end_time = 1000
dt = 1
type = Transient
[]
[Outputs]
file_base = many_deforms_cap
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/special_rock1.i
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = false
yield_function_tolerance = 1.0E+2 # Note larger value
shift = 1.0E+2 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./mc_smooth]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E+2 # Note larger value
shift = 1.0E+2 # Note larger value
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
use_custom_cto = false
[../]
[./tensile_smooth]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5 # Note larger value, to match the larger yield_function_tolerances
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = special_rock1
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial2_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation.i
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 13
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Functions]
[./porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_max_it -snes_stol'
petsc_options_value = 'bcgs bjacobi 10000 1E-11'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensileN
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
normal_vector = '0 0 1'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1N
exodus = true
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_fullysat_action.i
# Same as pp_generation.i, but using an Action
#
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 13.0
viscosity = 1.0
density0 = 1.0
[../]
[../]
[]
[PorousFlowFullySaturated]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[]
[Functions]
[./porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_fullysat_action
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar1.i
# apply uniform stretch in x, y and z directions.
# With cohesion = 10, friction_angle = 60deg, the
# algorithm should return to
# sigma_m = 10*Cos(60)/Sin(60) = 5.773503
# using planar surfaces (not smoothed)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.2E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 1.04719756
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = phi
dilation_angle = psi
yield_function_tolerance = 1E-3
shift = 1E-12
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
deactivation_scheme = safe
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/eight_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
# SimpleTester6 with a = 1 and b = 2 and strength = 3.1
# SimpleTester7 with a = 2 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./f6]
order = CONSTANT
family = MONOMIAL
[../]
[./f7]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 4
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 5
variable = f5
[../]
[./f6]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 6
variable = f6
[../]
[./f7]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 7
variable = f7
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 4
variable = int4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 5
variable = int5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 6
variable = int6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 7
variable = int7
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = f4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = f5
[../]
[./f6]
type = PointValue
point = '0 0 0'
variable = f6
[../]
[./f7]
type = PointValue
point = '0 0 0'
variable = f7
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[./int4]
type = PointValue
point = '0 0 0'
variable = int4
[../]
[./int5]
type = PointValue
point = '0 0 0'
variable = int5
[../]
[./int6]
type = PointValue
point = '0 0 0'
variable = int6
[../]
[./int7]
type = PointValue
point = '0 0 0'
variable = int7
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple6]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 2
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple7]
type = TensorMechanicsPlasticSimpleTester
a = 2
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5 simple6 simple7'
deactivation_scheme = optimized_to_safe
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = eight_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/two_surface02.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in the y z directions.
# trial stress_zz = 1.5 and stress_yy = 1.5
#
# Then both SimpleTesters should activate, and the final stress
# should have have stress_zz = 1 = stress_yy (ie, the "corner" point)
# the plastic strain for SimpleTester1 should be zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface02
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_edge.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = inner_edge
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_edge
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform4.i
# checking for small deformation
# A single element is stretched by 0.75E-6m in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# tensile_strength is set to 1Pa, tip_smoother = 0, edge_smoother = 25degrees
# Then A + B + C = 0.609965
#
# The final stress should have meanstress = 0.680118 and bar(sigma) = 0.52443, and sigma_zz = sigma_xx = 0.982896
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.75E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.75E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.0
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform4.i
# apply repeated stretches in z direction, and smaller stretches in the x and y directions
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random4.i
# Using CappedMohrCoulomb
# Plasticity models:
# Tensile strength = 0.1MPa
# Compressive strength = 1.0MPa
# Cohesion = 1MPa
# Friction angle = dilation angle = 0.5
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 100
ny = 12
nz = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 12
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./f6]
order = CONSTANT
family = MONOMIAL
[../]
[./f7]
order = CONSTANT
family = MONOMIAL
[../]
[./f8]
order = CONSTANT
family = MONOMIAL
[../]
[./f9]
order = CONSTANT
family = MONOMIAL
[../]
[./f10]
order = CONSTANT
family = MONOMIAL
[../]
[./f11]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 4
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 5
variable = f5
[../]
[./f6]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 6
variable = f6
[../]
[./f7]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 7
variable = f7
[../]
[./f8]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 8
variable = f8
[../]
[./f9]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 9
variable = f9
[../]
[./f10]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 10
variable = f10
[../]
[./f11]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 11
variable = f11
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = int1
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./intnl0_max]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./intnl1_max]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./raw_f3]
type = ElementExtremeValue
variable = f3
outputs = console
[../]
[./raw_f4]
type = ElementExtremeValue
variable = f4
outputs = console
[../]
[./raw_f5]
type = ElementExtremeValue
variable = f5
outputs = console
[../]
[./raw_f6]
type = ElementExtremeValue
variable = f6
outputs = console
[../]
[./raw_f7]
type = ElementExtremeValue
variable = f7
outputs = console
[../]
[./raw_f8]
type = ElementExtremeValue
variable = f8
outputs = console
[../]
[./raw_f9]
type = ElementExtremeValue
variable = f9
outputs = console
[../]
[./raw_f10]
type = ElementExtremeValue
variable = f10
outputs = console
[../]
[./raw_f11]
type = ElementExtremeValue
variable = f11
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[./f3]
type = FunctionValuePostprocessor
function = should_be_zero3_fcn
[../]
[./f4]
type = FunctionValuePostprocessor
function = should_be_zero4_fcn
[../]
[./f5]
type = FunctionValuePostprocessor
function = should_be_zero5_fcn
[../]
[./f6]
type = FunctionValuePostprocessor
function = should_be_zero6_fcn
[../]
[./f7]
type = FunctionValuePostprocessor
function = should_be_zero7_fcn
[../]
[./f8]
type = FunctionValuePostprocessor
function = should_be_zero8_fcn
[../]
[./f9]
type = FunctionValuePostprocessor
function = should_be_zero9_fcn
[../]
[./f10]
type = FunctionValuePostprocessor
function = should_be_zero10_fcn
[../]
[./f11]
type = FunctionValuePostprocessor
function = should_be_zero11_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[./should_be_zero3_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f3'
[../]
[./should_be_zero4_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f4'
[../]
[./should_be_zero5_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f5'
[../]
[./should_be_zero6_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f6'
[../]
[./should_be_zero7_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f7'
[../]
[./should_be_zero8_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f8'
[../]
[./should_be_zero9_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f9'
[../]
[./should_be_zero10_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f10'
[../]
[./should_be_zero11_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f11'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 2E6
internal_limit = 1
[../]
[./cs]
type = TensorMechanicsHardeningCubic
value_0 = 1E7
value_residual = 0.5E7
internal_limit = 1
[../]
[./coh]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 1
[../]
[./phi]
type = TensorMechanicsHardeningCubic
value_0 = 0.6
value_residual = 0.2
internal_limit = 1
[../]
[./psi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.1
internal_limit = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 1E5
max_NR_iterations = 1000
yield_function_tol = 1.0E-1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
dtmin = 1
type = Transient
[]
[Outputs]
file_base = random4
csv = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2e-6
num_steps = 5
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/Pattern1.i
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integrator scheme
scheme = "newmark-beta"
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/anisotropic_patch/anisotropic_patch_test.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = anisotropic_patch_test.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx vonmises_stress hydrostatic_stress firstinv_stress secondinv_stress thirdinv_stress'
[../]
[]
[AuxKernels]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elastic_tensor]
type = ComputeElasticityTensor
C_ijkl = '1e6 0.0 0.0 1e6 0.0 1e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
euler_angle_1 = 18.0
euler_angle_2 = 43.0
euler_angle_3 = 177.0
# Isotropic material constants
# The three euler angles do not matter
# youngs_modulus = 1e6
# poissons_ratio = 0.0
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
file_base = anisotropic_patch_test_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_soft]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_hard]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq_soft]
type = MaterialRealAux
variable = peeq_soft
property = ep_eqv1
execute_on = timestep_end
block = 0
[../]
[./peeq_hard]
type = MaterialRealAux
variable = peeq_hard
property = ep_eqv2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress1]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv1
[../]
[./flowstress2]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.3
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv2
[../]
[./flowrate1]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress1
[../]
[./flowrate2]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress2
[../]
[./ep_eqv1]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate1
[../]
[./ep_eqv_rate1]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate1
[../]
[./ep_eqv2]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate2
[../]
[./ep_eqv_rate2]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate2
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate1 flowrate2'
strength_user_objects = 'flowstress1 flowstress2'
internal_var_user_objects = 'ep_eqv1 ep_eqv2'
internal_var_rate_user_objects = 'ep_eqv_rate1 ep_eqv_rate2'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_soft]
type = ElementAverageValue
variable = peeq_soft
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_hard]
type = ElementAverageValue
variable = peeq_hard
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_multi
exodus = true
csv = false
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_native.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = native
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
# Wave propogation in 1D using Newmark time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform1_uo.i
# apply uniform stretch in x, y and z directions.
# With cohesion = 10, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (10*Cos(60) - 4)/Sin(60) = 1.1547
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1_uo
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i
# UserObject Orthotropic test, with power rule hardening with rate 1e1.
# Linear strain is applied in the x direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e1
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.1
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = .25
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = false
csv = true
[]
modules/tensor_mechanics/test/tests/CylindricalRankTwoAux/test.i
[Mesh]
[file_mesh]
type = FileMeshGenerator
file = circle.e
[]
[cnode]
type = ExtraNodesetGenerator
coord = '1000.0 0.0'
new_boundary = 10
input = file_mesh
[]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./T]
[../]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_tt]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '1000-0.7*sqrt(x^2+y^2)'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./stress_rr]
type = CylindricalRankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./stress_tt]
type = CylindricalRankTwoAux
variable = stress_tt
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y]
type = DirichletBC
variable = disp_y
boundary = '2 10'
value = 0
[../]
[]
[Materials]
[./iso_C]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
nl_rel_tol = 1e-14
l_tol = 1e-4
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
# [./TensorMechanics]
# [../]
[./x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./z]
type = ADStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./gravity_y]
type = ADGravity
variable = disp_y
value = -9.81
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2.0387
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface15.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 3.0 and stress_zz = 3
#
# A complicated return will follow, with various contraints being
# deactivated, kuhn-tucker failing, line-searching, etc, but
# the result should be
# stress_yy=1=stress_zz, and internal0=2 internal1=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface15
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i
# In this example, an initial stress is applied that
# is inadmissible, and the return-map algorithm must be
# used to return to the yield surface before any other
# computations can be carried out.
# In this case, the return-map algorithm must subdivide
# the initial stress, otherwise it does not converge.
# This test is testing that subdivision process.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = 'back'
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = 'back'
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front'
function = '2*t-1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front'
function = 't-1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = 't-1'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
outputs = console
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4.0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./pt]
type = TensorMechanicsPlasticTensile
tensile_strength = str
yield_function_tolerance = 1E-3
tensile_tip_smoother = 0.05
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '8E6 4E6 -18E6 4E6 -40E6 -2E6 -18E6 -2E6 -34E6'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-9
plastic_models = 'pt mc'
deactivation_scheme = safe
max_NR_iterations = 100
min_stepsize = 0.1
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = mc_tensile
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/six_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 4
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 5
variable = f5
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 4
variable = int4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 5
variable = int5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = f4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = f5
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[./int4]
type = PointValue
point = '0 0 0'
variable = int4
[../]
[./int5]
type = PointValue
point = '0 0 0'
variable = int5
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = six_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[Mesh]
# Comment
# Mesh
file = patch_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[]
[BCs]
# BCs
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2 3 4 5 6 7'
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = '1 2 3 4 5 6 7'
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
petsc_options_iname = -pc_type
petsc_options_value = lu
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Output
modules/porous_flow/test/tests/energy_conservation/heat04_action.i
# heat04, but using an action
#
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[PorousFlowUnsaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0E-12
van_genuchten_m = 0.5
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./temp]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./heat_source]
type = BodyForce
function = 1
variable = temp
[../]
[]
[Functions]
[./err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[../]
[./err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[../]
[]
[AuxVariables]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[../]
[./err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_action
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i
# Checking internal-parameter evolution
# A single element is stretched by 1E-6*t in z directions.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Pa
#
# There are two time steps.
# In the first
# trial stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
# so this returns to stress_zz = 10 Pa, and half of the deformation
# goes to plastic strain, yielding ep_zz_plastic = 0.5E-6
# In the second
# trial stress_zz = 10 + Youngs Modulus*(Strain increment) = 10 + 2E7*1E-6 = 30 Pa
# so this returns to stress_zz = 10 Pa, and all of the deformation
# goes to plastic strain, yielding ep_zz_plastic increment = 1E-6,
# so total plastic strain_zz = 1.5E-6.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernls are only for checking output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integration scheme
scheme = 'newmark-beta'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'hht_test_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = inner_tip
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/energy_conservation/heat04.i
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./temp]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[./poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[../]
[./heat_source]
type = BodyForce
function = 1
variable = temp
[../]
[]
[Functions]
[./err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[../]
[./err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
temperature_unit = Kelvin
fp = the_simple_fluid
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[../]
[./err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04
exodus = true
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/terzaghi_fully_saturated_volume.i
# Terzaghi's problem of consolodation of a drained medium
# The FullySaturated Kernels are used, with multiply_by_density = false
# so that this becomes a linear problem with constant Biot Modulus
# Also, since the FullySaturated Kernels are used, we have to
# use consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
coupling_type = HydroMechanical
biot_coefficient = 0.6
multiply_by_density = false
variable = porepressure
[../]
[./flux]
type = PorousFlowFullySaturatedDarcyBase
multiply_by_density = false
variable = porepressure
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
fluid_bulk_modulus = 8
solid_bulk_compliance = 0.25
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_fully_saturated_volume
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i
#This input does not add time derivative kernel for phase field equation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./ACBulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = c
kappa_name = kappa_op
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface00.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1E-6m in y direction and 1E-6 in z direction.
# trial stress_yy = 1 and stress_zz = 1
#
# Then SimpleTester2 should activate and the algorithm will return to
# stress_yy = 0.75, stress_zz = 0.75
# internal2 should be 0.25
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface00
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/eigenstrain/variable.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./eigen_strain00]
type = RankTwoAux
variable = eigen_strain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.5*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.01
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-50
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except4.i
# checking for exception error messages on the edge smoothing
# here edge_smoother=5deg, which means the friction_angle must be <= 35.747
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0.52359878 # 30deg
value_residual = 0.62831853 # 36deg
rate = 3000.0
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 5
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/linear_elasticity/thermal_expansion.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
# Materials properties into AuxVariables - these are elemental variables, not nodal variables.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
eigenstrain_names = eigenstrain
add_variables = true
generate_output = 'stress_xx stress_yy stress_xy'
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eigenstrain]
type = ComputeEigenstrain
eigen_base = '1e-4'
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/energy_conservation/heat05.i
# Demonstrates that porosity is correctly initialised,
# since the residual should be zero in this example.
# If initQpStatefulProperties of the Porosity calculator
# is incorrect then the residual will be nonzero.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[GlobalParams]
biot_coefficient = 0.7
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
initial_condition = 0.5
[../]
[./temp]
initial_condition = 1.0
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[./poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
temperature_unit = Kelvin
fp = the_simple_fluid
phase = 0
[../]
[]
[Postprocessors]
[./should_be_zero]
type = NumNonlinearIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 1
nl_abs_tol = 1e-16
[]
[Outputs]
file_base = heat05
csv = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto11.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/eight_surface14.i
# Plasticity models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
# SimpleTester6 with a = 1 and b = 2 and strength = 3.1
# SimpleTester7 with a = 2 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple6]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 2
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple7]
type = TensorMechanicsPlasticSimpleTester
a = 2
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 2.1 0 0 0 3.0'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5 simple6 simple7'
deactivation_scheme = optimized_to_safe
max_NR_iterations = 4
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 0'
ep_plastic_tolerance = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto02.i
# checking jacobian for linear plasticity (weak_plane_tensile)
# with hardening
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1 2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '1 2 3 2 -4 -5 3 -5 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
tangent_operator = linear
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/tensile/random_update.i
# Plasticity models:
# Planar tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 0
internal_limit = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 1E5
max_NR_iterations = 100
yield_function_tol = 1.0E-1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random_update
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_fake_plastic.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
# note there are no plastic_models so this is actually elasticity
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random3.i
# Using CappedMohrCoulomb with Mohr-Coulomb failure only
# Plasticity models:
# Cohesion = 1MPa
# Friction angle = dilation angle = 0.5
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 6
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 7
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 8
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 9
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 10
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 11
variable = f5
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./intnl_max]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./raw_f3]
type = ElementExtremeValue
variable = f3
outputs = console
[../]
[./raw_f4]
type = ElementExtremeValue
variable = f4
outputs = console
[../]
[./raw_f5]
type = ElementExtremeValue
variable = f5
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[./f3]
type = FunctionValuePostprocessor
function = should_be_zero3_fcn
[../]
[./f4]
type = FunctionValuePostprocessor
function = should_be_zero4_fcn
[../]
[./f5]
type = FunctionValuePostprocessor
function = should_be_zero5_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[./should_be_zero3_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f3'
[../]
[./should_be_zero4_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f4'
[../]
[./should_be_zero5_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f5'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./coh]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 0
internal_limit = 1
[../]
[./ang]
type = TensorMechanicsHardeningCubic
value_0 = 0.9
value_residual = 0.2
internal_limit = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 1E5
max_NR_iterations = 100
yield_function_tol = 1.0E-1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random3
csv = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined5.i
# Plastic deformation, shear failure, with inclined normal direction = (1, 0, 0)
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the xmax surface of a unit cube:
# disp_x = 5*t/6
# disp_y = 6*t
# disp_z = 8*t
# should yield trial stress:
# stress_xx = 10*t
# stress_xz = 32*t
# stress_xy = 24*t (so q_trial = 40*t)
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = 1/6, and cohesion=20,
# the system should return to p=0, q=20, ie stress_xx=0, stress_zx=16,
# stress_yx=12 on the first time step (t=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = 5*t/6
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 8*t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '1 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined5
csv = true
[]
modules/tensor_mechanics/test/tests/jacobian/poro01.i
# tests of the poroelasticity kernel, PoroMechanicsCoupling
# in conjunction with the usual StressDivergenceTensors Kernel
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -1
max = 1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -1
max = 1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -1
max = 1
[../]
[./p]
type = RandomIC
variable = p
min = -1
max = 1
[../]
[]
[Kernels]
[./unimportant_p]
type = TimeDerivative
variable = p
[../]
[./grad_stress_x]
type = StressDivergenceTensors
displacements = 'disp_x disp_y disp_z'
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 0
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian_again]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 1
[../]
[./This_is_not_poroelasticity._It_is_checking_offdiagonal_jacobian_for_disps]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_y
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 0.54
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/eigenstrain/inclusion.i
# This test allows comparison of simulation and analytical solution for a misfitting precipitate
# using ComputeVariableEigenstrain for the simulation and the InclusionProperties material
# for the analytical solution. Increasing mesh resolution will improve agreement.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 1.5
ymax = 1.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./fel_an]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = s11_aux
[../]
[./matl_s12]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = s12_aux
[../]
[./matl_s22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = s22_aux
[../]
[./matl_s11_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 0
variable = s11_an
[../]
[./matl_s12_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 1
variable = s12_an
[../]
[./matl_s22_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 1
index_j = 1
variable = s22_an
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./matl_e11_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 0
variable = e11_an
[../]
[./matl_e12_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 1
variable = e12_an
[../]
[./matl_e22_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 1
index_j = 1
variable = e22_an
[../]
[./matl_fel_an]
type = MaterialRealAux
variable = fel_an
property = fel_an_mat
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.005*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 0 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./analytical]
type = InclusionProperties
a = 0.1
b = 0.1
lambda = 1
mu = 1
misfit_strains = '0.005 0.005'
strain_name = strain_an
stress_name = stress_an
energy_name = fel_an_mat
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 30
nl_max_its = 10
nl_rel_tol = 1.0e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.1
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
f_name = var_dep1
args = 'eta1'
function = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
f_name = var_dep2
args = 'eta2'
function = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i
# Part of the bottom (minimum z) is pulled down by a Preset displacement
# This causes tensile failure in the elements immediately above.
# Because only the bottom row of elements ever fail, and because these
# fail in the first nonlinear step, Moose correctly converges in
# 1 nonlinear step, despite this problem being inelastic.
# (If the problem had lower cohesion, then the top row would also
# fail, but in the second nonlinear step, and so the simulation
# would require at least two nonlinear steps.)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -15 -105'
top_right = '1 15 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = -1
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 1E60
value_residual = 1E60
internal_limit = 0.01E8
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01E8
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 1E80
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-2
perfect_guess = true
min_step_size = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 1.0
dt = 1.0
type = Transient
[]
[Outputs]
file_base = pull_and_shear_1step
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except1.i
# Exception: incorrect userobject types
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = -0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
modules/tensor_mechanics/test/tests/multi/two_surface04.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 4.0E-6m in y directions and 2.0E-6 in z direction.
# trial stress_zz = 2 and stress_yy = 4
#
# Then both SimpleTesters should activate initially and return to the "corner" point
# (stress_zz = 1 = stress_yy), but then the plastic multiplier for SimpleTester1 will
# be negative, and so it will be deactivated, and the algorithm will return to
# stress_zz = 0, stress_yy = 2
# internal1 should be zero, internal2 should be 2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '4E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface04
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap/random.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time. Two yield surfaces are used: one for compression and one for tension.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_yield_fcn]
type = ElementExtremeValue
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'max_yield_fcn'
[../]
[]
[UserObjects]
[./strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cap1]
type = TensorMechanicsPlasticMeanCap
a = -1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./cap2]
type = TensorMechanicsPlasticMeanCap
a = 1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 2
ep_plastic_tolerance = 1E-6
plastic_models = 'cap1 cap2'
debug_fspb = crash
deactivation_scheme = optimized
min_stepsize = 1
max_stepsize_for_dumb = 1
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface03.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0.5E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 0.5 and stress_zz = 2.0
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# internal0 should be 1.0, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface03
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface16.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in y direction and 2.1E-6 in z direction.
# trial stress_yy = 3.0 and stress_zz = 2.1
#
# A complicated return will follow, with various contraints being
# deactivated, kuhn-tucker failing, line-searching, etc, but
# the result should be
# stress_yy=1=stress_zz, and internal0=1.1 internal1=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface16
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto15.i
# Jacobian check for nonlinear, multi-surface plasticity
# This returns to the edge of Mohr Coulomb.
# This is a very nonlinear test and a delicate test because it perturbs around
# an edge of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[./int8]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int3
index = 3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int4
index = 4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int5
index = 5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int6
index = 6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int7
index = 7
[../]
[./int8]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int8
index = 8
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_int3]
type = ElementExtremeValue
variable = int3
outputs = console
[../]
[./max_int4]
type = ElementExtremeValue
variable = int4
outputs = console
[../]
[./max_int5]
type = ElementExtremeValue
variable = int5
outputs = console
[../]
[./max_int6]
type = ElementExtremeValue
variable = int6
outputs = console
[../]
[./max_int7]
type = ElementExtremeValue
variable = int7
outputs = console
[../]
[./max_int8]
type = ElementExtremeValue
variable = int8
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E1
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '100.1 0.1 -0.2 0.1 0.9 0 -0.2 0 1.1'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = cto14
exodus = false
csv = true
[]
modules/combined/test/tests/multiphase_mechanics/twophasestress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./eta]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
[../]
[./combined]
type = TwoPhaseStressMaterial
base_A = A
base_B = B
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/porous_flow/test/tests/poro_elasticity/mandel.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true. Therefore the solution is
# a little different than in the paper. This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[./csv]
interval = 3
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform7.i
# Plastic deformation, tensile with hardening
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = t
# should yield trial stress:
# stress_zz = 2*t
# The tensile strength varies as a cubic between 1 (at intnl=0)
# and 2 (at intnl=1). The equation to solve is
# 2 - Ezzzz * ga = -2 * (ga - 1/2)^3 + (3/2) (ga - 1/2) + 3/2
# where the left-hand side comes from p = p_trial - ga * Ezzzz
# and the right-hand side is the cubic tensile strength
# The solution is ga = 0.355416 ( = intnl[1]), and the cubic
# is 1.289168 ( = p) at that point
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 2
internal_limit = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform7
csv = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_lode_zero.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = lode_zero
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_lode_zero
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_lode_zero.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = lode_zero
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_lode_zero
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = NEWTON
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
#line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.5
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform5.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = 0
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2_small_strain.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_small_strain
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/four_surface24.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 2 and strength = 3.1
# SimpleTester3 with a = 2 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to four_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 2
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 2
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3'
deactivation_scheme = 'optimized_to_safe'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = four_surface24
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i
# An unconsolidated-undrained test is performed.
# A sample's boundaries are impermeable. The sample is
# squeezed by a uniform mechanical pressure, and the
# rise in porepressure is observed.
#
# Expect:
# volumetricstrain = -MechanicalPressure/UndrainedBulk
# porepressure = SkemptonCoefficient*MechanicalPressure
# stress_zz = -MechanicalPresure + BiotCoefficient*porepressure
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# Undrained Bulk modulus = 2 + 0.3^2*10 = 2.9
# Skempton coefficient = 0.3*10/2.9 = 1.034483
#
# The mechanical pressure is applied using Neumann BCs,
# since the Neumann BCs are setting stressTOTAL.
#
# MechanicalPressure = 0.1*t (ie, totalstress_zz = total_stress_xx = totalstress_yy = -0.1*t)
#
# Expect:
# disp_z = volumetricstrain/3 = -MechanicalPressure/3/2.9 = -0.1149*0.1*t
# prorepressure = 1.034483*0.1*t
# stress_zz = -0.1*t + 0.3*1.034483*0.1*t = -0.68966*0.1*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./pressure_x]
type = FunctionNeumannBC
variable = disp_x
function = -0.1*t
boundary = 'right'
[../]
[./pressure_y]
type = FunctionNeumannBC
variable = disp_y
function = -0.1*t
boundary = 'top'
[../]
[./pressure_z]
type = FunctionNeumannBC
variable = disp_z
function = -0.1*t
boundary = 'front'
[../]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = unconsolidated_undrained
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar3.i
# checking for small deformation
# A single element is stretched by 1E-6m in the z and x directions, with lame mu = 1E6, so trial stress is 2Pa in those directions
# tensile_strength is set to 1Pa
# Then the final stress should return to the z and x stresses being 1.0 (up to tolerance), and internal parameter = (0.5+0.5)E-6 = 1.0E-6
# Using 'planar' Tensile plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
outputs = console
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
max_NR_iterations = 4
min_stepsize = 1
plastic_models = tens
debug_fspb = crash
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/desorped_mass_vol_exp01.i
# Tests the PorousFlowDesorpedMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, HM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[./p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[../]
[./conc]
type = RandomIC
min = 0
max = 1
variable = conc
[../]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[./disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[../]
[./disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[../]
[./conc_in_poro]
type = PorousFlowDesorpedMassVolumetricExpansion
conc_var = conc
variable = porepressure
[../]
[./conc]
type = PorousFlowDesorpedMassVolumetricExpansion
conc_var = conc
variable = conc
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z conc'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform23.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_max = sigma_mid (approximately),
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 5.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform23
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface06.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.1E-6m in y direction and 1.0E-6 in z direction.
# trial stress_yy = 1.1 and stress_zz = 1.0
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# However, this will mean internal1 < 0, so SimpleTester1 will be deactivated and
# then the algorithm will return to
# stress_yy=0.8, stress_zz=0.7
# internal1 should be 0.0, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface06
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/rock1.i
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 10deg
# Tensile with strength = 1MPa
# WeakPlaneShear with cohesion = 1MPa, friction angle = 25deg, dilation angle = 25deg
# WeakPlaneTensile with strength = 0.01MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./raw_f3]
type = ElementExtremeValue
variable = f3
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[./f3]
type = FunctionValuePostprocessor
function = should_be_zero3_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[./should_be_zero3_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f3'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.46630766
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.46630766
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 1E5
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 0.01E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'mc tensile wps wpt'
deactivation_scheme = 'optimized_to_safe_to_dumb'
max_NR_iterations = 20
min_stepsize = 1E-4
max_stepsize_for_dumb = 1E-3
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = rock1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto17.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the plane of the tensile yield surface
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 0.5GPa. Lame mu = 1GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.5E3 1E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1 0.1 0.2 0.1 15 -0.3 0.2 -0.3 0'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto17
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/random03.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_yield_fcn]
type = ElementExtremeValue
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'max_yield_fcn'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.1
internal_limit = 0.1
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1.5
value_residual = 0
internal_limit = 0.1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 2
ep_plastic_tolerance = 1E-8
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random03
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3 and the
# Biot Modulus is not held fixed. This means that disp_z, porepressure,
# etc are not linear functions of t. Nevertheless, the ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = none
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = none
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 4
constant_fluid_bulk_modulus = 8
constant_biot_modulus = 16
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_constM
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/borehole_lowres.i
# Poroelastic response of a borehole.
#
# LOWRES VERSION: this version does not give perfect agreement with the analytical solution
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_lowres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.3
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_lowres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_lowres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_lowres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_lowres_t
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except2.i
# Exception: incorrect userobject types
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = -0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.422
gamma = 0.8
[../]
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedFullySaturatedMassTimeDerivative kernels
# with multiply_by_density = false, so that this problem becomes linear
# Note the use of consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
multiply_by_density = false
coupling_type = HydroMechanical
variable = porepressure
[../]
[./flux]
type = PorousFlowFullySaturatedDarcyBase
multiply_by_density = false
variable = porepressure
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated_volume
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/linear_elasticity/linear_elastic_material.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
#reading C_11 C_12 C_13 C_22 C_23 C_33 C_44 C_55 C_66
C_ijkl ='1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 2'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = '1 3'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 2'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.02
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i
# Constraining slave nodes to move a linear combination of master nodes
#
# The test consists of a 2D rectangular block divided into two Quad elements
# (along its height) which have different material properties.
# A displacement of 2 m is applied to the top surface of the block in x direction and the
# bottom surface is held fixed.
# The nodes of the interface between the two elements will tend to move as
# dictated by the material models of the two elements.
# LinearNodalConstraint forces the interface nodes to move as a linear combination
# of the nodes on the top and bottom of the block.
# master node ids and the corresponding weights are taken as input by the LinearNodalConstraint
# along with the slave node set or slave node ids.
# The constraint can be applied using either penalty or kinematic formulation.
# In this example, the final x displacement of the top surface is 2m and bottom surface is 0m.
# Therefore, the final x displacement of the interface nodes would be 0.25*top+0.75*bottom = 0.5m
[Mesh]
file=rect_mid.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./top_2x]
type = DirichletBC
variable = disp_x
boundary = 10
value = 2.0
[../]
[./top_2y]
type = DirichletBC
variable = disp_y
boundary = 10
value = 0.0
[../]
[./bottom_1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_2]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor_1]
type = ComputeElasticityTensor
block = 1
fill_method = 'symmetric_isotropic'
C_ijkl = '400. 200.'
[../]
[./strain_1]
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
block = 1
[../]
[./density_1]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = '10.'
[../]
[./Elasticity_tensor_2]
type = ComputeElasticityTensor
block = 2
fill_method = 'symmetric_isotropic'
C_ijkl = '1000. 500.'
[../]
[./strain_2]
type = ComputeSmallStrain
block = 2
displacements = 'disp_x disp_y'
[../]
[./stress_2]
type = ComputeLinearElasticStress
block = 2
[../]
[./density_2]
type = GenericConstantMaterial
block = 2
prop_names = 'density'
prop_values = '10.'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = ''
petsc_options_value = ''
line_search = 'none'
[]
[Constraints]
[./disp_x_1]
type = LinearNodalConstraint
variable = disp_x
master = '0 5'
weights = '0.25 0.75'
# slave_node_set = '2'
slave_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[./disp_y_1]
type = LinearNodalConstraint
variable = disp_y
master = '0 5'
weights = '0.25 0.75'
# slave_node_set = '2'
slave_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_6]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform5_update_version.i
# checking for small deformation
# A single element is incrementally stretched in the in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II,
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'z*(t-0.5)'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform5_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/pressure/pressure_test.i
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform_harden3.i
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
# the following are "random" deformations
# each is O(1E-5) to keep deformations small
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[../]
[]
[AuxVariables]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
outputs = 'console'
[../]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 0
rate = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0.577350269
rate = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.08748866
value_residual = 0.03492077
rate = 0.01
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform_harden3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
# Time integrator scheme
schem = "newmark-beta"
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
file_base = "AccelerationBC_test_out"
csv = true
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto23.i
# MeanCapTC with compressive failure
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 1
internal_limit = 10
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -10
value_residual = -1
internal_limit = 9
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
use_custom_cto = true
use_custom_returnMap = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-6 5 4 5 -7 2 4 2 -2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = cap
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/tensile/small_deform5.i
# checking for small deformation
# A single element is incrementally stretched in the in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II,
# and the resulting stresses are checked to lie on the expected yield surface
#
# tensile_strength is set to 1Pa, tip_smoother = 0.5, edge_smoother = 25degrees
# Then A + B + C = 0.609965
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x*t*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z*t*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.5
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/tensile/small_deform8_update_version.i
# A single unit element is stretched by 1E-6m in z direction.
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_zz = 2.6 Pa
# stress_xx = 0.6 Pa
# stress_yy = 0.6 Pa
# tensile_strength is set to 0.5Pa
#
# stress_zz = 0.5
# plastic multiplier = 2.1/2.6 E-6
# stress_xx = 0.6 - (2.1/2.6*0.6) = 0.115
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform8_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
use_custom_returnMap = false
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial3_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto01.i
# checking jacobian for a fully-elastic situation
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1 2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '1 2 3 2 -4 -5 3 -5 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the small_smoother parameter
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto21.i
# DruckerPragerHyperbolic
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 1
internal_limit = 100
[../]
[./phi]
type = TensorMechanicsHardeningCubic
value_0 = 0.8
value_residual = 0.4
internal_limit = 50
[../]
[./psi]
type = TensorMechanicsHardeningCubic
value_0 = 0.4
value_residual = 0
internal_limit = 10
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
smoother = 1
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4 5 7 2 4 2 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = dp
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform21.i
# Mohr-Coulomb only
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 1
yield_function_tol = 1.0E-9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform21
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface01.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 1.5
#
# Then SimpleTester0 should activate and the algorithm will return to
# stress_yy = 0, stress_zz = 1
# internal0 should be 0.5, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface01
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/plastic_heating/compressive01.i
# Tensile heating, using capped weak-plane plasticity
# z_disp(z=1) = -t
# totalstrain_zz = -t
# with C_ijkl = 0.5 0.25
# stress_zz = -t, but with compressive_strength = 1, stress_zz = max(-t, -1)
# so plasticstrain_zz = -(t - 1)
# heat_energy_rate = coeff * (t - 1)
# Heat capacity of rock = specific_heat_cap * density = 4
# So temperature of rock should be:
# (1 - porosity) * 4 * T = (1 - porosity) * coeff * (t - 1)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -10
xmax = 10
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[../]
[./phe]
type = PorousFlowPlasticHeatEnergy
variable = temperature
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_z]
type = FunctionAux
variable = disp_z
function = '-z*t'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = temperature
number_fluid_phases = 0
number_fluid_components = 0
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2
density = 2
[../]
[./temp]
type = PorousFlowTemperature
temperature = temperature
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[./phe]
type = ComputePlasticHeatEnergy
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.5 0.25'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanphi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-10
perfect_guess = true
[../]
[]
[Postprocessors]
[./temp]
type = PointValue
point = '0 0 0'
variable = temperature
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 10
[]
[Outputs]
file_base = compressive01
csv = true
[]
modules/combined/test/tests/poro_mechanics/pp_generation.i
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = 1/second)
#
# Expect:
# porepressure = Biot-Modulus*s*t
# stress = 0 (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# s = 0.1
#
# Expect
# porepressure = t
# stress = 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i
# apply repeated stretches to observe cohesion hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 0
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0.577350269
rate = 4E4
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.01745506
value_residual = 0.01745506
rate = 1E8
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden3
exodus = true
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/mass08.i
# 1phase
# vanGenuchten, constant-bulk density, HM porosity, 1component, unsaturated
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pp]
type = RandomIC
variable = pp
min = -1
max = 1
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform6.i
# Using CappedMohrCoulomb with tensile failure only
# A single element is incrementally stretched in the in the z direction
# This causes the return direction to be along the hypersurface sigma_II = sigma_III,
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = finite
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = 'y*(t-0.5)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'z*(t-0.5)'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform6
csv = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform8.i
# Using CappedMohrCoulomb with tensile failure only
# A single unit element is stretched by 1E-6m in z direction.
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_zz = 2.6 Pa
# stress_xx = 0.6 Pa
# stress_yy = 0.6 Pa
# tensile_strength is set to 0.5Pa
#
# stress_zz = 0.5
# plastic multiplier = 2.1/2.6 E-6
# stress_xx = 0.6 - (2.1/2.6*0.6) = 0.115
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform8
csv = true
[]
modules/tensor_mechanics/test/tests/multi/two_surface03.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in z directions and 0.5E-6 in y direction.
# trial stress_zz = 3.0 and stress_yy = 0.5
#
# Then both SimpleTesters should activate initially and return to the "corner" point
# (stress_zz = 1 = stress_yy), but then the plastic multiplier for SimpleTester2 will
# be negative, and so it will be deactivated, and the algorithm will return to
# stress_zz = 1, stress_yy = 0.5
# internal0 should be 2, and internal1 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface03
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
#
# Finally, note that the volumetric strain has
# consistent_with_displaced_mesh = false
# which is needed when using the FullySaturated version of the Kernels
# in order to generate the above results
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
coupling_type = HydroMechanical
biot_coefficient = 0.3
[../]
[./source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature_qp]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-10
nl_rel_tol = 1E-12
l_tol = 1E-2
l_max_its = 50
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial3
exodus = true
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/mass_vol_exp02.i
# Tests the PorousFlowMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, HM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[./p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[../]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[./disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[../]
[./disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
modules/porous_flow/test/tests/jacobian/denergy02.i
# 2phase, 1 component, with solid displacements, time derivative of energy-density
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pgas]
[../]
[./pwater]
[../]
[./temp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pgas]
type = RandomIC
variable = pgas
max = 1.0
min = 0.0
[../]
[./pwater]
type = RandomIC
variable = pwater
max = 0.0
min = -1.0
[../]
[./temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./dummy_pgas]
type = Diffusion
variable = pgas
[../]
[./dummy_pwater]
type = Diffusion
variable = pwater
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas temp pwater disp_x disp_y disp_z'
number_fluid_phases = 2
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
cv = 0.7
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.7
biot_coefficient = 0.9
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./mu_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./mech_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./total_potential]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = total_potential
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./mu_prop]
type = MaterialRealAux
property = mu_prop
variable = mu_prop
[../]
[./mech_prop]
type = MaterialRealAux
property = mech_prop
variable = mech_prop
[../]
[./total_potential]
type = MaterialRealAux
property = total_potential
variable = total_potential
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./mechanical_potential]
type = StressBasedChemicalPotential
property_name = mech_prop
stress_name = stress
direction_tensor_name = aniso_tensor
prefactor_name = 1.0
[../]
[./total_potential]
type = DerivativeSumMaterial
block = 0
f_name = total_potential
sum_materials = 'mu_prop mech_prop'
args = 'c'
derivative_order = 2
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_outer_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = outer_tip
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/tensile/small_deform7.i
# checking for small deformation
# A single element is incrementally stretched in the in the z direction
# This causes the return direction to be along the hypersurface sigma_II = sigma_III,
# and the resulting stresses are checked to lie on the expected yield surface
#
# tensile_strength is set to 1Pa,
# cap smoothing is used with tip_smoother = 0.0, cap_start = 0.5, cap_rate = 2.0
# Lode angle = -30degrees
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z*t*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tip_scheme = cap
tensile_tip_smoother = 0.0
cap_start = -0.5
cap_rate = 2
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
max_NR_iterations = 1000
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 9
dt = 0.9
type = Transient
[]
[Outputs]
file_base = small_deform7
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto14.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to an edge of the tensile yield surface
# This is a very nonlinear test and a delicate test because it perturbs around
# an edge of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[./int8]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int3
index = 3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int4
index = 4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int5
index = 5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int6
index = 6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int7
index = 7
[../]
[./int8]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int8
index = 8
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_int3]
type = ElementExtremeValue
variable = int3
outputs = console
[../]
[./max_int4]
type = ElementExtremeValue
variable = int4
outputs = console
[../]
[./max_int5]
type = ElementExtremeValue
variable = int5
outputs = console
[../]
[./max_int6]
type = ElementExtremeValue
variable = int6
outputs = console
[../]
[./max_int7]
type = ElementExtremeValue
variable = int7
outputs = console
[../]
[./max_int8]
type = ElementExtremeValue
variable = int8
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E1
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E0
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 12 -14 12 5 20 -14 20 8'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto14
exodus = false
csv = true
[]
modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/four_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = four_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/plastic_heating/tensile01.i
# Tensile heating, using capped weak-plane plasticity
# z_disp(z=1) = t
# totalstrain_zz = t
# with C_ijkl = 0.5 0.25
# stress_zz = t, but with tensile_strength = 1, stress_zz = min(t, 1)
# so plasticstrain_zz = t - 1
# heat_energy_rate = coeff * (t - 1)
# Heat capacity of rock = specific_heat_cap * density = 4
# So temperature of rock should be:
# (1 - porosity) * 4 * T = (1 - porosity) * coeff * (t - 1)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -10
xmax = 10
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[../]
[./phe]
type = PorousFlowPlasticHeatEnergy
variable = temperature
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_z]
type = FunctionAux
variable = disp_z
function = z*t
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = temperature
number_fluid_phases = 0
number_fluid_components = 0
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2
density = 2
[../]
[./temp]
type = PorousFlowTemperature
temperature = temperature
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[./phe]
type = ComputePlasticHeatEnergy
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.5 0.25'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanphi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-10
perfect_guess = true
[../]
[]
[Postprocessors]
[./temp]
type = PointValue
point = '0 0 0'
variable = temperature
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 10
[]
[Outputs]
file_base = tensile01
csv = true
[]
modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Fluid bulk modulus)*log(1 - 0.01t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 1*log(1-0.01t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it just comes from conserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform5.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
# Use 'cap' smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.9E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0
cap_start = 3
cap_rate = 0.8
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 150
dt = 5
type = Transient
[]
[Outputs]
file_base = small_deform5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard2.i
# apply uniform stretches in x, y and z directions.
# let friction_angle = 60deg, friction_angle_residual=10deg, friction_angle_rate = 0.5E4
# With cohesion = C, friction_angle = phi, the
# algorithm should return to
# sigma_m = C*Cos(phi)/Sin(phi)
# Or, when T=C,
# phi = arctan(C/sigma_m)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 1.04719755 # 60deg
value_residual = 0.17453293 # 10deg
rate = 0.5E4
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
shift = 1E-12
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.0E7 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard2
exodus = false
[./csv]
type = CSV
execute_on = timestep_end
[../]
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_lode_zero.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = lode_zero
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 8
smoothing_tol = 1E-7
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_lode_zero
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/linear_elasticity/applied_strain.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
eigenstrain_names = eigenstrain
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy'
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eigenstrain]
type = ComputeEigenstrain
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto13.i
# checking jacobian for nonlinear plasticity (single surface, smoothed MohrCoulomb)
# note: must have min_stepsize=1 otherwise the nonlinearities compound and make the jacobian more inaccurate
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4 5 7 2 4 2 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = PJFNK # cannot use NEWTON because we are using ComputeFiniteStrain, and hence the Jacobian contributions will not be correct, even though ComputeMultiPlasticityStress will compute the correct consistent tangent operator for small strains
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_finite_strain_jacobian/3d_bar.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 10
nx = 10
ny = 2
nz = 2
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
use_automatic_differentiation = true
[../]
[]
[Materials]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = ADDirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = ADDirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_side_y]
type = ADDirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./fix_z]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./move_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.2
dtmin = 0.2
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard_cubic.i
# apply uniform stretches in x, y and z directions.
# let cohesion = 10, cohesion_residual = 2, cohesion_limit = 0.0003
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (C*Cos(60) - 4)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 2
internal_limit = 0.0003
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-4
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-8
[../]
[]
[Executioner]
end_time = 10
dt = 0.25
type = Transient
[]
[Outputs]
file_base = small_deform_hard_cubic
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.01*v'
[../]
[../]
[./mu]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./eigen_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./eigen_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./eigenstrain_xx]
type = RankTwoAux
variable = eigen_strain_xx
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./eigenstrain_yy]
type = RankTwoAux
variable = eigen_strain_yy
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./eigenstrain_prefactor]
type = DerivativeParsedMaterial
block = 0
function = 'c-0.1'
args = c
f_name = eigenstrain_prefactor
derivative_order = 1
[../]
[./eigenstrain]
type = ComputeVariableBaseEigenStrain
base_tensor_property_name = aniso_tensor
prefactor = eigenstrain_prefactor
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/poro_mechanics/terzaghi.i
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 0.25
fluid_bulk_compliance = 0.125
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform2.i
# large strain with weak-plane normal rotating with mesh
# First rotate mesh 45deg about x axis
# Then apply stretch in the y=z direction.
# This should create a pure tensile load (no shear), which
# should return to the yield surface.
#
# Since cohesion=1E6 and tan(friction_angle)=1, and
# wps_smoother = 0.5E6, the apex of the weak-plane cone is
# at normal_stress = 0.5E6. So, the result should be
# s_yy = s_yz = s_zz = 0.25E6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0.70710678*y+0.70710678*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-0.70710678*y+0.70710678*z-z'
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0.70710678*y+0.70710678*z-y+if(t>0,1,0)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-0.70710678*y+0.70710678*z-z+if(t>0,1,0)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.111107723
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0.5E6
yield_function_tolerance = 1E-9
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-8
debug_fspb = crash
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface22.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.7E-6m in y direction and 1.1E-6 in z direction.
# trial stress_yy = 1.7 and stress_zz = 1.1
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester0 will be rutned off.
# The algorithm will return to
# stress_yy=1.0 and stress_zz=0.5
# internal1=0.1, internal2=0.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.7E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface22
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
# The pressure is computed as an auxiliary variable. It should give the same result
# as pressure_test.i
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = FileMesh
file = pressure_test.e
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 2.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[AuxVariables]
[./pressure_1]
[../]
[./pressure_2]
[../]
[./pressure_3]
[../]
[]
[AuxKernels]
[./side1_pressure_ak]
type = FunctionAux
variable = pressure_1
boundary = 1
function = rampConstant
[../]
[./side2_pressure_ak]
type = FunctionAux
variable = pressure_2
boundary = 2
function = zeroRamp
[../]
[./side3_pressure_ak]
type = FunctionAux
variable = pressure_3
boundary = 3
function = rampUnramp
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./CoupledPressure]
[./Side1]
boundary = '1'
pressure = pressure_1
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = '2'
pressure = pressure_2
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[./side3_x]
type = CoupledPressureBC
variable = 'disp_x'
boundary = '3'
pressure = pressure_3
component = 0
[../]
[./side3_y]
type = CoupledPressureBC
variable = 'disp_y'
boundary = '3'
pressure = pressure_3
component = 1
[../]
[./side3_z]
type = CoupledPressureBC
variable = 'disp_z'
boundary = '3'
pressure = pressure_3
component = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_basicthm.i
# using a BasicTHM Action
#
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedFullySaturatedMassTimeDerivative kernels
# with multiply_by_density = false, so that this problem becomes linear
# Note the use of consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 8.0
viscosity = 1.0
density0 = 1.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.6
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_basicthm
[./csv]
interval = 3
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i
# UserObject IsotropicSD test, with power rule hardening with rate 1e2.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e2
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform3.i
# Using CappedMohrCoulomb with tensile failure only
# checking for small deformation
# A single element is stretched by "ep" in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# where sigma_I = (E_2222 + E_2200) * ep
# tensile_strength is set to 1Pa, smoothing_tol = 0.1Pa
# The smoothed yield function is
# yf = sigma_I + ismoother(0) - tensile_strength
# = sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - tensile_strength
# = sigma_I - 0.98183
#
# With zero Poisson's ratio, the return stress will be
# stress_00 = stress_22 = 0.98183
# with all other stress components being zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i
# apply a pure tension, then some shear
# the BCs are designed to map out the yield function, showing
# the affect of 'cap' smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*(t-1E-6)*(t-1E-6)*1E6)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-1E-6)*(t-1E-6)*1E6)'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,1E-6)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tip_scheme = cap
smoother = 0
cap_rate = 0.001
cap_start = -1000.0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
debug_jac_at_stress = '1E4 2E4 3E4 2E4 -4E4 5E4 3E4 5E4 6E8'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-3
debug_pm_change = 1E-5
debug_intnl_change = 1E-5
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/random.i
# capped drucker-prager
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./shear_yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./tensile_yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./compressive_yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./shear_yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = shear_yield_fcn
[../]
[./tensile_fcn_auxk]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = tensile_yield_fcn
[../]
[./compressive_yield_fcn_auxk]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = compressive_yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./shear_max]
type = ElementExtremeValue
variable = shear_yield_fcn
outputs = 'console'
[../]
[./tensile_max]
type = ElementExtremeValue
variable = tensile_yield_fcn
outputs = 'console'
[../]
[./compressive_max]
type = ElementExtremeValue
variable = compressive_yield_fcn
outputs = 'console'
[../]
[./should_be_zero_shear]
type = FunctionValuePostprocessor
function = shear_should_be_zero_fcn
[../]
[./should_be_zero_compressive]
type = FunctionValuePostprocessor
function = compressive_should_be_zero_fcn
[../]
[./should_be_zero_tensile]
type = FunctionValuePostprocessor
function = tensile_should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./shear_should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'shear_max'
[../]
[./tensile_should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'tensile_max'
[../]
[./compressive_should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'compressive_max'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = dp
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-3
tip_smoother = 0.1E3
smoothing_tol = 0.1E3
max_NR_iterations = 1000
small_dilation = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '-5e9 -5e9 -5e9 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err]
type = ScalarL2Error
variable = global_strain
function = -0.02428571 #strain = E*(1-2*nu)/sigma
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/tensile/small_deform_hard3_update_version.i
# checking for small deformation, with cubic hardening
# A single element is repeatedly stretched by in z direction
# tensile_strength is set to 1Pa, tensile_strength_residual = 0.5Pa, and limit value = 1E-5
# This allows the hardening of the tensile strength to be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1.0
value_residual = 0.5
internal_0 = 0
internal_limit = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 10
dt = 1.0
type = Transient
[]
[Outputs]
file_base = small_deform_hard3_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# Then all three will be active, but there is linear-dependence.
# SimpleTester1 will turn off, since it is closest,
# and the algorithm will return to stress_zz=1, stress_yy=2, but
# then SimpleTester1 will be positive, so it will be turned back
# on, and then SimpleTester0 or SimpleTester2 will be turned off
# (a random choice will be made).
# If SimpleTester2 is turned
# off then algorithm returns to stress_zz=1=stress_yy, but then
# SimpleTester2 violates Kuhn-Tucker (f<0 and pm>0), so the algorithm
# will restart, and return to stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
# If SimpleTester0 is turned off then the algorithm will return to
# stress_zz=2, stress_yy=1, where f0>0. Once again, a random choice
# of turning off SimpleTester1 or SimpleTester2 can be made. Hence,
# oscillations can occur. If too many oscillations occur then the algorithm
# will fail
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform9.i
# apply a shear deformation to observe shear hardening.
# Shear gives q_trial = 2*Sqrt(20), p_trial=0
# The solution given by MOOSE correctly satisfies the equations
# 0 = f = q + p*tan(phi) - coh
# 0 = p - p_trial + ga * Ezzzz * dg/dp
# 0 = q - q_trial + ga * Ezxzx * dg/dq
# Here dg/dp = tan(psi), and dg/dq = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 't'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '2*t'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform9
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto18.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the edge of the tensile yield surface
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 0.5GPa. Lame mu = 1GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.5E3 1E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1 0.1 0.2 0.1 15 -0.3 0.2 -0.3 14'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto18
exodus = false
csv = true
[]
modules/combined/examples/periodic_strain/global_strain_pfm.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/multi/two_surface05.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3E-6m in y directions and 1.0E-6 in z direction.
# trial stress_zz = 1 and stress_yy = 3
#
# Then SimpleTester2 should activate and the algorithm will return to
# stress_zz = 0, stress_yy = 2
# internal0 should be zero, and internal1 should be 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface05
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/random.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.1E3
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-6
min_stepsize = 1E-3
plastic_models = mc
debug_fspb = crash
deactivation_scheme = safe
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/random04.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_yield_fcn]
type = ElementExtremeValue
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'max_yield_fcn'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.1
internal_limit = 0.1
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1.5
value_residual = 0
internal_limit = 0.1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 2
ep_plastic_tolerance = 1E-6
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random04
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_outer_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = outer_tip
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 8
smoothing_tol = 1E-7
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface07.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 0.8E-6 in z direction.
# trial stress_yy = 1.5 and stress_zz = 0.8
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# internal1 should be 0.2, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.8E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface07
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform1.i
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the maximum principal stress value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.0
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = 0.8
debug_jac_at_intnl = 1
debug_stress_change = 1E-8
debug_pm_change = 1E-5
debug_intnl_change = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i
# Tests the PorousFlowHeatVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, THM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[./temperature]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[./p]
type = RandomIC
min = -1
max = 0
variable = porepressure
[../]
[./t]
type = RandomIC
min = 1
max = 2
variable = temperature
[../]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[./disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[../]
[./disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./dummy]
type = TimeDerivative
variable = porepressure
[../]
[./temp]
type = PorousFlowHeatVolumetricExpansion
variable = temperature
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[../]
[../]
[]
[Materials]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./temperature]
type = PorousFlowTemperature
temperature = temperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss_nodal]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
thermal_expansion_coeff = 0.1
reference_temperature = 0.1
reference_porepressure = 0.2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
modules/tensor_mechanics/test/tests/tensile/small_deform2.i
# checking for small deformation
# A single element is stretched by 1E-6m in all directions.
# tensile_strength is set to 1Pa, and smoother = 0.5
# Then the final stress should return to the yield surface and all principal stresses should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.5
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except3.i
# Exception: incorrect userobject types
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.05
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/random02.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_yield_fcn]
type = ElementExtremeValue
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'max_yield_fcn'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1.5
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 2
ep_plastic_tolerance = 1E-6
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random02
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform12.i
# Using CappedMohrCoulomb with compressive failure only
# checking for small deformation
# A single element is stretched equally in all directions.
# This causes the return direction to be along the sigma_I = sigma_II = sigma_III line
# compressive_strength is set to 1Pa, and smoothing_tol = 0.1Pa
# The smoothed yield function comes from two smoothing operations.
# The first is on sigma_I and sigma_II (sigma_I >= sigma_II >= sigma_III):
# yf = -sigma_I + ismoother(0) - compressive_strength
# = -sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - compressive_strength
# = -sigma_I + 0.018169 - 1
# The second has the argument of ismoother equal to -0.018169.
# ismoother(-0.018169) = 0.5 * (-0.018169 + 0.1) - 0.1 * cos (0.5 * Pi * -0.018169 / 0.1) / Pi
# = 0.010372
# So the final yield function is
# yf = -sigma_I + 0.018169 + 0.010372 - 1 = -sigma_I + 0.028541 - 1
# However, because of the asymmetry in smoothing (the yield function is obtained
# by first smoothing -sigma_I-cs and -sigma_II-cs, and then by smoothing this
# result with -sigma_III-cs) the result is sigma_I > sigma_II = sigma_III
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform12
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform2.i
# large strain with weak-plane normal rotating with mesh
# First rotate mesh 45deg about x axis
# Then apply stretch in the y=z direction.
# This should create a pure tensile load (no shear), which
# should return to the yield surface.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0.70710678*y+0.70710678*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-0.70710678*y+0.70710678*z-z'
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0.70710678*y+0.70710678*z-y+if(t>0,1,0)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-0.70710678*y+0.70710678*z-z+if(t>0,1,0)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1.0E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-9
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform3.i
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
# the following are "random" deformations
# each is O(1E-1) to provide large deformations
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.577350269
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i
#
# Rotation Test
#
# This test is designed to compute stress based on uniaxial strain
# and then follow that stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the three directions are prescribed. Poisson's
# ratio is 1/3, and Young's modulus is 1e6.
#
# This test is mentioned in
# K. Kamojjala, R. Brannon, A. Sadeghirad, and J. Guilkey, "Verification
# tests in solid mechanics," Engineering with Computers, Vol. 31, 2015.
# DOI: 10.1007/s00366-013-0342-x
#
[Mesh]
type = FileMesh
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./x_200]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.5e6 0.75e6 0.75e6 1.5e6 0.75e6 1.5e6 0.375e6 0.375e6 0.375e6'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type '
petsc_options_value = lu
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform10.i
# apply a shear deformation and tensile stretch to observe all hardening.
# Here p_trial=12, q_trial=2*Sqrt(20)
# MOOSE yields:
# q_returned = 1.696
# p_returned = 0.100
# intnl_shear = 1.81
# intnl_tens = 0.886
# These give, at the returned point
# cohesion = 1.84
# tanphi = 0.513
# tanpsi = 0.058
# tensile = 0.412
# This means that
# f_shear = -0.0895
# f_tensile = -0.312
# Note that these are within smoothing_tol (=1) of each other
# Hence, smoothing must be used:
# ismoother = 0.0895
# (which gives the yield function value = 0)
# smoother = 0.328
# This latter gives dg/dq = 0.671, dg/dp = 0.368
# for the flow directions. Finally ga = 2.70, and
# the returned point satisfies the normality conditions.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 't'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '2*t'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 1
[../]
[./t_strength]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0
rate = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-3
perfect_guess = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform10
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/special_joint1.i
# Plasticity models:
# WeakPlaneTensile with strength = 1000Pa
# WeakPlaneShear with cohesion = 0.1MPa and friction angle = 25
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./wpt_str]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = wpt_str
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wps_c]
type = TensorMechanicsHardeningConstant
value = 1.0E5
[../]
[./wps_tan_phi]
type = TensorMechanicsHardeningConstant
value = 0.466
[../]
[./wps_tan_psi]
type = TensorMechanicsHardeningConstant
value = 0.087
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = wps_c
tan_friction_angle = wps_tan_phi
tan_dilation_angle = wps_tan_psi
smoother = 0
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'wpt wps'
max_NR_iterations = 5
specialIC = 'joint'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = special_joint1
exodus = false
csv = true
[]
modules/combined/test/tests/eigenstrain/variable_finite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./stress11]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigenstrain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./c_IC]
int_width = 0.15
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./strain11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain11
[../]
[./stress11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = stress11
[../]
[./eigenstrain00]
type = RankTwoAux
variable = eigenstrain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.01*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
args = c
prefactor = var_dep
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 0.0005*t
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type '
petsc_options_value = lu
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-9
reset_dt = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform_hard3.i
# Using CappedMohrCoulomb with tensile failure only
# checking for small deformation, with cubic hardening
# A single element is repeatedly stretched in z direction
# tensile_strength is set to 1Pa, tensile_strength_residual = 0.5Pa, and limit value = 1E-5
# This allows the hardening of the tensile strength to be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2E-6*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1.0
value_residual = 0.5
internal_0 = 0
internal_limit = 1E-5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 10
dt = 1.0
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
csv = true
[]
modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i
# UserObject IsotropicSD test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i
# deformations are applied so that the trial stress is
# shear = 10, normalstress = 2
#
# Cohesion is chosen to be 1, and friction angle = 26.565, so tan(friction_angle) = 1/2
# This means that (shear, normalstress) = (0, 2) is the apex
# of the shear envelope
#
# Poisson's ratio is chosen to be zero, and Lame mu = 1E6,
# so the return must solve
# f = 0
# shear = shear_trial - (1/2)*mu*ga = 10 - 0.5E6*ga
# normalstress = normalstress - mu*tan(dilation)*ga
#
# Finally, tan(dilation) = 2/18 is chosen.
#
# Then the returned value should have
# shear = 1, normalstress = 0
#
# Here shear = sqrt(s_yz^2 + s_xz^2)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface11.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 2E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 2.0
#
# Then SimpleTester0 should activate and the algorithm will return to
# stress_zz=1
# internal0 should be 1.0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface11
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform16.i
# Using CappedMohrCoulomb with compressive failure only
# A single element is incrementally compressed in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-0.4*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-0.4*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform16
csv = true
[]
modules/combined/test/tests/poro_mechanics/mandel.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_compliance = 0.125
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/borehole_highres.i
# Poroelastic response of a borehole.
#
# HIGHRES VERSION: this version gives good agreement with the analytical solution, but it takes a while so is a "heavy" test
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_highres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.1
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_highres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_highres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_highres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_highres_t
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_inner_edge.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = inner_edge
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 8
smoothing_tol = 1E-7
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_edge
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
# Wave propogation in 1D using Newmark time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.0
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface10.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 0.0E-6 in z direction.
# trial stress_yy = 1.5 and stress_zz = 0.0
#
# Then SimpleTester1 should activate and the algorithm will return to
# stress_yy=1
# internal1 should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface10
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform2_update_version.i
# Using TensileStressUpdate
# checking for small deformation
# A single element is stretched equally in all directions.
# This causes the return direction to be along the sigma_I = sigma_II = sigma_III line
# tensile_strength is set to 1Pa, and smoothing_tol = 0.1Pa
# The smoothed yield function comes from two smoothing operations.
# The first is on sigma_I and sigma_II (sigma_I >= sigma_II >= sigma_III):
# yf = sigma_I + ismoother(0) - tensile_strength
# = sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - tensile_strength
# = sigma_I + 0.018169 - 1
# The second has the argument of ismoother equal to -0.018169.
# ismoother(-0.018169) = 0.5 * (-0.018169 + 0.1) - 0.1 * cos (0.5 * Pi * -0.018169 / 0.1) / Pi
# = 0.010372
# So the final yield function is
# yf = sigma_I + 0.018169 + 0.010372 - 1 = sigma_I + 0.028541 - 1
# However, because of the asymmetry in smoothing (the yield function is obtained
# by first smoothing sigma_I-ts and sigma_II-ts, and then by smoothing this
# result with sigma_III-ts) the result is sigma_I = sigma_II > sigma_III
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto12.i
# checking jacobian for nonlinear plasticity (single surface, smoothed MohrCoulomb)
# note: must have min_stepsize=1 otherwise the nonlinearities compound and make the jacobian more inaccurate
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '3 0 0 0 3 0 0 0 1.5'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/tensile/small_deform_hard3.i
# checking for small deformation, with cubic hardening
# A single element is repeatedly stretched by in z direction
# tensile_strength is set to 1Pa, tensile_strength_residual = 0.5Pa, and limit value = 1E-5
# This allows the hardening of the tensile strength to be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1.0
value_residual = 0.5
internal_0 = 0
internal_limit = 1E-5
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.0
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = 0.8
debug_jac_at_intnl = 1
debug_stress_change = 1E-8
debug_pm_change = 1E-5
debug_intnl_change = 1E-5
[../]
[]
[Executioner]
end_time = 10
dt = 1.0
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform1.i
# Using CappedMohrCoulomb with tensile failure only
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the minimum principal stress value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
csv = true
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 250
ymax = 250
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
# This deprecated material is replaced by the materials below
#
#[./eigenstrain]
# type = SimpleEigenStrainMaterial
# block = 0
# epsilon0 = 0.05
# c = c
# disp_y = disp_y
# disp_x = disp_x
# C_ijkl = '3 1 1 3 1 3 1 1 1 '
# fill_method = symmetric9
#[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform4.i
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
# using the 'cap' tip_scheme
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
# the following are "random" deformations
# each is O(1E-1) to provide large deformations
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.577350269
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tip_scheme = cap
smoother = 100
cap_rate = 0.001
cap_start = 0.0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/energy_conservation/heat03.i
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow or heat flow.
# Heat energy conservation is checked.
#
# Under these conditions (here L is the height of the sample: L=1 in this case):
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# Also, the total heat energy must be conserved: this is
# fluid_mass * fluid_heat_cap * temperature + (1 - porosity) * rock_density * rock_heat_cap * temperature * volume
# Since fluid_mass is conserved, and volume = (1 - 0.01*t), this can be solved for temperature:
# temperature = initial_heat_energy / (fluid_mass * fluid_heat_cap + (1 - porosity) * rock_density * rock_heat_cap * (1 - 0.01*t))
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
# initial temperature = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
# t0 = 11.5 / (0.159 + 0.99 * (1 - 0.01*t))
#
# Regarding the "log" - it comes from preserving fluid mass
#
# Note that the PorousFlowMassVolumetricExpansion and PorousFlowHeatVolumetricExpansion Kernels are used
# Note too that the Postprocessors have use_displaced_mesh = true
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
initial_condition = 0.1
[../]
[./temp]
initial_condition = 10
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[./poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
viscosity = 1
thermal_expansion = 0
cv = 1.3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = temp
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./rock_heat]
type = PorousFlowHeatEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 2
end_time = 10
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat03
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
use_current_history_variable = true
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '5e9 0 0 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e00]
type = ElementL2Error
variable = e00
function = 0.07142857 #strain_xx = C1111/sigma_xx
[../]
[./l2err_e11]
type = ElementL2Error
variable = e11
function = -0.07142857*0.33 #strain_yy = -nu*strain_xx
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto08.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface12.i
# Plasticity models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 0.15 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester1 should activate and the algorithm will return to
# stress_zz=1=stress_yy
# internal0 should be 0.5 and internal1 should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0.15 0 0 0 1.5'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = -0.3
zeta = 0.1
use_automatic_differentiation = true
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ADComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform3.i
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
# the following are "random" deformations
# each is O(1E-5) to keep deformations small
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E5'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E5'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E5'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5773503
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i
# This example problem demonstrates coupling heat conduction with mechanics.
# A circular domain has as uniform heat source that increases with time
# and a fixed temperature on the outer boundary, resulting in a temperature gradient.
# This results in heterogeneous thermal expansion, where it is pinned in the center.
# Looking at the hoop stress demonstrates why fuel pellets have radial cracks
# that extend from the outer boundary to about halfway through the radius.
# The problem is run with length units of microns.
[Mesh]
#Circle mesh has a radius of 1000 units
type = FileMesh
file = circle.e
uniform_refine = 1
[]
[Variables]
# We solve for the temperature and the displacements
[./T]
initial_condition = 800
scaling = 1e7
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./radial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop_stress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'TensorMechanics htcond Q_function'
[./htcond] #Heat conduction equation
type = HeatConduction
variable = T
[../]
[./TensorMechanics] #Action that creates equations for disp_x and disp_y
displacements = 'disp_x disp_y'
[../]
[./Q_function] #Heat generation term
type = BodyForce
variable = T
value = 1
function = 0.8e-9*t
[../]
[]
[AuxKernels]
[./radial_stress] #Calculates radial stress from cartesian
type = CylindricalRankTwoAux
variable = radial_stress
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./hoop_stress] #Calculates hoop stress from cartesian
type = CylindricalRankTwoAux
variable = hoop_stress
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_T] #Temperature on outer edge is fixed at 800K
type = DirichletBC
variable = T
boundary = 1
value = 800
[../]
[./outer_x] #Displacements in the x-direction are fixed in the center
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y] #Displacements in the y-direction are fixed in the center
type = DirichletBC
variable = disp_y
boundary = 2
value = 0
[../]
[]
[Materials]
[./thcond] #Thermal conductivity is set to 5 W/mK
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./iso_C] #Sets isotropic elastic constants
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress] #We use linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform2.i
# apply uniform stretch in x, y and z directions.
# trial_stress(0, 0) = -2
# trial_stress(1, 1) = 6
# trial_stress(2, 2) = 10
# With tensile_strength = 2, the algorithm should return to trace(stress) = 2, or
# stress(0, 0) = -6
# stress(1, 1) = 2
# stress(2, 2) = 6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar2.i
# checking for small deformation
# A single element is stretched by 1E-6m in all directions, with lame mu = 1E6, so trial stress is 2Pa in principal directions
# tensile_strength is set to 1Pa
# Then the final stress should return to the all principal stresses being 1.0 (up to tolerance), and internal parameter = (0.5+0.5+0.5)E-6 = 1.5E-6
# Using 'planar' Tensile plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
outputs = console
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = tens
debug_fspb = crash
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem
exodus = true
csv = false
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/random2.i
# Using CappedMohrCoulomb with compressive failure only
# Plasticity models:
# Compressive strength = 1 MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1234
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./cs]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 0
internal_limit = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 1E5
max_NR_iterations = 100
yield_function_tol = 1.0E-1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random2
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
#
# friction_angle = 50deg, friction_angle_residual=51deg, friction_angle_rate = 1E7 (huge)
# cohesion = 10, cohesion_residual = 9.9, cohesion_rate = 1E7 (huge)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 9.9
rate = 1E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0.8726646 # 50deg
value_residual = 0.8901179 # 51deg
rate = 1E7
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 11 -3 2 -3 8'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i
# UserObject Orthotropic test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_xz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.2
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.55
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./left-right]
auto_direction = 'x y'
variable = 'u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0.1 0.2 0 0 0 -0.2'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = NEWTON
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1_small_strain
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/linear_elasticity/tensor.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 2'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = '1 3'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 2'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.02
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 'zeta_rayleigh'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[./material_zeta]
type = GenericConstantMaterial
block = 0
prop_names = 'zeta_rayleigh'
prop_values = '0.1'
[../]
[./material_eta]
type = GenericConstantMaterial
block = 0
prop_names = 'eta_rayleigh'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_newmark_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i
# Checking evolution tensile strength for cubic hardening
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 4
internal_limit = 0.000003
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
file_base = small_deform_hard_cubic
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/j2_plasticity/hard2.i
# UserObject J2 test, with hardening, but with rate=1E6
# apply uniform compression in x direction to give
# trial stress_xx = 5, so sqrt(3*J2) = 5
# with zero Poisson's ratio, lambda_mu = 1E6, and strength=2, strength_residual=1,
# the equations that we need to solve are:
#
# stress_yy = stress_zz [because of the symmetry of the problem: to keep Lode angle constant]
# stress_xx - stress_yy = 1 + (2 - 1)*exp(-0.5*(1E6*q)^2) [yield_fcn = 0]
# stress_xx + stress_yy + stress_zz = 5 [mean stress constant]
# q = gamma
# stress_xx = 1E6*2*gamma*(stress_xx - 5/3)*sqrt(3)/2/sqrt(J2), where sqrt(J2) = (1 + (2 - 1)*exp(-0.5*(1E6*q)^2))/Sqrt(3)
# so RHS = 1E6*2*gamma*(stress_xx - 5/3)*3/2/(stress_xx - stress_yy)
#
# stress_xx = 2.672
# stress_yy = 1.164
# q = 1.164E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningGaussian
value_0 = 2
value_residual = 1
rate = 1E12
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_native.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.35E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = native
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 8
smoothing_tol = 1E-7
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except1.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 45
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i
#
[Mesh]
file = necking_quad4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
# save_in_disp_x = force_x
save_in_disp_y = force_y
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_x]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./y_top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.2
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./disp_y]
type = NodalSum
variable = disp_y
boundary = top
[../]
[./force_y]
type = NodalSum
variable = force_y
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/combined/test/tests/poro_mechanics/selected_qp.i
# A sample is unconstrained and its boundaries are
# also impermeable. Fluid is pumped into the sample via specifying
# the porepressure at all points, and the
# mean stress is monitored at quadpoints in the sample
# This is just to check that the selected_qp in RankTwoScalarAux is working
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./pbdy]
type = FunctionDirichletBC
variable = porepressure
function = 'x*t'
boundary = 'left right'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./mean_stress0]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress1]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress2]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress3]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress4]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress5]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress6]
order = CONSTANT
family = MONOMIAL
[../]
[./mean_stress7]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mean_stress0]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress0
scalar_type = Hydrostatic
selected_qp = 0
[../]
[./mean_stress1]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress1
scalar_type = Hydrostatic
selected_qp = 1
[../]
[./mean_stress2]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress2
scalar_type = Hydrostatic
selected_qp = 2
[../]
[./mean_stress3]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress3
scalar_type = Hydrostatic
selected_qp = 3
[../]
[./mean_stress4]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress4
scalar_type = Hydrostatic
selected_qp = 4
[../]
[./mean_stress5]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress5
scalar_type = Hydrostatic
selected_qp = 5
[../]
[./mean_stress6]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress6
scalar_type = Hydrostatic
selected_qp = 6
[../]
[./mean_stress7]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = mean_stress7
scalar_type = Hydrostatic
selected_qp = 7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.0 1.0'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 1.0
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = false
[../]
[]
[Postprocessors]
[./mean0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress0
[../]
[./mean1]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress1
[../]
[./mean2]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress2
[../]
[./mean3]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress3
[../]
[./mean4]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress4
[../]
[./mean5]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress5
[../]
[./mean6]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress6
[../]
[./mean7]
type = PointValue
outputs = csv
point = '0 0 0'
variable = mean_stress7
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = false
file_base = selected_qp
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# Both return to the edge (lode angle = 30deg, ie 010100) and tip are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E5*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
use_custom_returnMap = true
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 5
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard3
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/tensor_mechanics/test/tests/homogenization/anisoShortFiber.i
#
# Test from:
# Multiple Scale Analysis of Heterogeneous Elastic Structures Using
# Homogenization Theory and Voronoi Cell Finite Element Method
# by S.Ghosh et. al, Int J. Solids Structures, Vol. 32, No. 1,
# pp. 27-62, 1995.
#
# From that paper, elastic constants should be:
# E1111: 122.4
# E2222: 151.2
# E1212: 42.1
# E1122: 36.23
#
# Note: this is for plane stress conditions
#
[Mesh]
file = anisoShortFiber.e
# To calculate matching values, refine the mesh one time.
# We use a coarse mesh for speed in this test.
# uniform_refine = 1
[]
[Variables]
[./dx_xx]
order = FIRST
family = LAGRANGE
[../]
[./dy_xx]
order = FIRST
family = LAGRANGE
[../]
[./dx_yy]
order = FIRST
family = LAGRANGE
[../]
[./dy_yy]
order = FIRST
family = LAGRANGE
[../]
[./dx_xy]
order = FIRST
family = LAGRANGE
[../]
[./dy_xy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./div_x_xx]
type = StressDivergenceTensors
component = 0
variable = dx_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_y_xx]
type = StressDivergenceTensors
component = 1
variable = dy_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_x_yy]
type = StressDivergenceTensors
component = 0
variable = dx_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_y_yy]
type = StressDivergenceTensors
component = 1
variable = dy_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_x_xy]
type = StressDivergenceTensors
component = 0
variable = dx_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./div_y_xy]
type = StressDivergenceTensors
component = 1
variable = dy_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./aeh_dx_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xx
component = 0
column = xx
base_name = xx
[../]
[./aeh_dy_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xx
component = 1
column = xx
base_name = xx
[../]
[./aeh_dx_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_yy
component = 0
column = yy
base_name = yy
[../]
[./aeh_dy_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_yy
component = 1
column = yy
base_name = yy
[../]
[./aeh_dx_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xy
component = 0
column = xy
base_name = xy
[../]
[./aeh_dy_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xy
component = 1
column = xy
base_name = xy
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 30
secondary = 40
translation = '0 1 0'
[../]
[./left_right]
primary = 10
secondary = 20
translation = '1 0 0'
[../]
[../]
[./dx_xx_anchor]
type = DirichletBC
variable = dx_xx
boundary = 1
value = 0.0
[../]
[./dy_xx_anchor]
type = DirichletBC
variable = dy_xx
boundary = 1
value = 0.0
[../]
[./dx_yy_anchor]
type = DirichletBC
variable = dx_yy
boundary = 1
value = 0.0
[../]
[./dy_yy_anchor]
type = DirichletBC
variable = dy_yy
boundary = 1
value = 0.0
[../]
[./dx_xy_anchor]
type = DirichletBC
variable = dx_xy
boundary = 1
value = 0.0
[../]
[./dy_xy_anchor]
type = DirichletBC
variable = dy_xy
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./elastic_stress_xx]
type = ComputeLinearElasticStress
base_name = xx
[../]
[./elastic_stress_yy]
type = ComputeLinearElasticStress
base_name = yy
[../]
[./elastic_stress_xy]
type = ComputeLinearElasticStress
base_name = xy
[../]
[./strain_xx]
type = ComputeSmallStrain
displacements = 'dx_xx dy_xx'
base_name = xx
[../]
[./strain_yy]
type = ComputeSmallStrain
displacements = 'dx_yy dy_yy'
base_name = yy
[../]
[./strain_xy]
type = ComputeSmallStrain
displacements = 'dx_xy dy_xy'
base_name = xy
[../]
[./block1]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xx
[../]
[./block2]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = yy
[../]
[./block3]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xy
[../]
[./block4]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xx
[../]
[./block5]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = yy
[../]
[./block6]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xy
[../]
[]
[Postprocessors]
[./E1111]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2222]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1122]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2211]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xy
row = yy
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1212]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xy
column = xy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter -pc_hypre_boomeramg_grid_sweeps_all -ksp_type -mat_mffd_type'
petsc_options_value = '201 hypre boomeramg 2 2 fgmres ds'
line_search = 'none'
l_tol = 1e-4
l_max_its = 40
nl_max_its = 40
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
end_time = 10.0
num_steps = 1
dt = 10
[]
[Outputs]
exodus = true
csv = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l * 3 / 4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
barrier_energy = 'barrier'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = '3 * gc_prop / (8 * l) * c'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[./barrier_energy]
type = ParsedMaterial
f_name = barrier
material_property_names = 'gc_prop l'
function = '3 * gc_prop / 16 / l'
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 20
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/energy_conservation/heat04_fullysat_action.i
# heat04, but using an action
#
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./temp]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./heat_source]
type = BodyForce
function = 1
variable = temp
[../]
[]
[Functions]
[./err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[../]
[./err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[../]
[]
[AuxVariables]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[../]
[./err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_fullysat_action
csv = true
[]
modules/combined/test/tests/phase_field_fracture/void2d_iso.i
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
value = t
[../]
[./void_prop_func]
type = ParsedFunction
value = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
value = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined3.i
# Plastic deformation, tensile failure, inclined normal = (0, 1, 0)
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the ymax surface of a unit cube:
# disp_x = 4*t
# disp_y = t
# disp_z = 3*t
# should yield trial stress:
# stress_yy = 12*t
# stress_yx = 16*t
# stress_yz = 12*t
# Use tensile strength = 6, we should return to stress_yy = 6,
# and stress_xx = stress_zz = 2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 3*t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '0 1 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined3
csv = true
[]
modules/tensor_mechanics/test/tests/tensile/random_planar.i
# Plasticity models:
# Planar tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1250
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1250
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./tot_iters]
type = ElementIntegralMaterialProperty
mat_prop = plastic_NR_iterations
outputs = console
[../]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningCubic
value_0 = 1E6
value_residual = 0
internal_limit = 1
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
yield_function_tolerance = 1.0E-1
shift = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
deactivation_scheme = 'safe_to_dumb'
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
min_stepsize = 1E-3
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random_planar
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/homogenization/anisoLongFiber.i
#
# Test from:
# Multiple Scale Analysis of Heterogeneous Elastic Structures Using
# Homogenization Theory and Voronoi Cell Finite Element Method
# by S.Ghosh et. al, Int J. Solids Structures, Vol. 32, No. 1,
# pp. 27-62, 1995.
#
# From that paper, elastic constants should be:
# E1111: 136.1
# E2222: 245.8
# E1212: 46.85
# E1122: 36.08
#
# Note: this is for plane stress conditions
#
[Mesh]
file = anisoLongFiber.e
[]
[Variables]
[./dx_xx]
order = FIRST
family = LAGRANGE
[../]
[./dy_xx]
order = FIRST
family = LAGRANGE
[../]
[./dx_yy]
order = FIRST
family = LAGRANGE
[../]
[./dy_yy]
order = FIRST
family = LAGRANGE
[../]
[./dx_xy]
order = FIRST
family = LAGRANGE
[../]
[./dy_xy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./div_x_xx]
type = StressDivergenceTensors
component = 0
variable = dx_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_y_xx]
type = StressDivergenceTensors
component = 1
variable = dy_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_x_yy]
type = StressDivergenceTensors
component = 0
variable = dx_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_y_yy]
type = StressDivergenceTensors
component = 1
variable = dy_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_x_xy]
type = StressDivergenceTensors
component = 0
variable = dx_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./div_y_xy]
type = StressDivergenceTensors
component = 1
variable = dy_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./homo_dx_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xx
component = 0
column = xx
base_name = xx
[../]
[./homo_dy_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xx
component = 1
column = xx
base_name = xx
[../]
[./homo_dx_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_yy
component = 0
column = yy
base_name = yy
[../]
[./homo_dy_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_yy
component = 1
column = yy
base_name = yy
[../]
[./homo_dx_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xy
component = 0
column = xy
base_name = xy
[../]
[./homo_dy_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xy
component = 1
column = xy
base_name = xy
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 30
secondary = 40
translation = '0 1 0'
[../]
[./left_right]
primary = 10
secondary = 20
translation = '1 0 0'
[../]
[../]
[./dx_xx_anchor]
type = DirichletBC
variable = dx_xx
boundary = 1
value = 0.0
[../]
[./dy_xx_anchor]
type = DirichletBC
variable = dy_xx
boundary = 1
value = 0.0
[../]
[./dx_yy_anchor]
type = DirichletBC
variable = dx_yy
boundary = 1
value = 0.0
[../]
[./dy_yy_anchor]
type = DirichletBC
variable = dy_yy
boundary = 1
value = 0.0
[../]
[./dx_xy_anchor]
type = DirichletBC
variable = dx_xy
boundary = 1
value = 0.0
[../]
[./dy_xy_anchor]
type = DirichletBC
variable = dy_xy
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./elastic_stress_xx]
type = ComputeLinearElasticStress
base_name = xx
[../]
[./elastic_stress_yy]
type = ComputeLinearElasticStress
base_name = yy
[../]
[./elastic_stress_xy]
type = ComputeLinearElasticStress
base_name = xy
[../]
[./strain_xx]
type = ComputeSmallStrain
displacements = 'dx_xx dy_xx'
base_name = xx
[../]
[./strain_yy]
type = ComputeSmallStrain
displacements = 'dx_yy dy_yy'
base_name = yy
[../]
[./strain_xy]
type = ComputeSmallStrain
displacements = 'dx_xy dy_xy'
base_name = xy
[../]
[./block1]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xx
[../]
[./block2]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = yy
[../]
[./block3]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xy
[../]
[./block4]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xx
[../]
[./block5]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = yy
[../]
[./block6]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xy
[../]
[]
[Postprocessors]
[./E1111]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2222]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1122]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2211]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1212]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xy
column = xy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter -pc_hypre_boomeramg_grid_sweeps_all -ksp_type -mat_mffd_type'
petsc_options_value = '201 hypre boomeramg 2 2 fgmres ds'
line_search = 'none'
l_tol = 1e-4
l_max_its = 40
nl_max_its = 40
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
end_time = 10.0
num_steps = 1
dt = 10
[]
[Outputs]
exodus = true
csv = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
base_name = uncracked
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./elastic]
type = ComputeLinearElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-6
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_finite_strain_jacobian/bending_jacobian.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
nx = 10
ny = 2
elem_type = QUAD4
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '10 0'
input = corner
[]
[mid]
type = ExtraNodesetGenerator
new_boundary = 103
coord = '5 2'
input = side
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
use_automatic_differentiation = true
[../]
[]
[Materials]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = ADDirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = ADDirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_y]
type = ADDirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./move_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 103
function = '-t'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.1
dtmin = 0.1
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/energy_conservation/heat04_action_KT.i
# heat04, but using an action with KT stabilization.
# See heat04.i for a full discussion of the results.
# The KT stabilization should have no impact as there is no flow, but this input file checks that MOOSE runs.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[PorousFlowUnsaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0E-12
van_genuchten_m = 0.5
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
stabilization = KT
flux_limiter_type = superbee
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./temp]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./heat_source]
type = BodyForce
function = 1
variable = temp
[../]
[]
[Functions]
[./err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[../]
[./err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[../]
[]
[AuxVariables]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[../]
[./err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_action
csv = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform2.i
# Using CappedMohrCoulomb with tensile failure only
# checking for small deformation
# A single element is stretched equally in all directions.
# This causes the return direction to be along the sigma_I = sigma_II = sigma_III line
# tensile_strength is set to 1Pa, and smoothing_tol = 0.1Pa
# The smoothed yield function comes from two smoothing operations.
# The first is on sigma_I and sigma_II (sigma_I >= sigma_II >= sigma_III):
# yf = sigma_I + ismoother(0) - tensile_strength
# = sigma_I + (0.5 * smoothing_tol - smoothing_tol / Pi) - tensile_strength
# = sigma_I + 0.018169 - 1
# The second has the argument of ismoother equal to -0.018169.
# ismoother(-0.018169) = 0.5 * (-0.018169 + 0.1) - 0.1 * cos (0.5 * Pi * -0.018169 / 0.1) / Pi
# = 0.010372
# So the final yield function is
# yf = sigma_I + 0.018169 + 0.010372 - 1 = sigma_I + 0.028541 - 1
# However, because of the asymmetry in smoothing (the yield function is obtained
# by first smoothing sigma_I-ts and sigma_II-ts, and then by smoothing this
# result with sigma_III-ts) the result is sigma_I = sigma_II > sigma_III
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = finite
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
csv = true
[]
modules/combined/test/tests/multiphase_mechanics/multiphasestress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./eta1]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./eta2]
[./InitialCondition]
type = FunctionIC
function = 'y/2'
[../]
[../]
[./eta3]
[./InitialCondition]
type = FunctionIC
function = '(2^0.5-(y-1)^2=(y-1)^2)/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./elasticity_tensor_C]
type = ComputeElasticityTensor
base_name = C
fill_method = symmetric9
C_ijkl = '1.1e6 1e5 0 1e6 0 1e6 .5e6 .2e6 .5e6'
[../]
[./strain_C]
type = ComputeSmallStrain
base_name = C
eigenstrain_names = 'C_eigenstrain'
[../]
[./stress_C]
type = ComputeLinearElasticStress
base_name = C
[../]
[./eigenstrain_C]
type = ComputeEigenstrain
base_name = C
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'C_eigenstrain'
[../]
[./switching_A]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
[../]
[./switching_B]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
[../]
[./switching_C]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
[../]
[./combined]
type = MultiPhaseStressMaterial
phase_base = 'A B C'
h = 'h1 h2 h3'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform1.i
# apply uniform stretch in x, y and z directions.
# trial_stress(0, 0) = -2
# trial_stress(1, 1) = 6
# trial_stress(2, 2) = 10
# With tensile_strength = 2, the algorithm should return to trace(stress) = 2, or
# stress(0, 0) = -6
# stress(1, 1) = 2
# stress(2, 2) = 6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform1_update_version.i
# Using TensileStressUpdate
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the maximum principal stress value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = TensileStressUpdate
tensile_strength = ts
smoothing_tol = 0.0
yield_function_tol = 1.0E-9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1_update_version
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform7.i
# Using CappedMohrCoulomb with tensile failure only
# A single element is incrementally stretched in the in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = sigma_II
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = finite
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '4*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform7
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface13.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0E-6 in z direction.
# trial stress_yy = 2 and stress_zz = 0
#
# Then SimpleTester1 should activate and the algorithm will return to
# stress_yy=1
# internal1 should be 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface13
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform3.i
# UserObject J2 test
# apply uniform compression in x direction to give
# trial stress_xx = -7, so sqrt(3*J2) = 7
# with zero Poisson's ratio, this should return to
# stress_xx = -3, stress_yy = -2 = stress_zz
# (note that stress_xx - stress_yy = stress_xx - stress_zz = -1, so sqrt(3*j2) = 1,
# and that the mean stress remains = -7/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-3.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i
# apply repeated stretches to observe cohesion hardening, with cubic
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningCubic
value_0 = 1E3
value_residual = 2E3
internal_limit = 0.00007
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden4
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform4.i
# apply nonuniform compression in x, y and z directions such that
# trial_stress(0, 0) = 2
# trial_stress(1, 1) = -8
# trial_stress(2, 2) = -10
# With compressive_strength = -1, the algorithm should return to trace(stress) = -1, or
# stress(0, 0) = 7
# stress(1, 1) = -3
# stress(2, 2) = -5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-4E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform18.i
# Using CappedMohrCoulomb with compressive failure only
# A single unit element is stretched by -1E-6m in z direction.
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_zz = -2.6 Pa
# stress_xx = -0.6 Pa
# stress_yy = -0.6 Pa
# compressive_strength is set to 0.5Pa
#
# stress_zz = -0.5
# plastic multiplier = 2.1/2.6 E-6
# stress_xx = -0.6 - (2.1/2.6*-0.6) = -0.115
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform18
csv = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform3.i
# Plastic deformation, tensile failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 4*t
# disp_y = 3*t
# disp_z = t
# should yield trial stress:
# stress_zz = 12*t
# stress_zx = 16*t
# stress_zy = 12*t
# Use tensile strength = 6, we should return to stress_zz = 6,
# and stress_xx = stress_yy = 2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 3*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface02.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 2.0
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1, but this will require a negative plasticity
# multiplier for SimpleTester2, so it will be deactivated, and the algorithm will return to
# stress_yy = 0, stress_zz = 1
# internal0 should be 1.0, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface02
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform6.i
# Plastic deformation, both tensile and shear failure
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 'if(t<30,0.2*t,6)'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 'if(t<30,if(t<10,0,t),30-0.2*t)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'if(t<15,3*t,45)+if(t<30,0,45-3*t)'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
perfect_guess = false
[../]
[]
[Executioner]
end_time = 40
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
csv = true
[]
modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_eigen_sol.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
decomposition_method = EigenSolution
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
nl_rel_tol = 1e-10
dt = 0.05
dtmin = 0.05
nl_abs_step_tol = 1e-10
num_steps = 10
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/DiffuseCreep/stress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto03.i
# checking jacobian for linear plasticity (weak_plane_tensile)
# with hardening
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 1
internal_limit = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1 2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '1 2 3 2 -4 -5 3 -5 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
tangent_operator = linear
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/auxkernels/principalstress.i
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
zmin=0.0
zmax=1.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[./right]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '-0.5*t'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_max]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_mid]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_min]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./peeq]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
variable = peeq
scalar_type = EffectiveStrain
[../]
[./stress_max]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_max
scalar_type = MaxPrincipal
[../]
[./stress_mid]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_mid
scalar_type = MidPrincipal
[../]
[./stress_min]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_min
scalar_type = MinPrincipal
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_max]
type = ElementAverageValue
variable = stress_max
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_mid]
type = ElementAverageValue
variable = stress_mid
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_min]
type = ElementAverageValue
variable = stress_min
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/elasticitytensor/composite.i
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 1
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./C1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./C3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./dC3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1111_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1122_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C1133_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./d2C3313_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
#[Kernels]
# [./diff]
# type = Diffusion
# variable = diffused
# [../]
#[]
[AuxKernels]
[./matl_C1111]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C1111_aux
execute_on = initial
[../]
[./matl_C1122]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C1122_aux
execute_on = initial
[../]
[./matl_C1133]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C1133_aux
execute_on = initial
[../]
[./matl_C3313]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C3313_aux
execute_on = initial
[../]
[./matl_dC1111]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = dC1111_aux
execute_on = initial
[../]
[./matl_dC1122]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = dC1122_aux
execute_on = initial
[../]
[./matl_dC1133]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = dC1133_aux
execute_on = initial
[../]
[./matl_dC3313]
type = RankFourAux
rank_four_tensor = delasticity_tensor/dc
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = dC3313_aux
execute_on = initial
[../]
[./matl_d2C1111]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = d2C1111_aux
execute_on = initial
[../]
[./matl_d2C1122]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = d2C1122_aux
execute_on = initial
[../]
[./matl_d2C1133]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = d2C1133_aux
execute_on = initial
[../]
[./matl_d2C3313]
type = RankFourAux
rank_four_tensor = d^2elasticity_tensor/dc^2
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = d2C3313_aux
execute_on = initial
[../]
[]
[Materials]
[./Ca]
type = ComputeElasticityTensor
base_name = Ca
block = 0
fill_method = symmetric21
C_ijkl ='1111 .1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./Cb]
type = ComputeElasticityTensor
base_name = Cb
block = 0
fill_method = symmetric21
C_ijkl ='.1111 1122 .1133 .1123 .1113 .1112 .2222 .2233 .2223 .2213 .2212 .3333 .3323 .3313 .3312 .2323 .2313 .2312 .1313 .1312 .1212'
[../]
[./Fa]
type = DerivativeParsedMaterial
block = 0
f_name = Fa
function = c^2
args = c
[../]
[./Fb]
type = DerivativeParsedMaterial
block = 0
f_name = Fb
function = (1-c)^3
args = c
[../]
[./C]
type = CompositeElasticityTensor
block = 0
args = c
tensors = 'Ca Cb'
weights = 'Fa Fb'
[../]
[]
[Problem]
kernel_coverage_check = false
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/random01.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_yield_fcn]
type = ElementExtremeValue
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'max_yield_fcn'
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1.5
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 2
ep_plastic_tolerance = 1E-6
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random01
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar1.i
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the maximum principal stress value should be 1pa, and value of plastic strain should be 0.5E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = tens
debug_fspb = crash
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_outer_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = outer_tip
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform5.i
# Using CappedMohrCoulomb with tensile failure only
# A single element is incrementally stretched in the in the z and x directions
# This causes the return direction to be along the hypersurface sigma_III = 0
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = finite
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'z*(t-0.5)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform5
csv = true
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_direction.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./left-right]
auto_direction = 'x'
variable = 'u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = -0.1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/linear_elasticity/linear_anisotropic_material.i
# This input file is designed to test the LinearGeneralAnisotropicMaterial class. This test is
# for regression testing. This just takes the material properties and puts them into
# aux variables; the diffusion kernel is just to have a simple kernel to run the test.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./diffused]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
incremental = true
add_variables = true
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 1 2 3'
value = 0.0
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 1 2 3'
value = 0.0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/random_planar.i
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 100
ny = 1250
nz = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1250
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningCubic
value_0 = 1000
value_residual = 100
internal_limit = 4
[../]
[./phi]
type = TensorMechanicsHardeningCubic
value_0 = 0.8
value_residual = 0.3
internal_limit = 2
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 15
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = phi
dilation_angle = psi
yield_function_tolerance = 1E-3
shift = 1E-10
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
min_stepsize = 1
max_stepsize_for_dumb = 1
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random_planar
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 0.9
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = phi
dilation_angle = psi
yield_function_tolerance = 1E-8
shift = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
deactivation_scheme = safe
max_NR_iterations = 3
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 5 2 5 11 -1 2 -1 12'
debug_jac_at_pm = '1 1 1 1 1 1'
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/small_deform6.i
# checking for small deformation
# A single element is incrementally stretched in the in the z direction
# This causes the return direction to be along the hypersurface sigma_II = sigma_III,
# and the resulting stresses are checked to lie on the expected yield surface
#
# tensile_strength is set to 1Pa, tip_smoother = 0.5
# Lode angle = -30degrees
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.25E-6*z*t*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./mc]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
yield_function_tolerance = 1E-6
tensile_tip_smoother = 0.5
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_action.i
# Same as pp_generation.i, but using an Action
#
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 13.0
viscosity = 1.0
density0 = 1.0
[../]
[../]
[]
[PorousFlowUnsaturated]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0
van_genuchten_m = 0.8
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[]
[Functions]
[./porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_action
csv = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto06.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface05.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 1 and stress_zz = 1
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# However, this will mean internal0 < 0, so SimpleTester0 will be deactivated and
# then the algorithm will return to
# stress_yy=0.7, stress_zz=0.8
# internal0 should be 0.0, and internal2 should be 0.3E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 1 0 0 0 1.1'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/multi/three_surface12.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = .15 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester1 should activate and the algorithm will return to
# stress_zz=1=stress_yy
# internal0 should be 0.5 and internal1 should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface12
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/porous_flow/test/tests/jacobian/denergy05.i
# 2phase, 1 component, with solid displacements, time derivative of energy-density, THM porosity wth _ensure_positive = true, and compressive strains
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pgas]
[../]
[./pwater]
[../]
[./temp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.0
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.0
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.0
[../]
[./pgas]
type = RandomIC
variable = pgas
max = 0.01
min = 0.0
[../]
[./pwater]
type = RandomIC
variable = pwater
max = 0.0
min = -0.01
[../]
[./temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./dummy_pgas]
type = Diffusion
variable = pgas
[../]
[./dummy_pwater]
type = Diffusion
variable = pwater
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas temp pwater disp_x disp_y disp_z'
number_fluid_phases = 2
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
cv = 0.7
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.7
thermal_expansion_coeff = 0.7
biot_coefficient = 0.9
solid_bulk = 10
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/combined/examples/phase_field-mechanics/Nonconserved.i
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pulled
# downwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = max(-10*t,-10)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 1E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
num_steps = 8
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_and_shear
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface20.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.1E-6m in y direction and 1.7E-6 in z direction.
# trial stress_yy = 1.1 and stress_zz = 1.7
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester1 will be rutned off.
# The algorithm will return to
# stress_yy=0.5 and stress_zz=1
# internal0=0.1, internal2=0.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.7E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface20
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/random_hyperbolic.i
# drucker-prager hyperbolic.
# apply many random large deformations, checking that the algorithm returns correctly to
# the yield surface each time.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 100
ny = 125
nz = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 0.1E3
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
use_custom_returnMap = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./dp]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-6
min_stepsize = 1E-3
plastic_models = dp
debug_fspb = crash
deactivation_scheme = safe
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = random_hyperbolic
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard1.i
# apply uniform stretches in x, y and z directions.
# let mc_cohesion = 10, mc_cohesion_residual = 2, mc_cohesion_rate =
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = C*Cos(60)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 2
rate = 1E4
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
use_custom_returnMap = true
shift = 1E-12
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard1
exodus = false
[./csv]
type = CSV
execute_on = timestep_end
[../]
[]
modules/combined/test/tests/poro_mechanics/jacobian1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[./p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 0.25
fluid_bulk_compliance = 0.125
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian1
exodus = false
[]
modules/combined/test/tests/poro_mechanics/undrained_oedometer.i
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Biot coefficient)*(Biot modulus)*disp_z/L
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.03*t
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/tensile/planar6.i
# A single unit element is stretched by (0.5, 0.4, 0.3)E-6m
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_xx = 1.72 Pa
# stress_yy = 1.52 Pa
# stress_zz = 1.32 Pa
# tensile_strength is set to 0.5Pa with cubic hardening to 1Pa at intnl=1E-6
#
# The return should be to the tip with, according to mathematica
# sum(plastic_multiplier) = 5.67923989317E-7
# stress_xx = stress_yy = stress_zz = 0.80062961323
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.4E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.3E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 1
internal_limit = 1E-6
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = tens
debug_fspb = none
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except2.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 25
mc_lode_cutoff = -1.0E-6
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/jacobian/fflux08.i
# 1phase, 1component, constant viscosity, Kozeny-Carman permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pp]
type = RandomIC
variable = pp
min = -1
max = 1
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '-1 -0.1 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityKozenyCarman
poroperm_function = kozeny_carman_phi0
k_anisotropy = '1 0 0 0 2 0 0 0 3'
phi0 = 0.1
n = 1.0
m = 2.0
k0 = 2
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
constant_fluid_bulk_modulus = 8
constant_biot_modulus = 4.7058823529
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_constM
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./elastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./plastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./uncracked_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy vonmises_stress'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./elastic_strain_yy]
type = RankTwoAux
variable = elastic_strain_yy
rank_two_tensor = uncracked_elastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./plastic_strain_yy]
type = RankTwoAux
variable = plastic_strain_yy
rank_two_tensor = uncracked_plastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./uncracked_stress_yy]
type = RankTwoAux
variable = uncracked_stress_yy
rank_two_tensor = uncracked_stress
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.001 0.003 0.023'
y = '0.85 1.0 1.25 1.5'
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 5e-3'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 0.85
hardening_function = hf
base_name = uncracked
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./av_uncracked_stress_yy]
type = ElementAverageValue
variable = uncracked_stress_yy
[../]
[./max_c]
type = ElementExtremeValue
variable = c
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2.0e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/paper3.i
# This runs the third example models described in the 'MultiSurface' plasticity paper
# Just change the deactivation_scheme
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
# WeakPlaneTensile with strength = 1000Pa
# WeakPlaneShear with cohesion = 0.1MPa and friction angle = 25, dilation angle = 5deg
#
# Lame lambda = 1.2GPa. Lame mu = 1.2GPa (Young = 3GPa, poisson = 0.5)
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0
shift = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./mc_smooth]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0
shift = 1.0
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
use_custom_cto = false
[../]
[./tensile_smooth]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wpt_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = wpt_str
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wps_c]
type = TensorMechanicsHardeningConstant
value = 1.0E5
[../]
[./wps_tan_phi]
type = TensorMechanicsHardeningConstant
value = 0.466
[../]
[./wps_tan_psi]
type = TensorMechanicsHardeningConstant
value = 0.087
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = wps_c
tan_friction_angle = wps_tan_phi
tan_dilation_angle = wps_tan_psi
smoother = 1.0E4
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.2E9 1.2E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile_smooth mc_smooth wpt wps'
max_NR_iterations = 30
specialIC = 'none'
deactivation_scheme = 'optimized'
min_stepsize = 1E-6
max_stepsize_for_dumb = 1E-2
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper3
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = right
component = 0
factor = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningGaussian
value_0 = 1E3
value_residual = 700
rate = 2E16
[../]
[./tanphi]
type = TensorMechanicsHardeningGaussian
value_0 = 1
value_residual = 0.577350269
rate = 2E16
[../]
[./tanpsi]
type = TensorMechanicsHardeningGaussian
value_0 = 0.0874886635
value_residual = 0.01745506
rate = 2E16
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
max_NR_iterations = 100
min_stepsize = 1
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/paper5.i
# This runs the J2+cap+hardening example model described in the 'MultiSurface' plasticity paper
#
# Plasticity models:
# J2 with strength = 20MPa to 10MPa in 100% strain
# Compressive cap with strength = 15MPa to 5MPa in 100% strain
#
# Lame lambda = 1.2GPa. Lame mu = 1.2GPa (Young = 3GPa, poisson = 0.25)
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl0]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl1]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./intnl0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl0
[../]
[./intnl1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl1
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./max_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[]
[UserObjects]
[./yield_strength]
type = TensorMechanicsHardeningCubic
value_0 = 20E6
value_residual = 10E6
internal_limit = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = yield_strength
yield_function_tolerance = 1.0E2
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = 15E6
value_residual = 5E6
internal_limit = 1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = -1
strength = compressive_strength
yield_function_tolerance = 1.0E2
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.2E9 1.2E9'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = 'j2 cap'
max_NR_iterations = 10
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
tangent_operator = elastic # tangent operator is unimportant in this test
debug_fspb = crash
debug_jac_at_stress = '10E6 0 0 0 10E6 0 0 0 10E6'
debug_jac_at_pm = '1E-2 1E-2'
debug_jac_at_intnl = '0.05 0.05'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper5
exodus = false
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform_hard13.i
# Using CappedMohrCoulomb with compressive failure only
# checking for small deformation, with cubic hardening
# A single element is repeatedly compressed in z direction
# compressive_strength is set to 0.9Pa, compressive_strength_residual = 0.5Pa, and limit value = 1E-5
# This allows the hardening of the compressive strength to be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-0.5E-6*z*t'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = TensorMechanicsHardeningCubic
value_0 = 0.9
value_residual = 0.5
internal_0 = -1E-5
internal_limit = 0
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./compressive]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = compressive
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 10
dt = 1.0
type = Transient
[]
[Outputs]
file_base = small_deform_hard13
csv = true
[]
modules/tensor_mechanics/test/tests/capped_drucker_prager/small_deform3_inner_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
mc_interpolation_scheme = inner_tip
yield_function_tolerance = 1 # irrelevant here
internal_constraint_tolerance = 1 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-8
tip_smoother = 8
smoothing_tol = 1E-7
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./elastic]
type = ComputeFiniteStrainElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-5
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 3e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto19.i
# DruckerPragerHyperbolic
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
smoother = 1
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 0 0 0 10 0 0 0 10'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = dp
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/mortar/eigenstrain.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[slave_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "slave_x"
[]
[master_x]
input = slave_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "master_x"
[]
[slave_y]
input = master_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "slave_y"
[]
[master_y]
input = slave_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "master_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = slave_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = slave_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
slave_variable = disp_x
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
slave_variable = disp_y
slave_boundary = bottom
master_boundary = top
slave_subdomain = slave_y
master_subdomain = master_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
slave_variable = disp_x
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
slave_variable = disp_y
slave_boundary = left
master_boundary = right
slave_subdomain = slave_x
master_subdomain = master_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/terzaghi.i
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true. Therefore the solution is
# a little different than in the paper. This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 4
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform6.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = 0
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pushed
# upwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = min(10*t,1)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.5E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 0.5
dt = 0.1
type = Transient
[]
[Outputs]
file_base = push_and_shear
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/gravity/gravity_test.i
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[Mesh]
type = GeneratedMesh
dim = 3
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./gravity_y]
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2.0387
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/porous_flow/test/tests/jacobian/denergy03.i
# 2phase, 1 component, with solid displacements, time derivative of energy-density, TM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pgas]
[../]
[./pwater]
[../]
[./temp]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[../]
[./pgas]
type = RandomIC
variable = pgas
max = 1.0
min = 0.0
[../]
[./pwater]
type = RandomIC
variable = pwater
max = 0.0
min = -1.0
[../]
[./temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./dummy_pgas]
type = Diffusion
variable = pgas
[../]
[./dummy_pwater]
type = Diffusion
variable = pwater
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas temp pwater disp_x disp_y disp_z'
number_fluid_phases = 2
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
cv = 0.7
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
mechanical = true
porosity_zero = 0.7
thermal_expansion_coeff = 0.5
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[]
[Preconditioning]
active = check
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[./check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i
#
[Mesh]
file = necking_quad4.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./disp_r]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./AxisymmetricRZ]
use_displaced_mesh = true
# save_in_disp_r = force_r
save_in_disp_z = force_z
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_r]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[../]
[./strain_rr]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_rr
index_i = 0
index_j = 0
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeAxisymmetricRZFiniteStrain
block = 1
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.1
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-15
l_tol = 1e-9
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./strain_rr]
type = ElementAverageValue
variable = strain_rr
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./disp_z]
type = NodalSum
variable = disp_z
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform15.i
# Using CappedMohrCoulomb with compressive failure only
# A single element is incrementally compressed in the z and x directions
# This causes the return direction to be along the hypersurface sigma_I = 0
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-2*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-0.5*z*(t+1.5*t*t)'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform15
csv = true
[]
modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i
#This test has volumetric deformation gradient as identity
#Test the interface
#Results should match with elasticity
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./volumetric_strain]
type = ComputeVolumetricDeformGrad
pre_deform_grad_name = deformation_gradient
volumetric_deform_grad_name = volumetric_deformation_gradient
post_deform_grad_name = elastic_deformation_gradient
block = 0
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = elastic_deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = elastic_stress
jacobian_name = elastic_jacobian
block = 0
[../]
[./corrected_stress]
type = VolumeDeformGradCorrectedStress
pre_stress_name = elastic_stress
deform_grad_name = volumetric_deformation_gradient
pre_jacobian_name = elastic_jacobian
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/mean_cap/small_deform2.i
# apply compression in x, y and z directions such that strain = diag(-1E-6, -2E-6, 3E-6).
# With lame_lambda=0 and lame_mu=1E7, this gives
# trial_Stress = diag(-20, -40, -60), so trial_mean_Stress = -40.
# with a = -1 and strength = 30, the algorithm should return to
# stress = diag(-10, -30, -50)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-3E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./strength]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = -1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface04.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0.8E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = 0.8 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# internal0 should be 0.2, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.8E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface04
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i
# A column of elements has its bottom pulled down, and then pushed up again.
# Hardening of the tensile strength means that the top element also
# experiences plastic deformation
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = 'if(t>1,-2.0+t,-t)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 1E8
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E8
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
perfect_guess = false
min_step_size = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 3.0
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_push_h
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/tensile/planar7.i
# A single unit element is stretched by (0.5, 0.4, 0.3)E-6m
# with Lame lambda = 0.6E6 and Lame mu (shear) = 1E6
# stress_xx = 1.72 Pa
# stress_yy = 1.52 Pa
# stress_zz = 1.32 Pa
# tensile_strength is set to 1.3Pa
#
# The return should be to the edge (the algorithm will first try the tip) with
# plastic_multiplier0 = 0, plastic_multiplier1 = 5E-8, plastic_multiplier2 = 1.5E-7
# internal = 2E-7
# stress_xx = stress_yy = 1.3
# stress_zz = 1.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = finite
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.4E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.3E-6*z'
[../]
[]
[AuxVariables]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./hard]
type = TensorMechanicsHardeningConstant
value = 1.3
[../]
[./tens]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = hard
shift = 1E-6
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.6E6 1E6'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = tens
debug_fspb = none
debug_jac_at_stress = '1 2 3 2 -4 -5 3 -5 10'
debug_jac_at_pm = '0.1 0.2 0.3'
debug_jac_at_intnl = 1E-6
debug_stress_change = 1E-6
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar7
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto04.i
# checking jacobian for 3-plane linear plasticity using SimpleTester.
#
# This is like the test multi/three_surface00.i
# Plastic models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# trial stress_yy = 1 and stress_zz = 1
#
# Then SimpleTester2 should activate and the algorithm will return to
# stress_yy = 0.75, stress_zz = 0.75
# internal2 should be 0.25E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 1 0 0 0 1'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
tangent_operator = linear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform11.i
# Using CappedMohrCoulomb with compressive failure only
# checking for small deformation
# A single element is stretched by -1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = -2E6*1E-6 = -2 Pa
# compressive_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the minimum principal stress value should be -1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-1E-6*z'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 2.0E6'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform11
csv = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_native.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.35E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = native
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform5.i
# Plastic deformation, shear failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = 5*t/6
# should yield trial stress:
# stress_zz = 10*t
# stress_zx = 32*t
# stress_zy = 24*t (so q_trial = 40*t)
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = 1/6, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 5*t/6
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform5
csv = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto20.i
# DruckerPragerHyperbolic
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
smoother = 1
yield_function_tolerance = 1E-11
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4 5 7 2 4 2 2'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = dp
tangent_operator = nonlinear
min_stepsize = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
modules/combined/examples/mortar/eigenstrain_action.i
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_action.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 -0.5 0'
new_boundary = 100
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[Modules]
[./TensorMechanics]
# Master action for generating the tensor mechanics kernels, variables,
# strain calculation material, and the auxilliary system for visualization
[./Master]
[./stress_div]
strain = SMALL
add_variables = true
global_strain = global_strain #global strain contribution
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy
stress_yy vonmises_stress'
[../]
[../]
# GlobalStrain action for generating the objects associated with the global
# strain calculation and associated displacement visualization
[./GlobalStrain]
[./global_strain]
scalar_global_strain = global_strain
displacements = 'u_x u_y u_z'
auxiliary_displacements = 'disp_x disp_y disp_z'
global_displacements = 'ug_x ug_y ug_z'
[../]
[../]
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'z'
variable = 'u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
# applied displacement
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = 0.033
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 -0.5 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'z'
variable = 'u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = 0.033
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform8.i
# Plastic deformation, compression with hardening
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = -t
# should yield trial stress:
# stress_zz = -2*t
# The compressive strength varies as a cubic between 1 (at intnl=0)
# and 2 (at intnl=1). The equation to solve is
# 2 - Ezzzz * ga = -2 * (ga - 1/2)^3 + (3/2) (ga - 1/2) + 3/2
# where the left-hand side comes from p = p_trial + ga * Ezzzz
# and the right-hand side is the cubic compressive strength
# The solution is ga = 0.355416 ( = intnl[1]), and the cubic
# is 1.289168 ( = -p) at that point
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 1
internal_0 = -1
internal_limit = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform8
csv = true
[]
modules/porous_flow/test/tests/plastic_heating/shear01.i
# Tensile heating, using capped weak-plane plasticity
# x_disp(z=1) = t
# totalstrain_xz = t
# with C_ijkl = 0.5 0.25
# stress_zx = stress_xz = 0.25*t, so q=0.25*t, but
# with cohesion=1 and tan(phi)=1: max(q)=1. With tan(psi)=0,
# the plastic return is always to (p, q) = (0, 1),
# so plasticstrain_zx = max(t - 4, 0)
# heat_energy_rate = coeff * (t - 4) for t>4
# Heat capacity of rock = specific_heat_cap * density = 4
# So temperature of rock should be:
# (1 - porosity) * 4 * T = (1 - porosity) * coeff * (t - 4)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -10
xmax = 10
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[../]
[./phe]
type = PorousFlowPlasticHeatEnergy
variable = temperature
coeff = 8
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x]
type = FunctionAux
variable = disp_x
function = 'z*t'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = temperature
number_fluid_phases = 0
number_fluid_components = 0
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.0
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[]
[Materials]
[./rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2
density = 2
[../]
[./temp]
type = PorousFlowTemperature
temperature = temperature
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.7
[../]
[./phe]
type = ComputePlasticHeatEnergy
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.5 0.25'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-10
perfect_guess = true
[../]
[]
[Postprocessors]
[./temp]
type = PointValue
point = '0 0 0'
variable = temperature
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 10
[]
[Outputs]
file_base = shear01
csv = true
[]
modules/combined/test/tests/eigenstrain/composite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./s11]
family = MONOMIAL
order = CONSTANT
[../]
[./s22]
family = MONOMIAL
order = CONSTANT
[../]
[./ds11]
family = MONOMIAL
order = CONSTANT
[../]
[./ds22]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./ds11]
type = RankTwoAux
variable = ds11
rank_two_tensor = delastic_strain/dc
index_i = 0
index_j = 0
[../]
[./ds22]
type = RankTwoAux
variable = ds22
rank_two_tensor = delastic_strain/dc
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = 'eigenstrain'
[../]
[./eigen1]
type = GenericConstantRankTwoTensor
tensor_values = '1 -1 0 0 0 0'
tensor_name = eigen1
[../]
[./eigen2]
type = GenericConstantRankTwoTensor
tensor_values = '-1 1 0 0 0 0'
tensor_name = eigen2
[../]
[./weight1]
type = DerivativeParsedMaterial
function = 0.02*c^2
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = 0.02*(1-c)^2
f_name = weight2
args = c
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'eigen1 eigen2'
weights = 'weight1 weight2'
args = c
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
execute_on = final
[]
Child Objects
modules/tensor_mechanics/include/materials/ComputeElasticityTensorCP.h
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "ComputeElasticityTensor.h"
#include "ElementPropertyReadFile.h"
#include "RankTwoTensor.h"
#include "RotationTensor.h"
class ComputeElasticityTensorCP;
template <>
InputParameters validParams<ComputeElasticityTensorCP>();
/**
* ComputeElasticityTensorCP defines an elasticity tensor material object for crystal plasticity.
*/
class ComputeElasticityTensorCP : public ComputeElasticityTensor
{
public:
static InputParameters validParams();
ComputeElasticityTensorCP(const InputParameters & parameters);
protected:
virtual void computeQpElasticityTensor();
virtual void assignEulerAngles();
/**
* Element property read user object
* Presently used to read Euler angles - see test
*/
const ElementPropertyReadFile * _read_prop_user_object;
MaterialProperty<RealVectorValue> & _Euler_angles_mat_prop;
/// Crystal Rotation Matrix
MaterialProperty<RankTwoTensor> & _crysrot;
/// Rotation matrix
RotationTensor _R;
};
References
- Lawrence E Malvern.
Introduction to the Mechanics of a Continuous Medium.
Prentice-Hall, 1969.[BibTeX]
@book{malvern1969introduction, author = "Malvern, Lawrence E", title = "Introduction to the Mechanics of a Continuous Medium", year = "1969", publisher = "Prentice-Hall" }
- William S Slaughter.
The Linearized Theory of Elasticity.
Springer Science & Business Media, 2012.[BibTeX]
@book{slaughter2012linearized, author = "Slaughter, William S", title = "The Linearized Theory of Elasticity", year = "2012", publisher = "Springer Science \\& Business Media" }