- valueThe value to be set in IC
C++ Type:double
Description:The value to be set in IC
- variableThe variable this initial condition is supposed to provide values for.
C++ Type:VariableName
Description:The variable this initial condition is supposed to provide values for.
ConstantIC

The ConstantIC has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# ConstantIC
!syntax description /ICs/ConstantIC
## Overview
!! Replace these lines with information regarding the ConstantIC object.
## Example Input File Syntax
!! Describe and include an example of how to use the ConstantIC object.
!syntax parameters /ICs/ConstantIC
!syntax inputs /ICs/ConstantIC
!syntax children /ICs/ConstantIC
Sets a constant field value.
Input Parameters
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- ignore_uo_dependencyFalseWhen set to true, a UserObject retrieved by this IC will not be executed before the this IC
Default:False
C++ Type:bool
Options:
Description:When set to true, a UserObject retrieved by this IC will not be executed before the this IC
Advanced Parameters
Input Files
- modules/porous_flow/test/tests/poroperm/PermFromPoro04.i
- modules/porous_flow/test/tests/dispersion/diff01.i
- test/tests/postprocessors/function_value_pps/function_value_pps.i
- modules/richards/test/tests/rogers_stallybrass_clements/rsc02.i
- modules/peridynamics/test/tests/failure_tests/2D_stress_failure_NOSPD.i
- test/tests/time_integrators/crank-nicolson/cranic.i
- modules/richards/test/tests/pressure_pulse/pp_lumped_22.i
- modules/phase_field/test/tests/actions/both_split_2vars.i
- modules/porous_flow/test/tests/dirackernels/theis2.i
- modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_02.i
- modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i
- modules/porous_flow/test/tests/dirackernels/theis1.i
- modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i
- modules/porous_flow/test/tests/poroperm/PermFromPoro01.i
- modules/phase_field/examples/multiphase/GrandPotential3Phase.i
- test/tests/materials/var_coupling/var_stateful_coupling.i
- test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i
- test/tests/ics/boundary_ic/boundary_ic.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
- modules/porous_flow/test/tests/mass_conservation/mass07.i
- test/tests/dgkernels/2d_diffusion_dg/no_functor_additions.i
- modules/porous_flow/test/tests/mass_conservation/mass05.i
- modules/richards/test/tests/gravity_head_2/gh16.i
- modules/misc/test/tests/fracture_flow/single.i
- modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i
- modules/porous_flow/test/tests/dispersion/disp01_heavy.i
- modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i
- test/tests/dgkernels/adaptivity/adaptivity.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-min-lm-mortar-disp.i
- modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i
- test/tests/postprocessors/internal_side_jump/internal_side_jump.i
- modules/porous_flow/test/tests/desorption/desorption02.i
- test/tests/dgkernels/2d_diffusion_dg/no_mallocs_with_action.i
- modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i
- modules/porous_flow/examples/lava_lamp/1phase_convection.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-fb-lm-mortar-disp.i
- modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
- test/tests/ics/check_error/two_ics_on_same_boundary.i
- test/tests/materials/material/material_test_dg.i
- test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-nodal-disp.i
- modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i
- modules/richards/test/tests/pressure_pulse/pp22.i
- test/tests/postprocessors/scale_pps/scale_pps.i
- modules/rdg/test/tests/postprocessors/boundary_flux_postprocessor/boundary_flux_postprocessor.i
- test/tests/dgkernels/2d_diffusion_dg/dg_stateful.i
- modules/contact/test/tests/bouncing-block-contact/bouncing-block-ranfs.i
- test/tests/variables/get_elemental_value/get_elemental_value.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
- modules/richards/test/tests/pressure_pulse/pp_fu_22.i
- modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i
- modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i
- test/tests/ics/dependency/test.i
- test/tests/time_integrators/bdf2/bdf2_adapt.i
- modules/porous_flow/test/tests/density/GravDensity01.i
- modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-disp.i
- modules/porous_flow/test/tests/desorption/desorption01.i
- test/tests/postprocessors/volume/sphere1D.i
- modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven.i
- modules/porous_flow/test/tests/dispersion/disp01.i
- test/tests/dgkernels/dg_block_restrict/1d_dg_block_restrict.i
- test/tests/misc/check_error/ic_bnd_for_non_nodal.i
- test/tests/ics/check_error/two_ics_on_same_block_global.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- test/tests/time_integrators/dirk/dirk-2d-heat-adap.i
- modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i
- test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i
- test/tests/executioners/executioner/sln-time-adapt.i
- modules/richards/test/tests/gravity_head_2/ghQ2P_pgas.i
- modules/richards/test/tests/gravity_head_2/gh_lumped_17.i
- modules/richards/test/tests/gravity_head_2/gh_fu_18.i
- python/peacock/tests/common/oversample.i
- modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i
- test/tests/tag/2d_diffusion_dg_tag.i
- modules/richards/test/tests/gravity_head_2/gh_lumped_18.i
- modules/richards/test/tests/pressure_pulse/pp_fu_21.i
- modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i
- modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i
- modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i
- modules/richards/test/tests/uo_egs/seff2.i
- modules/richards/test/tests/dirac/q2p01.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-reduced-active-set.i
- test/tests/interfacekernels/adaptivity/adaptivity.i
- test/tests/time_integrators/bdf2/bdf2.i
- test/tests/transfers/multiapp_nearest_node_transfer/parallel_sub.i
- modules/chemical_reactions/test/tests/desorption/mollified_langmuir_desorption.i
- test/tests/outputs/residual/output_residual_test.i
- test/tests/misc/save_in/dg_save_in_test.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_chorin.i
- modules/functional_expansion_tools/examples/2D_interface/main.i
- test/tests/postprocessors/postprocessor_dependency/element_side_pp.i
- modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i
- python/peacock/tests/common/transient_big.i
- test/tests/variables/previous_newton_iteration/test.i
- modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i
- test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i
- modules/porous_flow/test/tests/mass_conservation/mass08.i
- modules/functional_expansion_tools/examples/2D_interface/sub.i
- modules/phase_field/test/tests/actions/both_direct_2vars.i
- modules/peridynamics/test/tests/failure_tests/2D_stretch_failure_BPD.i
- modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-action.i
- modules/porous_flow/test/tests/poroperm/PermFromPoro02.i
- test/tests/postprocessors/difference_pps/difference_pps.i
- modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i
- modules/richards/test/tests/gravity_head_2/gh06.i
- modules/porous_flow/test/tests/poroperm/PermFromPoro03.i
- modules/phase_field/examples/nucleation/refine.i
- modules/porous_flow/test/tests/poroperm/PermFromPoro05.i
- test/tests/time_integrators/convergence/implicit_convergence.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
- modules/porous_flow/test/tests/mass_conservation/mass10.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
- modules/richards/test/tests/gravity_head_2/gh_bounded_17.i
- test/tests/auxkernels/linear_combination/test.i
- test/tests/executioners/executioner/steady_state_check_test.i
- modules/phase_field/test/tests/MultiPhase/switchingfunction3phasematerial.i
- modules/richards/test/tests/gravity_head_2/gh_fu_06.i
- test/tests/mesh/named_entities/named_entities_test.i
- modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_01.i
- test/tests/misc/check_error/multiple_bad_ic_test.i
- test/tests/postprocessors/function_sideintegral/function_sideintegral.i
- modules/richards/test/tests/gravity_head_2/gh18.i
- test/tests/misc/check_error/wrong_displacement_order.i
- modules/richards/test/tests/gravity_head_2/gh_fu_17.i
- test/tests/ics/dependency/monomial.i
- modules/richards/test/tests/sinks/s04.i
- modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i
- test/tests/coord_type/coord_type_rz_integrated.i
- modules/porous_flow/test/tests/mass_conservation/mass09.i
- modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i
- modules/richards/test/tests/rogers_stallybrass_clements/rsc_lumped_01.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
- test/tests/time_integrators/implicit-euler/ie_adapt.i
- test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i
- modules/richards/test/tests/pressure_pulse/pp_fu_lumped_22.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
- python/peacock/tests/input_tab/InputTree/gold/transient.i
- test/tests/time_integrators/implicit-euler/ie.i
- modules/porous_flow/test/tests/mass_conservation/mass06.i
- modules/porous_flow/examples/flow_through_fractured_media/coarse.i
- test/tests/misc/check_error/ic_variable_not_specified.i
- modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i
- test/tests/executioners/full_jacobian_thread_active_bcs/full_jacobian_thread_active_bcs.i
- modules/richards/test/tests/rogers_stallybrass_clements/rsc01.i
- test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i
- modules/contact/test/tests/bouncing-block-contact/grid-sequencing/grid-sequencing.i
- modules/combined/test/tests/poro_mechanics/borehole_highres.i
- test/tests/ics/constant_ic/constant_ic_test.i
- modules/richards/test/tests/gravity_head_2/gh08.i
- modules/chemical_reactions/test/tests/desorption/langmuir_desorption.i
- python/peacock/tests/common/transient.i
- test/tests/mesh/named_entities/named_entities_test_xda.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-mortar-disp.i
- modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-lm-mortar-disp.i
- modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i
- python/peacock/tests/common/transient_with_date.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
- modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i
- test/tests/ics/constant_ic/subdomain_constant_ic_test.i
- modules/porous_flow/test/tests/dispersion/diff01_action.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-nodal-disp.i
- modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_split.i
- modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i
- modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i
- test/tests/executioners/executioner/transient.i
- modules/functional_expansion_tools/examples/2D_interface_different_submesh/main.i
- modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i
- modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i
- test/tests/time_integrators/implicit-euler/ie-monomials.i
- modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i
- modules/combined/test/tests/poro_mechanics/borehole_lowres.i
- modules/richards/test/tests/gravity_head_2/gh_lumped_08.i
- modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i
- modules/richards/test/tests/sinks/s_fu_04.i
- modules/contact/test/tests/bouncing-block-contact/frictional-mortar-fb-lm-mortar-disp.i
- modules/richards/test/tests/pressure_pulse/pp21.i
- test/tests/ics/check_error/two_ics_on_same_block.i
- modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-mortar-disp.i
- test/tests/postprocessors/element_integral_var_pps/initial_pps.i
- test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i
- modules/porous_flow/test/tests/dirackernels/squarepulse1.i
- test/tests/time_integrators/convergence/explicit_convergence.i
- modules/functional_expansion_tools/test/tests/standard_use/interface_coupled.i
- modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i
- modules/richards/test/tests/gravity_head_2/gh17.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
- modules/contact/test/tests/bouncing-block-contact/frictional-mortar-min-lm-mortar-disp.i
- modules/functional_expansion_tools/examples/2D_interface_no_material/main.i
- modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i
modules/porous_flow/test/tests/poroperm/PermFromPoro04.i
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with log k = A * phi + B
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./poro]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[../]
[./perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[../]
[./perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[../]
[./perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[../]
[./perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[../]
[./perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = log_k
A = 4.342945
B = -8
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/porous_flow/test/tests/dispersion/diff01.i
# Test diffusive part of PorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 10
bias_x = 1.1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[../]
[]
[ICs]
[./pp]
type = ConstantIC
variable = pp
value = 1e5
[../]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[BCs]
[./left]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[../]
[./right]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[../]
[./pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[../]
[./pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1e5
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e7
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro]
type = PorousFlowPorosityConst
porosity = 0.3
[../]
[./diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1 1'
tortuosity = 0.1
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 20
[]
[VectorPostprocessors]
[./xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = final
[../]
[]
test/tests/postprocessors/function_value_pps/function_value_pps.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./constant_func]
type = ConstantFunction
value = 2.798
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value1]
type = FunctionValuePostprocessor
function = constant_func
execute_on = 'initial timestep_end'
[../]
[./value2]
type = FunctionValuePostprocessor
function = 2*t
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
csv = true
[]
[Problem]
solve = false
[]
modules/richards/test/tests/rogers_stallybrass_clements/rsc02.i
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc02
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
modules/peridynamics/test/tests/failure_tests/2D_stress_failure_NOSPD.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./damage]
[../]
[./intact_bonds_num]
[../]
[./critical_stress]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = RankTwoBasedFailureCriteriaNOSPD
variable = bond_status
rank_two_tensor = stress
critical_variable = critical_stress
failure_criterion = VonMisesStress
[../]
[]
[UserObjects]
[./damage]
type = NodalDamageIndexPD
variable = damage
[../]
[./intact_bonds]
type = NodalNumIntactBondsPD
variable = intact_bonds_num
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stress
value = 150
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./strain]
type = ComputeSmallStrainNOSPD
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_stress_failure_NOSPD
exodus = true
[]
test/tests/time_integrators/crank-nicolson/cranic.i
#
# Testing a solution that is second order in space and second order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'crank-nicolson'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/pressure_pulse/pp_lumped_22.i
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
nl_rel_tol = 1.e-9
nl_max_its = 10
end_time = 1E4
[]
[Outputs]
file_base = pp_lumped_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
modules/phase_field/test/tests/actions/both_split_2vars.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 20
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = 1.0
kappa = 20.0
args = 'eta'
solve_type = REVERSE_SPLIT
[../]
[../]
[./Nonconserved]
[./eta]
free_energy = F
mobility = 1.0
kappa = 20
args = 'c'
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = 10
x2 = 25
y1 = 15
y2 = 35
inside = 0.15
outside = 0.85
[../]
[./eta_IC]
type = ConstantIC
variable = eta
value = 0.5
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta c'
function = '(1 - eta)*10.0*(c - 0.1)^2 + eta*(8.0*(c - 0.9)^2) + 10.0*eta^2*(1-eta)^2'
outputs = exodus
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 10
dt = 0.05
[]
[Outputs]
perf_graph = true
exodus = true
[]
modules/porous_flow/test/tests/dirackernels/theis2.i
# Theis problem: Flow to single sink
# Constant rate injection between 200 and 1000 s.
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[./pp]
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1000
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis2
[./csv]
type = CSV
execute_on = final
[../]
[]
[ICs]
[./PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[../]
[]
[DiracKernels]
[./sink]
type = PorousFlowSquarePulsePointSource
start_time = 200
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[../]
[./top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[../]
[]
[VectorPostprocessors]
[./pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[../]
[]
modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_02.i
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFullyUpwindFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_fu_02
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./perm_var]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./perm_var]
type = ConstantAux
value = 2
variable = perm_var
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[../]
[./perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[../]
[./perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[../]
[./perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[../]
[./perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[../]
[./perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/porous_flow/test/tests/dirackernels/theis1.i
# Theis problem: Flow to single sink
# SinglePhase
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[./pp]
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[../]
[]
[Postprocessors]
[./porepressure]
type = PointValue
point = '0 0 0'
variable = pp
execute_on = 'initial timestep_end'
[../]
[./total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1E3
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis1
[./csv]
type = CSV
execute_on = final
[../]
[]
[ICs]
[./PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[../]
[]
[DiracKernels]
[./sink]
type = PorousFlowSquarePulsePointSource
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[../]
[./top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[../]
[]
[VectorPostprocessors]
[./pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[../]
[]
modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i
# Using a single-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_thick_fracture_steady.i must be run to initialise the porepressure properly
[Mesh]
file = 'gold/fine_thick_fracture_steady_out.e'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
initial_from_file_var = pp
initial_from_file_timestep = 1
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity_x]
family = MONOMIAL
order = CONSTANT
block = fracture
[../]
[./velocity_y]
family = MONOMIAL
order = CONSTANT
block = fracture
[../]
[]
[AuxKernels]
[./velocity_x]
type = PorousFlowDarcyVelocityComponent
variable = velocity_x
component = x
[../]
[./velocity_y]
type = PorousFlowDarcyVelocityComponent
variable = velocity_y
component = y
[../]
[]
[ICs]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[BCs]
[./top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[../]
[./bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[../]
[./ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro_fracture]
type = PorousFlowPorosityConst
porosity = 1.0 # this is the true porosity of the fracture
block = 'fracture'
[../]
[./poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[../]
[./diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[../]
[./diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability1]
type = PorousFlowPermeabilityConst
permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # this is the true permeability of the fracture
block = 'fracture'
[../]
[./permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[../]
[]
[Functions]
[./dt_controller]
type = PiecewiseConstant
x = '0 30 40 100 200 83200'
y = '0.01 0.1 1 10 100 32'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 86400
#dt = 0.01
[./TimeStepper]
type = FunctionDT
function = dt_controller
[../]
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
[./xmass]
type = LineValueSampler
start_point = '0.4 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 167
variable = massfrac0
[../]
[]
[Outputs]
perf_graph = true
console = true
csv = true
exodus = true
[]
modules/porous_flow/test/tests/poroperm/PermFromPoro01.i
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./poro]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[../]
[./perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[../]
[./perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[../]
[./perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[../]
[./perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[../]
[./perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_fd2
f = 0.1
d = 5
m = 2
n = 7
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/phase_field/examples/multiphase/GrandPotential3Phase.i
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2019). It includes 3 phases with 1 grain of each phase. This example was used
# to generate the results shown in Fig. 3 of the paper.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmin = -15
xmax = 15
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etad0]
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etad0]
type = ConstantIC
variable = etad0
value = 0.1
[../]
[./IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = '0.9*0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = '0.9*0.5*(1.0+tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_w]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etab0 etad0 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etad0 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_delta0
[./ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[../]
[./ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 w'
[../]
[./ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[../]
[./ed0_dot]
type = TimeDerivative
variable = etad0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = 'etaa0 etab0 etad0'
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[./coupled_etad0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etad0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
args = 'etaa0 etab0 etad0'
[../]
[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[../]
[./hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[../]
[./omegad]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegad
material_property_names = 'Vm kd cdeq'
function = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[../]
[./rhod]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhod
material_property_names = 'Vm kd cdeq'
function = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[../]
[./c]
type = ParsedMaterial
material_property_names = 'Vm rhoa rhob rhod ha hb hd'
function = 'Vm * (ha * rhoa + hb * rhob + hd * rhod)'
f_name = c
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
f_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
function = '(ha/ka + hb/kb + hd/kd) / Vm^2'
args = 'etaa0 etab0 etad0'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./etaa0]
type = LineValueSampler
variable = etaa0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etab0]
type = LineValueSampler
variable = etab0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etad0]
type = LineValueSampler
variable = etad0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'initial timestep_end final'
interval = 1
[../]
[./csv]
type = CSV
execute_on = 'initial timestep_end final'
interval = 1
[../]
[]
test/tests/materials/var_coupling/var_stateful_coupling.i
# Test for making sure that a coupled variable can be used inside of initQpStatefulProperties
# of a Material object.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 1.2345
variable = u
[../]
[]
[Materials]
[./coupling_u]
type = VarCouplingMaterial
var = u
declare_old = true
outputs = exodus
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'TIMESTEP_END'
exodus = true
hide = 'u'
[]
test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 0.5
[../]
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
active = 'diff abs forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
active = 'dg_diff'
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'h dofs l2_err'
[./h]
type = AverageElementSize
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 3D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/ics/boundary_ic/boundary_ic.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
block = 0
value = -1
[../]
[./u_ic_bnd]
type = ConstantIC
variable = u
boundary = 'left right'
value = -2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008131
# 0.6 520 520.0038333
# 0.8 560 560.0088286
# 1.0 600 600.0131612
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + (1/x)*(310*t - (10/1.02)*x*t - (1/1.02)*t^2)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/2.04)*(2.04-x-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/2.04)*(2.04-x-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/porous_flow/test/tests/mass_conservation/mass07.i
# Checking that the mass postprocessor throws the correct error if
# too many phases are supplied
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
test/tests/dgkernels/2d_diffusion_dg/no_functor_additions.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[v]
order = FIRST
family = MONOMIAL
[]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[regular_dg_diffusion]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[]
[]
[DGDiffusionAction]
variable = u
kernels_to_add = 'COUPLED'
coupled_var = v
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Postprocessors]
[num_rm]
type = NumRelationshipManagers
[]
[]
modules/porous_flow/test/tests/mass_conservation/mass05.i
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases.
# 2phase, 2component, constant porosity
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 0.3
[../]
[./massfrac_ph1_sp0]
initial_condition = 0.55
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp0_phase0_mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = 0
[../]
[./comp0_phase1_mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = 1
[../]
[./comp0_total_mass]
type = PorousFlowFluidMass
fluid_component = 0
[../]
[./comp0_total_mass2]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[../]
[./comp1_phase0_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 0
[../]
[./comp1_phase1_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 1
[../]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
[../]
[./comp1_total_mass2]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-16
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mass05
csv = true
[]
modules/richards/test/tests/gravity_head_2/gh16.i
# unsaturated = true
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 0.01
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
output = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
output = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
output = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
output = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = gh16
execute_on = 'timestep_end final'
interval = 100000
exodus = true
csv = true
[]
modules/misc/test/tests/fracture_flow/single.i
# Models fluid advecting down a single fracture sitting at x=0, and 0<=y<=3.
#
[Mesh]
type = FileMesh
file = 'single.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_init]
type = ConstantIC
variable = u
value = 0
[../]
[]
[BCs]
[./inj]
type = DirichletBC
boundary = 1
variable = u
value = 1
[../]
[]
[Kernels]
[./matrix_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.2 # matrix porosity
block = 1
[../]
[./matrix_diff]
type = AnisotropicDiffusion
variable = u
block = 1
tensor_coeff = '0.002 0 0 0 0 0 0 0 0' # matrix porosity * matrix diffusivity
[../]
[./fracture_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.1 # fracture half-aperture * fracture porosity
block = 2
[../]
[./fracture_advect]
type = Convection
variable = u
block = 2
velocity = '0 0.08 0' # fracture half-aperture * velocity in fracture
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2e-1
end_time = 1.0
solve_type = Newton
nl_rel_tol = 1E-12
[]
[Outputs]
exodus = true
[]
modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/porous_flow/test/tests/dispersion/disp01_heavy.i
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[./pp]
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[../]
[]
[ICs]
[./pp]
type = FunctionIC
variable = pp
function = pic
[../]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
value = 1.1e5-x*1e3
[../]
[]
[BCs]
[./xleft]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[../]
[./xright]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[../]
[./pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[../]
[./pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1.1e5
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
variable = pp
disp_trans = 0
disp_long = 0.2
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0.2
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro]
type = PorousFlowPorosityConst
porosity = 0.3
[../]
[./diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '0 0'
tortuosity = 0.1
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e3
dtmax = 10
[./TimeStepper]
type = IterationAdaptiveDT
growth_factor = 1.5
cutback_factor = 0.5
dt = 1
[../]
[]
[VectorPostprocessors]
[./xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = final
[../]
[]
modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
print_state = true # Print after the FX coefficients are computer
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/dgkernels/adaptivity/adaptivity.i
# This input file is used for two tests:
# 1) Check that DGKernels work with mesh adaptivity
# 2) Error out when DGKernels are used with adaptivity
# and stateful material prpoerties
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
parallel_type = 'replicated'
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = (x*x*x)-6.0*x
[../]
[./bc_fn]
type = ParsedFunction
value = (x*x*x)
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
[../]
[./abs]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dgdiff]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1.0
diff = diffusivity
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGMDDBC
variable = u
boundary = '1 2 3 4'
function = bc_fn
prop_name = diffusivity
sigma = 6
epsilon = -1.0
[../]
[]
[Materials]
active = 'constant'
[./stateful]
type = StatefulTest
prop_names = 'diffusivity'
prop_values = '1'
[../]
[./constant]
type = GenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
marker = 'marker'
steps = 1
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.5
indicator = error
refine = 0.5
[../]
[../]
[]
[Outputs]
exodus = true
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-min-lm-mortar-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = 'min'
[]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) The number of y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in y
# 3) The Functional Expansion order for the flux term was increased to 7
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 23
bias_y = 1.2
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '7'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
test/tests/postprocessors/internal_side_jump/internal_side_jump.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[./box]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
family = L2_LAGRANGE
order = FIRST
[../]
[]
[ICs]
[./ic0]
type = ConstantIC
variable = u
block = 0
value = 4
[../]
[./ic1]
type = ConstantIC
variable = u
block = 1
value = 6
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[DGKernels]
[./dgdiff]
type = DGDiffusion
variable = u
sigma = 4
epsilon = 1
[../]
[]
[BCs]
[./all]
type = VacuumBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[./jump]
type = InternalSideJump
variable = u
execute_on = 'initial timestep_end'
[../]
[./jumpold]
type = InternalSideJump
variable = u
implicit = false
[../]
[]
[Executioner]
type = Transient
num_steps = 3
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
modules/porous_flow/test/tests/desorption/desorption02.i
# Illustrates desorption works as planned.
#
# A mesh contains 3 elements in arranged in a line.
# The central element contains desorped fluid.
# This desorps to the nodes of that element.
#
# In the central element, of volume V, the following occurs.
# The initial porepressure=1, and concentration=1.
# The initial mass of fluid is
# V * (2 * porosity * density + (1 - porosity) * concentration)
# = V * 1.289547
# Notice the factor of "2" in the porespace contribution:
# it is because the porepressure is evaluated at nodes, so
# the nodes on the exterior of the centre_block have
# nodal-volume contributions from the elements not in centre_block.
#
# The mass-conservation equation reads
# 2 * porosity * density + (1 - porosity) * concentration = 1.289547
# and the desorption equation reads
# d( (1-porosity)C )/dt = - (1/tau)(C - dens_L * P / (P_L + P))
# where C = concentration, P = porepressure, P_L = Langmuir pressure
# dens_L = Langmuir density, tau = time constant.
# Using the mass-conservation equation in the desorption equation
# yields a nonlinear equation of P. For dt=1, and the numerical values
# given below this yields
# P = 1.83697
# and
# C = 0.676616
# The desired result is achieved by MOOSE
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pp
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./porespace_mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./fluid_flow]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[../]
[./desorped_mass_dot]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = pp
[../]
[./desorped_mass_dot_conc_var]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp conc'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
viscosity = 1
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
one_over_adsorption_time_const = 10.0
one_over_desorption_time_const = 10.0
langmuir_density = 1
langmuir_pressure = 1
pressure_var = pp
conc_var = conc
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 1
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
test/tests/dgkernels/2d_diffusion_dg/no_mallocs_with_action.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[v]
order = FIRST
family = MONOMIAL
[]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGDiffusionAction]
variable = u
epsilon = -1
sigma = 6
# We couple in an auxiliary variable in order to ensure that we've properly
# ghosted both non-linear and auxiliary solution vectors
coupled_var = v
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Postprocessors]
active = 'num_rm'
[num_rm]
type = NumRelationshipManagers
[]
[num_internal_sides]
type = NumInternalSides
[]
[]
modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '1.0 9.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/porous_flow/examples/lava_lamp/1phase_convection.i
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = zi
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[../]
[./initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[../]
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[./xnacl]
initial_condition = 0.01
[../]
[./saturation_gas]
order = FIRST
family = MONOMIAL
[../]
[./xco2l]
order = FIRST
family = MONOMIAL
[../]
[./density_liquid]
order = FIRST
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[../]
[./xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[../]
[./density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[../]
[]
[Variables]
[./pgas]
[../]
[./zi]
scaling = 1e4
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[../]
[./zi]
type = ConstantIC
value = 0
variable = zi
[../]
# [./zi]
# type = BoundingBoxIC
# variable = zi
# x1 = 0
# x2 = 2
# y1 = 1.95
# y2 = 2
# inside = 0.1
# outside = 0
# [../]
[./porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
[../]
[]
[BCs]
[./top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[../]
[./fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[../]
[]
[Modules]
[./FluidProperties]
[./co2sw]
type = CO2FluidProperties
[../]
[./co2]
type = TabulatedFluidProperties
fp = co2sw
[../]
[./brine]
type = BrineFluidProperties
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = '45'
[../]
[./brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = porosity
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[../]
[./relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[../]
[./relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[../]
[./diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[./TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[../]
[]
[Functions]
[./flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[../]
[]
[Postprocessors]
[./total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[../]
[./total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[../]
[./numdofs]
type = NumDOFs
[../]
[./delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[../]
[./dt]
type = TimestepSize
[../]
[./flux]
type = FunctionValuePostprocessor
function = flux
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-fb-lm-mortar-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = 'fb'
[]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -20
xmax = 20
ymin = -20
ymax = 20
[]
[GlobalParams]
op_num = 2
var_name_base = etab
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etab1]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etab1]
type = FunctionIC
variable = etab1
function = ic_func_etab1
[../]
[./IC_w]
type = ConstantIC
value = -0.05
variable = w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0-tanh((r-10.0)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0+tanh((y)/sqrt(2.0)))'
[../]
[./ic_func_etab1]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0-tanh((y)/sqrt(2.0)))'
[../]
[]
[BCs]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etab1'
gamma_names = 'gab gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etab0 etab1 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etab1'
gamma_names = 'gab gbb'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab1 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_beta1
[./ACb1_bulk]
type = ACGrGrMulti
variable = etab1
v = 'etaa0 etab0'
gamma_names = 'gab gbb'
[../]
[./ACb1_sw]
type = ACSwitching
variable = etab1
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
args = 'etaa0 etab0 w'
[../]
[./ACb1_int]
type = ACInterface
variable = etab1
kappa_name = kappa
[../]
[./eb1_dot]
type = TimeDerivative
variable = etab1
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
args = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[./coupled_etab1dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab1
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
args = 'etaa0 etab0 etab1'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etab0 etab1'
[../]
[./omegaa]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegaa
material_property_names = 'Vm ka caeq'
function = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
enable_jit = false
[../]
[./omegab]
type = DerivativeParsedMaterial
args = 'w'
f_name = omegab
material_property_names = 'Vm kb cbeq'
function = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
enable_jit = false
[../]
[./rhoa]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhoa
material_property_names = 'Vm ka caeq'
function = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./rhob]
type = DerivativeParsedMaterial
args = 'w'
f_name = rhob
material_property_names = 'Vm kb cbeq'
function = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D chi Vm ka caeq kb cbeq gab gbb mu'
prop_values = '0 1 1.0 1.0 1.0 1.0 10.0 0.1 10.0 0.9 4.5 1.5 1.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
f_name = Dchi
material_property_names = 'D chi'
function = 'D*chi'
derivative_order = 2
enable_jit = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 2
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998738
# 0.6 520 519.9995114
# 0.8 560 559.9989360
# 1.0 600 599.9983833
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)-(5*t/1.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/1.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/1.04)*(-2.5*x-2.5*y-t)+1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
test/tests/ics/check_error/two_ics_on_same_boundary.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./left]
type = ConstantIC
variable = u
boundary = left
value = 0.5
[../]
[./left2]
type = ConstantIC
variable = u
boundary = left
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
[]
test/tests/materials/material/material_test_dg.i
[Mesh]
file = sq-2blk.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
value = (x*x*x)-6.0*x
[../]
[./exact_fn]
type = ParsedGradFunction
value = (x*x*x)
grad_x = 3*x*x
grad_y = 0
[../]
[]
[Kernels]
active = 'diff abs forcing'
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[./abs]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
active = 'dgdiff'
[./dgdiff]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1.0
diff = matp
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGMDDBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
prop_name = matp
sigma = 6
epsilon = -1.0
[../]
[]
[Materials]
active = 'mat_1 mat_2'
[./mat_1]
type = MTMaterial
block = 1
value = 1
[../]
[./mat_2]
type = MTMaterial
block = 2
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_dg
exodus = true
[]
test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = ADDGDiffusion
variable = u
epsilon = -1
sigma = 6
diff = diff
[../]
[]
[Materials]
[./ad_coupled_mat]
type = ADCoupledMaterial
coupled_var = u
ad_mat_prop = diff
regular_mat_prop = diff_regular
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[./Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[../]
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
exodus = true
csv = true
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-nodal-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
ncp_function_type = 'fb'
[../]
[./disp_x]
type = NormalNodalMechanicalContact
slave = 10
master = 20
variable = disp_x
master_variable = disp_x
lambda = normal_lm
component = x
[../]
[./disp_y]
type = NormalNodalMechanicalContact
slave = 10
master = 20
variable = disp_y
master_variable = disp_y
lambda = normal_lm
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[./AnotheruserObject]
type = EmptyPostprocessor
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = AnotheruserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/richards/test/tests/pressure_pulse/pp22.i
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
nl_rel_tol=1.e-10
nl_max_its=20
end_time = 1E4
[]
[Outputs]
file_base = pp22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
test/tests/postprocessors/scale_pps/scale_pps.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[./scaled_u]
type = ScalePostprocessor
value = u_avg
scaling_factor = 2
execute_on = 'initial timestep_end'
[../]
[./scaled_scaled_u]
type = ScalePostprocessor
value = scaled_u
scaling_factor = 2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/rdg/test/tests/postprocessors/boundary_flux_postprocessor/boundary_flux_postprocessor.i
# This input file is used to test BoundaryFluxPostprocessor, which queries
# fluxes computed using user objects derived from BoundaryFluxBase. The boundary
# flux used in this test is TestBoundaryFlux, which expects a solution vector
# of size 3 (call this U = {A, B, C}) and computes a flux of size 2 with the
# following entries:
#
# flux[0] = (A - B) * C * nx
# flux[1] = A * B * nx
#
# where the normal vector used is {nx, ny, nz}.
A = 1
B = 2
C = 3
# Multiple cases are computed in this test. Each corresponds to a different PP object:
# * flux0_boundary0: boundary 0, flux entry 0, default normal ({-1, 0, 0})
# * flux0_boundary1: boundary 1, flux entry 0, default normal ({1, 0, 0})
# * flux0_provided: boundary 0, flux entry 0, user-provided normal ({2, 0, 0})
# * flux1_boundary0: boundary 0, flux entry 1, default normal ({-1, 0, 0})
nx_boundary0 = -1
nx_boundary1 = 1
nx_provided = 2
flux0_boundary0 = ${fparse (A - B) * C * nx_boundary0}
flux0_boundary1 = ${fparse (A - B) * C * nx_boundary1}
flux0_provided = ${fparse (A - B) * C * nx_provided}
flux1_boundary0 = ${fparse A * B * nx_boundary0}
[GlobalParams]
order = CONSTANT
family = MONOMIAL
execute_on = 'initial timestep_end'
variables = 'A B C'
[]
[Postprocessors]
[./flux0_boundary0]
type = BoundaryFluxPostprocessor
boundary_flux_uo = boundary_flux_flux0_boundary0
boundary = 0
flux_index = 0
[../]
[./flux0_boundary1]
type = BoundaryFluxPostprocessor
boundary_flux_uo = boundary_flux_flux0_boundary1
boundary = 1
flux_index = 0
[../]
[./flux0_provided]
type = BoundaryFluxPostprocessor
boundary_flux_uo = boundary_flux_flux0_provided
boundary = 0
flux_index = 0
normal = '${nx_provided} 0 0'
[../]
[./flux1_boundary0]
type = BoundaryFluxPostprocessor
boundary_flux_uo = boundary_flux_flux1_boundary0
boundary = 0
flux_index = 1
[../]
[./flux0_boundary0_err]
type = RelativeDifferencePostprocessor
value1 = flux0_boundary0
value2 = ${flux0_boundary0}
[../]
[./flux0_boundary1_err]
type = RelativeDifferencePostprocessor
value1 = flux0_boundary1
value2 = ${flux0_boundary1}
[../]
[./flux0_provided_err]
type = RelativeDifferencePostprocessor
value1 = flux0_provided
value2 = ${flux0_provided}
[../]
[./flux1_boundary0_err]
type = RelativeDifferencePostprocessor
value1 = flux1_boundary0
value2 = ${flux1_boundary0}
[../]
[]
[UserObjects]
[./boundary_flux_flux0_boundary0]
type = TestBoundaryFlux
[../]
[./boundary_flux_flux0_boundary1]
type = TestBoundaryFlux
[../]
[./boundary_flux_flux0_provided]
type = TestBoundaryFlux
[../]
[./boundary_flux_flux1_boundary0]
type = TestBoundaryFlux
[../]
[]
[Variables]
[./A]
[../]
[./B]
[../]
[./C]
[../]
[]
[ICs]
[./A_ic]
type = ConstantIC
variable = A
value = ${A}
[../]
[./B_ic]
type = ConstantIC
variable = B
value = ${B}
[../]
[./C_ic]
type = ConstantIC
variable = C
value = ${C}
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Problem]
kernel_coverage_check = false
solve = false
[]
[Executioner]
type = Transient
scheme = implicit-euler
dt = 1
num_steps = 1
[]
[Outputs]
csv = true
show = 'flux0_boundary0_err flux0_boundary1_err flux0_provided_err flux1_boundary0_err'
[]
test/tests/dgkernels/2d_diffusion_dg/dg_stateful.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Materials]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = 'left'
[../]
[./general]
type = GenericConstantMaterial
block = '0'
prop_names = 'dummy'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
modules/contact/test/tests/bouncing-block-contact/bouncing-block-ranfs.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
[]
[Mesh]
file = long-bottom-block-no-lower-d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./disp_x]
type = RANFSNormalMechanicalContact
slave = 10
master = 20
variable = disp_x
master_variable = disp_x
component = x
[../]
[./disp_y]
type = RANFSNormalMechanicalContact
slave = 10
master = 20
variable = disp_y
master_variable = disp_y
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err'
petsc_options_value = 'hypre boomeramg 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
checkpoint = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[]
test/tests/variables/get_elemental_value/get_elemental_value.i
# Tests the getElementalValue function of MooseVariableFE.
#
# The tested aux copies the first elemental value of another variable. The
# setup is the following IVP:
# du/dt = 1
# u(0) = 0
# Therefore the solution is u(t) = t. Five time steps of dt = 1 are taken.
# The expected output for each time level is thus the following:
# current: [0,1,2,3,4,5]
# old: [0,0,1,2,3,4]
# older: [0,0,0,1,2,3]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./copied_var]
[../]
[]
[AuxVariables]
[./test_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./test_var_aux]
type = GetElementalValueAux
variable = test_var
copied_variable = copied_var
# The parameter "time_level" is provided by tests file
[../]
[]
[ICs]
[./copied_var_ic]
type = ConstantIC
variable = copied_var
value = 0
[../]
[]
[Kernels]
[./time_der]
type = TimeDerivative
variable = copied_var
[../]
[./src]
type = BodyForce
variable = copied_var
function = 1
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
dt = 1
num_steps = 5
abort_on_solve_fail = true
solve_type = NEWTON
[]
[Postprocessors]
[./test_pp]
type = ElementAverageValue
variable = test_var
[../]
[]
[Outputs]
csv = true
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven.i
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./T]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
p = p
[../]
# x-momentum, time
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
p = p
component = 0
[../]
# y-momentum, time
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
p = p
component = 1
[../]
# temperature
[./temperature_time]
type = INSTemperatureTimeDerivative
variable = T
[../]
[./temperature_space]
type = INSTemperature
variable = T
u = vel_x
v = vel_y
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types:discrete homog 2 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description
# A transient heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance in the presence of a moving interface separating two
# discrete material regions for linear element models. Both the temperature
# solution and level set function are designed to be linear to attempt to
# minimize error between the exact solution and XFEM results. Thermal
# conductivity, density, and heat capacity are homogeneous in each material
# region with a discontinuous jump in thermal flux between the two material
# regions.
# Results:
# The temperature at the left boundary is determined by the analytical
# solution, so temperature at the right boundary (x=1) should exhibit the
# largest difference between the analytical solution and XFEM results. We
# present the analytical and XFEM results at the material interface position
# and right side boundary at various times.
# Interface:
# Time Expected Temperature XFEM Calculated Temperature
# 20 746.75 746.7235521
# 40 893.05 893.0379081
# 60 1040.15 1040.1527530
#
# Right Boundary (x=1):
# Time Expected Temperature XFEM Calculated Temperature
# 20 720 719.9708681
# 40 840 839.9913293
# 60 960 960.0100886
#
# IMPORTANT NOTE:
# When running this input file, add the --allow-test-objects tag!!!
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = phi
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = 'diffusion_coefficient'
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = phi
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
jump_flux = jump_flux_func
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
10*(8-x),
(7/(1-i))*((i-2)*x + (8-7*i)) )'
[../]
[./right_du_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
(2.0/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./exact_u_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
605 - 5*x + t*(8-x),
(1/(1-i))*((-5+5*i+i*t-2*t)*x + (605-605*i+8*t-7*t*i)) )'
[../]
[./jump_flux_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
k_1:=(20.0);
k_2:=(2.0);
k_1*(5+t) + (k_2/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./ls_func]
type = ParsedFunction
value = '0.75 - x - 0.001*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'A_rhoCp B_rhoCp'
prop_values = '10 7'
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'A_diffusion_coefficient B_diffusion_coefficient'
prop_values = '20.0 2.0'
[../]
[./combined_rhoCp]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = rhoCp
[../]
[./combined_diffusion_coefficient]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = diffusion_coefficient
[../]
[]
[BCs]
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = exact_u_func
[../]
[./right_du]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_du_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 600
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 20
end_time = 60.0
max_xfem_update = 2
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/richards/test/tests/pressure_pulse/pp_fu_22.i
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_rel_tol = 1.e-9
nl_max_its = 20
dt = 1E3
dtmin = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp_fu_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 2D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4'
physical_bounds = '0.0 10.0 1.0 11.0'
x = Legendre
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/ics/dependency/test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./a]
[../]
[./b]
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = -1
[../]
[./v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 10
[../]
[./b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 256
[../]
[./b_ak]
type = ConstantAux
variable = b
value = 42
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
test/tests/time_integrators/bdf2/bdf2_adapt.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/porous_flow/test/tests/density/GravDensity01.i
# Trivial test of PorousFlowTotalGravitationalDensityFullySaturatedFromPorosity
# Porosity = 0.1
# Solid density = 3
# Fluid density = 2
# Fluid bulk modulus = 4
# Fluid pressure = 0
# Bulk density: rho = 3 * (1 - 0.1) + 2 * 0.1 = 2.9
# Derivative wrt fluid pressure: d_rho / d_pp = d_rho / d_rho_f * d_rho_f / d_pp
# = phi * rho_f / B
# where rho_f = rho_0 * exp(pp / B) is fluid density, pp is fluid pressure, phi is
# porosity and B is fluid bulk modulus
# With pp = 0, d_rho / d_pp = phi * rho_0 / B = 0.1 * 2 / 4 = 0.05
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = -1
zmax = 0
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0
bulk_modulus = 4
density0 = 2
[../]
[../]
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./dummy]
type = Diffusion
variable = pp
[../]
[]
[BCs]
[./p]
type = DirichletBC
variable = pp
boundary = 'front back'
value = 0
[../]
[]
[AuxVariables]
[./density]
order = CONSTANT
family = MONOMIAL
[../]
[./ddensity_dpp]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./density]
type = MaterialRealAux
property = density
variable = density
[../]
[./ddensity_dpp]
type = MaterialStdVectorAux
property = ddensity_dvar
variable = ddensity_dpp
index = 0
[../]
[]
[Postprocessors]
[./density]
type = ElementalVariableValue
elementid = 0
variable = density
execute_on = 'timestep_end'
[../]
[./ddensity_dpp]
type = ElementalVariableValue
elementid = 0
variable = ddensity_dpp
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss_qp]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./density]
type = PorousFlowTotalGravitationalDensityFullySaturatedFromPorosity
rho_s = 3
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
[]
[Outputs]
file_base = GravDensity01
csv = true
execute_on = 'timestep_end'
[]
modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-disp.i
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the slave block and the top of the
# master block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[./file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[../]
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./frictional_normal_lm]
block = 3
# family = MONOMIAL
# order = CONSTANT
[../]
[./frictional_tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[frictional_normal_lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = frictional_normal_lm
master_variable = disp_x
disp_y = disp_y
ncp_function_type = min
[../]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = frictional_normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = frictional_normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[frictional_tangential_lm]
type = TangentialMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = frictional_tangential_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = frictional_normal_lm
friction_coefficient = .1
ncp_function_type = fb
[]
[tangential_x]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = frictional_tangential_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = frictional_tangential_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
# [./Predictor]
# type = SimplePredictor
# scale = 1.0
# [../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
# checkpoint = true
# [./dofmap]
# type = DOFMap
# execute_on = 'initial'
# [../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/porous_flow/test/tests/desorption/desorption01.i
# Illustrates desorption works as planned.
#
# A mesh contains 3 elements in arranged in a line.
# The central element contains desorped fluid.
# This desorps to the nodes of that element.
#
# In the central element, of volume V, the following occurs.
# The initial porepressure=1, and concentration=1.
# The initial mass of fluid is
# V * (2 * porosity * density + (1 - porosity) * concentration)
# = V * 1.289547
# Notice the factor of "2" in the porespace contribution:
# it is because the porepressure is evaluated at nodes, so
# the nodes on the exterior of the centre_block have
# nodal-volume contributions from the elements not in centre_block.
#
# The mass-conservation equation reads
# 2 * porosity * density + (1 - porosity) * concentration = 1.289547
# and the desorption equation reads
# d( (1-porosity)C )/dt = - (1/tau)(C - dens_L * P / (P_L + P))
# where C = concentration, P = porepressure, P_L = Langmuir pressure
# dens_L = Langmuir density, tau = time constant.
# Using the mass-conservation equation in the desorption equation
# yields a nonlinear equation of P. For dt=1, and the numerical values
# given below this yields
# P = 1.83697
# and
# C = 0.676616
# The desired result is achieved by MOOSE
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pp
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./porespace_mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./desorped_mass_dot]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = pp
[../]
[./desorped_mass_dot_conc_var]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp conc'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
viscosity = 1
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
one_over_adsorption_time_const = 10.0
one_over_desorption_time_const = 10.0
langmuir_density = 1
langmuir_pressure = 1
pressure_var = pp
conc_var = conc
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
test/tests/postprocessors/volume/sphere1D.i
# The volume of each block should be 3
[Mesh]#Comment
file = sphere1D.e
[] # Mesh
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./fred]
type = ParsedFunction
value='200'
[../]
[] # Functions
[AuxVariables]
[./constantVar]
order = FIRST
family = LAGRANGE
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[] # Variables
[AuxKernels]
[./fred]
type = ConstantAux
variable = constantVar
block = 1
value = 1
[../]
[]
[ICs]
[./ic1]
type = ConstantIC
variable = constantVar
value = 1
block = 1
[../]
[]
[Kernels]
[./heat_r]
type = Diffusion
variable = u
[../]
[] # Kernels
[BCs]
[./temps]
type = FunctionDirichletBC
variable = u
boundary = 1
function = fred
[../]
[] # BCs
[Materials]
[] # Materials
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -snes_ls -ksp_gmres_restart'
petsc_options_value = 'lu basic 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[] # Executioner
[Postprocessors]
[./should_be_one]
type = ElementAverageValue
block = 1
variable = constantVar
execute_on = 'initial timestep_end'
[../]
[./volume1]
type = VolumePostprocessor
block = 1
execute_on = 'initial timestep_end'
[../]
[./volume2]
type = VolumePostprocessor
block = 2
execute_on = 'initial timestep_end'
[../]
[./volume3]
type = VolumePostprocessor
block = 3
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[] # Output
modules/navier_stokes/test/tests/ins/lid_driven/ad_lid_driven.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
p = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = 'cp'
density_name = 'rho'
[../]
[./temperature_advection]
type = INSADTemperatureAdvection
variable = T
velocity = velocity
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
transient_term = true
integrate_p_by_parts = true
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
modules/porous_flow/test/tests/dispersion/disp01.i
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[../]
[]
[ICs]
[./pp]
type = FunctionIC
variable = pp
function = pic
[../]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
value = 1.1e5-x*1e3
[../]
[]
[BCs]
[./xleft]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[../]
[./xright]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[../]
[./pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[../]
[./pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1.1e5
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
variable = pp
disp_trans = 0
disp_long = 0.2
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0.2
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro]
type = PorousFlowPorosityConst
porosity = 0.3
[../]
[./diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '0 0'
tortuosity = 0.1
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e3
dtmax = 50
[./TimeStepper]
type = IterationAdaptiveDT
growth_factor = 1.5
cutback_factor = 0.5
dt = 1
[../]
[]
[VectorPostprocessors]
[./xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = final
[../]
[]
test/tests/dgkernels/dg_block_restrict/1d_dg_block_restrict.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 0 0'
[../]
[./interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
input = interface
master_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
block = 0
[../]
[./v]
order = FIRST
family = MONOMIAL
block = 1
[../]
[]
[Kernels]
[./test_u]
type = Diffusion
variable = u
block = 0
[../]
[./adv_u]
type = ConservativeAdvection
variable = u
velocity = '1 0 0'
block = 0
[../]
[./test_v]
type = Diffusion
variable = v
block = 1
[../]
[./adv_v]
type = ConservativeAdvection
variable = v
velocity = '1 0 0'
block = 1
[../]
[]
[DGKernels]
[./dg_advection_u]
type = DGConvection
variable = u
velocity = '1 0 0'
block = 0
[../]
[./dg_diffusion_u]
type = DGDiffusion
variable = u
sigma = 0
epsilon = -1
block = 0
[../]
[./dg_advection_v]
type = DGConvection
variable = v
velocity = '1 0 0'
block = 1
[../]
[./dg_diffusion_v]
type = DGDiffusion
variable = v
sigma = 0
epsilon = -1
block = 1
[../]
[]
[BCs]
[./left]
type = InflowBC
variable = u
boundary = 'left'
inlet_conc = 2
velocity = '1 0 0'
[../]
[./master0_inteface]
type = RobinBC
variable = u
boundary = 'master0_interface'
[../]
[./master1_interface]
type = InflowBC
variable = v
boundary = 'master1_interface'
inlet_conc = 4
velocity = '1 0 0'
[../]
[./right]
type = RobinBC
variable = v
boundary = 'right'
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 0
[../]
[./v_ic]
type = ConstantIC
variable = v
value = 0
[../]
[]
[Preconditioning]
[./fdp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-12
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
[Debug]
show_var_residual_norms = true
[]
test/tests/misc/check_error/ic_bnd_for_non_nodal.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 1
variable = u
boundary = top
[../]
[../]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
test/tests/ics/check_error/two_ics_on_same_block_global.i
[Mesh]
type = FileMesh
file = 'rectangle.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./block]
type = ConstantIC
variable = u
value = 2
[../]
[./block2]
type = ConstantIC
variable = u
value = 0.5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
test/tests/time_integrators/dirk/dirk-2d-heat-adap.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
num_steps = 5
dt = 0.25
[./TimeIntegrator]
type = LStableDirk2
[../]
[./Adaptivity]
refine_fraction = 0.07
coarsen_fraction = 0.
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i
# Flow and solute transport along 2 2D eliptical fractures embedded in a 3D porous matrix
# the model domain has dimensions 1 x 1 x 0.3m and the two fracture have r1 = 0.45 and r2 = 0.2
# The fractures intersect each other and the domain boundaries on two opposite sides
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m
# fracture permeability = 1.8e-11 which is based in k=3e-8 from a**2/12, and k*a = 3e-8*6e-4;
# matrix porosity = 0.1;
# matrix permeanility = 1e-20;
[Mesh]
type = FileMesh
file = coarse_3D.e
block_id = '1 2 3'
block_name = 'matrix f1 f2'
boundary_id = '1 2 3 4'
boundary_name = 'rf2 lf1 right_matrix left_matrix'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[./tracer]
[../]
[]
[AuxVariables]
[./velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[../]
[./velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[../]
[./velocity_z]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[../]
[]
[AuxKernels]
[./velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[../]
[./velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[../]
[./velocity_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_z
component = z
aperture = 6E-4
[../]
[]
[ICs]
[./pp]
type = ConstantIC
variable = pp
value = 1e6
[../]
[./tracer]
type = ConstantIC
variable = tracer
value = 0
[../]
[]
[BCs]
[./top]
type = DirichletBC
value = 0
variable = tracer
boundary = rf2
[../]
[./bottom]
type = DirichletBC
value = 1
variable = tracer
boundary = lf1
[../]
[./ptop]
type = DirichletBC
variable = pp
boundary = rf2
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = lf1
value = 1.02e6
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = tracer
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = tracer
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = tracer
disp_trans = 0
disp_long = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp tracer'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'tracer'
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro1]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'f1 f2'
[../]
[./diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 1.0
block = 'f1 f2'
[../]
[./poro2]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix'
[../]
[./diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 0.1
block = 'matrix'
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'f1 f2'
[../]
[./permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 20
dt = 1
[]
[VectorPostprocessors]
[./xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = tracer
outputs = csv
[../]
[]
[Outputs]
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*((x*x)+(y*y))
[../]
[./x_fn]
type = ParsedFunction
value = t
[../]
[]
[AuxScalarKernels]
[./x_saux]
type = FunctionScalarAux
variable = x
function = x_fn
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./x]
type = ScalarVariable
variable = x
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
test/tests/executioners/executioner/sln-time-adapt.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_sta
exodus = true
[]
modules/richards/test/tests/gravity_head_2/ghQ2P_pgas.i
# quick two phase with Pgas and Swater being variables
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = Q2PRelPermPowerGas
simm = 0.0
n = 3
[../]
[]
[Variables]
[./pgas]
[../]
[./swater]
[../]
[]
[ICs]
[./pp_ic]
type = ConstantIC
value = 1
variable = pgas
[../]
[./sat_ic]
type = ConstantIC
value = 0.5
variable = swater
[../]
[]
[Q2P]
porepressure = pgas
saturation = swater
water_density = DensityWater
water_relperm = RelPermWater
water_viscosity = 1
gas_density = DensityGas
gas_relperm = RelPermGas
gas_viscosity = 1
diffusivity = 0
[]
[Postprocessors]
[./pp_left]
type = PointValue
point = '0 0 0'
variable = pgas
[../]
[./pp_right]
type = PointValue
point = '1 0 0'
variable = pgas
[../]
[./sat_left]
type = PointValue
point = '0 0 0'
variable = swater
[../]
[./sat_right]
type = PointValue
point = '1 0 0'
variable = swater
[../]
[]
[Materials]
[./rock]
type = Q2PMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
gravity = '-1 0 0'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ghQ2P_pgas
csv = true
exodus = true
[]
modules/richards/test/tests/gravity_head_2/gh_lumped_17.i
# unsaturated = false
# gravity = true
# supg = true
# transient = true
# lumped = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 0.01
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 1
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_lumped_17
csv = true
[]
modules/richards/test/tests/gravity_head_2/gh_fu_18.i
# with immobile saturation - this illustrates a perfect case of fullyupwind working very well
# unsaturated = true
# gravity = true
# full upwinding = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 0.5E1 0.5E2 0.4E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.4
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.3
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = gh_fu_18
execute_on = 'timestep_end final'
interval = 100000
exodus = true
[]
python/peacock/tests/common/oversample.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[./refine_2]
type = Exodus
file_base = oversample_2
refinements = 2
[../]
[]
modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i
# Basic example coupling a master and sub app in a 3D cylindrical mesh from an input file
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable, the recommended approach.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/tag/2d_diffusion_dg_tag.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = MONOMIAL
[../]
[./tag_variable2]
order = FIRST
family = MONOMIAL
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./abs]
type = Reaction
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/gravity_head_2/gh_lumped_18.i
# with immobile saturation
# unsaturated = true
# gravity = true
# supg = true
# transient = true
# lumped = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 0.5E1 0.5E2 0.4E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.4
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.3
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = gh_lumped_18
execute_on = 'timestep_end final'
interval = 100000
exodus = true
[]
modules/richards/test/tests/pressure_pulse/pp_fu_21.i
# investigating pressure pulse in 1D with 2 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardsfgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1.e-10
nl_max_its = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_fu_21
exodus = true
[]
modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '36'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i
# Derived from the example '3D_volumetric_cylindrical' with the following differences:
#
# 1) The model mesh is refined in the MasterApp by 1
# 2) Mesh adaptivity is enabled for the SubApp
# 3) Output from the SubApp is enabled so that the mesh changes can be visualized
[Mesh]
type = FileMesh
file = cyl-tet.e
uniform_refine = 1
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
output_sub_cycles = true
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
elem_type = QUAD
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./initial]
value = 1.0
variable = u
type = ConstantIC
[../]
[./c_IC]
int_width = 0.1
x1 = 0.5
y1 = 0.5
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = MaskedBodyForce
variable = u
value = 1
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
function = if(c>0.5,0,1)
f_name = mask
args = c
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/uo_egs/seff2.i
# Outputs a 2phase effective saturation relationship into an exodus file
# and into a CSV file.
# In the exodus file, the Seff will be a function of "x", and
# this "x" is actually the difference in porepressures,
# say P_gas - P_water (so "x" should be positive).
# In the CSV file you will find the Seff at the "x" point
# specified by you below.
#
# You may specify:
# - the "type" of Seff in the UserObjects block
# - the parameters of this Seff function in the UserObjects block
# - the "x" point (which is del_porepressure) that you want to extract
# the Seff at, if you want a value at a particular point
# - the range of "x" values (which is porepressure values) may be
# changed in the Mesh block, below
[UserObjects]
[./seff]
type = RichardsSeff2waterVG
al = 1E-6
m = 0.8
[../]
[]
[Postprocessors]
[./point_val]
type = PointValue
execute_on = timestep_begin
# note this point must lie inside the mesh below
point = '1 0 0'
variable = seff
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
# the following specify the range of porepressure
xmin = 0
xmax = 3E6
[]
############################
# You should not need to change any of the stuff below
############################
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = x
[../]
[./v_init]
type = ConstantIC
variable = v
value = 0
[../]
[]
[AuxVariables]
[./seff]
[../]
[]
[AuxKernels]
[./seff_AuxK]
type = RichardsSeffAux
variable = seff
seff_UO = seff
execute_on = timestep_begin
pressure_vars = 'v u'
[../]
[]
[Kernels]
[./dummy_u]
type = Diffusion
variable = u
[../]
[./dummy_v]
type = Diffusion
variable = v
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 0
[]
[Outputs]
file_base = seff2
[./csv]
type = CSV
[../]
[./exodus]
type = Exodus
hide = 'u v'
[../]
[]
modules/richards/test/tests/dirac/q2p01.i
# unsaturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1 1E1 1E2 1E3'
x = '0 1E-1 1 1E1 1E2 1E3'
[../]
[]
[UserObjects]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 0.5
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.3
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.2
n = 2
[../]
[./RelPermGas]
type = Q2PRelPermPowerGas
simm = 0.1
n = 3
[../]
[./borehole_total_outflow_water]
type = RichardsSumQuantity
[../]
[./borehole_total_outflow_gas]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pp
value = 1
[../]
[./s_ic]
type = ConstantIC
variable = sat
value = 0.5
[../]
[]
[Q2P]
porepressure = pp
saturation = sat
water_density = DensityWater
water_relperm = RelPermWater
water_viscosity = 0.8
gas_density = DensityGas
gas_relperm = RelPermGas
gas_viscosity = 0.5
diffusivity = 0.0
output_total_masses_to = 'CSV'
[]
[DiracKernels]
[./bh_water]
type = Q2PBorehole
bottom_pressure = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_water
variable = sat
unit_weight = '0 0 0'
character = 8E9
fluid_density = DensityWater
fluid_relperm = RelPermWater
other_var = pp
var_is_porepressure = false
fluid_viscosity = 0.8
[../]
[./bh_gas]
type = Q2PBorehole
bottom_pressure = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_gas
variable = pp
unit_weight = '0 0 0'
character = 1E10
fluid_density = DensityGas
fluid_relperm = RelPermGas
other_var = sat
var_is_porepressure = true
fluid_viscosity = 0.5
[../]
[]
[Postprocessors]
[./bh_report_water]
type = RichardsPlotQuantity
uo = borehole_total_outflow_water
[../]
[./bh_report_gas]
type = RichardsPlotQuantity
uo = borehole_total_outflow_gas
[../]
[./p0]
type = PointValue
variable = pp
point = '1 1 1'
execute_on = timestep_end
[../]
[./sat0]
type = PointValue
variable = sat
point = '1 1 1'
execute_on = timestep_end
[../]
[]
[Materials]
[./rock]
type = Q2PMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
gravity = '0 0 0'
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1E3
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = q2p01
execute_on = timestep_end
[./CSV]
type = CSV
[../]
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-reduced-active-set.i
starting_point = .5
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1
[]
[Mesh]
file = square-blocks-no-offset.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${starting_point}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./disp_x]
type = RANFSNormalMechanicalContact
slave = 10
master = 20
variable = disp_x
master_variable = disp_x
component = x
[../]
[./disp_y]
type = RANFSNormalMechanicalContact
slave = 10
master = 20
variable = disp_y
master_variable = disp_y
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 30
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} - t'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
dtmin = 1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -ksp_monitor_true_residual -snes_view'
petsc_options_iname = '-mat_mffd_err -pc_type -pc_hypre_type'
petsc_options_value = '1e-5 hypre boomeramg'
l_max_its = 30
nl_max_its = 20
line_search = 'project'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'nonlinear'
[]
print_linear_residuals = false
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[]
test/tests/interfacekernels/adaptivity/adaptivity.i
# This input file is used for two tests:
# 1) Check that InterfaceKernels work with mesh adaptivity
# 2) Error out when InterfaceKernels are used with adaptivity
# and stateful material prpoerties
[Mesh]
parallel_type = 'replicated'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
top_right = '1 1 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
master_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
[../]
[./break_boundary]
input = interface
type = BreakBoundaryOnSubdomainGenerator
[../]
[]
[Variables]
[./u]
[./InitialCondition]
type = ConstantIC
value = 1
[../]
block = 0
[../]
[./u_neighbor]
[./InitialCondition]
type = ConstantIC
value = 1
[../]
block = 1
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = (x*x*x)-6.0*x
[../]
[./bc_fn]
type = ParsedFunction
value = (x*x*x)
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
block = 0
[../]
[./abs]
type = Reaction
variable = u
block = 0
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
block = 0
[../]
[./diffn]
type = MatDiffusionTest
variable = u_neighbor
prop_name = diffusivity
block = 1
[../]
[./absn]
type = Reaction
variable = u_neighbor
block = 1
[../]
[./forcingn]
type = BodyForce
variable = u_neighbor
function = forcing_fn
block = 1
[../]
[]
[InterfaceKernels]
[./flux_match]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = u_neighbor
boundary = master0_interface
penalty = 1e6
[../]
[]
[BCs]
[./u]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = bc_fn
[../]
[./u_neighbor]
type = FunctionDirichletBC
variable = u_neighbor
boundary = 'right'
function = bc_fn
[../]
[]
[Materials]
active = 'constant'
[./stateful]
type = StatefulTest
prop_names = 'diffusivity'
prop_values = '1'
block = '0 1'
[../]
[./constant]
type = GenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '1'
block = '0 1'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Adaptivity]
marker = 'marker'
steps = 1
[./Markers]
[./marker]
type = BoxMarker
bottom_left = '0 0 0'
top_right = '1 1 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[]
test/tests/time_integrators/bdf2/bdf2.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/transfers/multiapp_nearest_node_transfer/parallel_sub.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 180
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[]
[AuxVariables]
[./pid]
order = constant
family = monomial
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxKernels]
[./pid]
type = ProcessorIDAux
variable = pid
[../]
[]
modules/chemical_reactions/test/tests/desorption/mollified_langmuir_desorption.i
# testing the entire desorption DEs with mollification
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = 0
xmax = 1
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
variable = pressure
conc_var = conc
[../]
[]
[Postprocessors]
[./mass_rho]
type = ElementIntegralVariablePostprocessor
block = 0
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./mass_conc]
type = ElementIntegralVariablePostprocessor
block = 0
variable = conc
execute_on = 'initial timestep_end'
[../]
[./mass_tot]
type = FunctionValuePostprocessor
function = mass_fcn
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
variable = pressure
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[./c0]
type = PointValue
variable = conc
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./mass_fcn]
type = ParsedFunction
value = a+b
vars = 'a b'
vals = 'mass_rho mass_conc'
[../]
[]
[Materials]
[./lang_stuff]
type = MollifiedLangmuirMaterial
block = 0
one_over_desorption_time_const = 0.90909091
one_over_adsorption_time_const = 0.90909091
langmuir_density = 0.88
langmuir_pressure = 1.23
pressure_var = pressure
conc_var = conc
mollifier = 1E-4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 2
[]
[Outputs]
file_base = mollified_langmuir_desorption
interval = 10
exodus = true
csv = 10
[] # Outputs
test/tests/outputs/residual/output_residual_test.i
[Mesh]
file = sq-2blk.e
uniform_refine = 3
[]
[Variables]
# variable in the whole domain
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
# subdomain restricted variable
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[./exact_fn_v]
type = ParsedFunction
value = t+1
[../]
[]
[Kernels]
[./ie_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./ie_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
[../]
[./bottom_v]
type = DirichletBC
variable = v
boundary = 5
value = 0
[../]
[./top_v]
type = FunctionDirichletBC
variable = v
boundary = 6
function = exact_fn_v
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
[Debug]
show_var_residual = 'u v'
show_var_residual_norms = true
[]
test/tests/misc/save_in/dg_save_in_test.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 9
ny = 9
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[./tot_resid]
order = FIRST
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
save_in = 'tot_resid'
[../]
[./forcing]
type = BodyForce
variable = u
function = 1
save_in = 'tot_resid'
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
save_in = 'tot_resid'
[../]
[]
[BCs]
[./robin]
type = RobinBC
boundary = 'left right top bottom'
variable = u
save_in = 'tot_resid'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_chorin.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-star velocity
[./u_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-star velocity
[./v_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./x_chorin_predictor]
type = INSChorinPredictor
variable = u_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 0
predictor_type = 'new'
[../]
[./y_chorin_predictor]
type = INSChorinPredictor
variable = v_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 1
predictor_type = 'new'
[../]
[./x_chorin_corrector]
type = INSChorinCorrector
variable = u
u_star = u_star
v_star = v_star
p = p
component = 0
[../]
[./y_chorin_corrector]
type = INSChorinCorrector
variable = v
u_star = u_star
v_star = v_star
p = p
component = 1
[../]
[./chorin_pressure_poisson]
type = INSChorinPressurePoisson
variable = p
u_star = u_star
v_star = v_star
[../]
[]
[BCs]
[./u_no_slip]
type = DirichletBC
variable = u
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_lid]
type = DirichletBC
variable = u
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_no_slip]
type = DirichletBC
variable = v
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# Make u_star satsify all the same variables as the real velocity.
[./u_star_no_slip]
type = DirichletBC
variable = u_star
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_star_lid]
type = DirichletBC
variable = u_star
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_star_no_slip]
type = DirichletBC
variable = v_star
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
preset = false
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
#active = 'FDP_Newton'
#active = 'SMP_PJFNK'
active = 'SMP_Newton'
[./FDP_Newton]
type = FDP
full = true
solve_type = 'NEWTON'
#petsc_options_iname = '-mat_fd_coloring_err'
#petsc_options_value = '1.e-10'
[../]
# For some reason, nonlinear convergence with JFNK is poor, but it
# seems to be OK for SMP_Newton. This may indicate a a scaling issue
# in the JFNK case....
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[./SMP_Newton]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Note: the explicit case with lid velocity = 100 and a 40x40 was unstable
# for dt=1.e-4, even though the restriction should be dt < dx/|u| = 1/4000 = 2.5e-4
#
dt = 1.e-3
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
start_time = 0.0
num_steps = 5
[]
[Outputs]
file_base = lid_driven_chorin_out
exodus = true
[]
modules/functional_expansion_tools/examples/2D_interface/main.i
# Basic example coupling a master and sub app at an interface in a 2D model.
# The master app provides a flux term to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's interface conditions, both value and flux, are transferred back
# to the master app
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[Materials]
[./Impervium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.00001 50.0 100.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
test/tests/postprocessors/postprocessor_dependency/element_side_pp.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./sidepp]
type = SideIntegralVariablePostprocessor
variable = v
execute_on = timestep_end
boundary = '0 1 2 3'
[../]
[./passsidepp]
type = ElementSidePP
side_pp = sidepp
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out
csv = true
[]
modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i
# Using a single-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_thick_fracture_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[]
[ICs]
[./pp]
type = ConstantIC
variable = pp
value = 1e6
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[../]
[]
[Kernels]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability1]
type = PorousFlowPermeabilityConst
permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # the true permeability is used without scaling by aperture
block = 'fracture'
[../]
[./permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
python/peacock/tests/common/transient_big.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
file_base = out_transient
exodus = true
[]
test/tests/variables/previous_newton_iteration/test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./v_fn]
type = ParsedFunction
value = -4+(x*x+y*y)+1
[../]
[./left_u_bc_fn]
type = ParsedFunction
value = -2*x
[../]
[./top_u_bc_fn]
type = ParsedFunction
value = 2*y
[../]
[./right_u_bc_fn]
type = ParsedFunction
value = 2*x
[../]
[./bottom_u_bc_fn]
type = ParsedFunction
value = -2*y
[../]
[]
[AuxVariables]
[./a]
order = SECOND
[../]
[./v]
order = SECOND
[../]
[]
[AuxKernels]
[./ak_a]
type = QuotientAux
variable = a
numerator = v
denominator = u
[../]
[./ak_v]
type = FunctionAux
variable = v
function = v_fn
[../]
[]
[Variables]
[./u]
order = SECOND
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 1
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./react]
type = Reaction
variable = u
[../]
[./cv_u]
type = CoupledForceLagged
variable = u
v = v
[../]
[]
[BCs]
[./u_bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_u_bc_fn
[../]
[./u_bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_u_bc_fn
[../]
[./u_bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_u_bc_fn
[../]
[./u_bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_u_bc_fn
[../]
[]
[Preconditioning]
[./pc]
type = SMP
full = true
solve_type = PJFNK
[../]
[]
[Executioner]
type = Steady
# to get multiple NL iterations
l_tol = 1e-3
nl_rel_tol = 1e-10
[]
[Outputs]
[./out]
type = Exodus
execute_on = 'nonlinear'
[../]
[]
modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
generation_type = 'sqrt_mu'
expansion_type = 'sqrt_mu'
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
file_base = 'volume_coupled_out'
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_coupling_custom_norm_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -5
xmax = 5
ymin = -1
nx = 5
elem_type = EDGE
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = t*x+1
[../]
[]
[Kernels]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diffusion]
type = Diffusion
variable = u
[../]
[./timeDer]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = '0 1'
value = 0
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_el_time_deriv_1d
csv = true
[]
modules/porous_flow/test/tests/mass_conservation/mass08.i
# Checking that the mass postprocessor throws the correct error when a given phase index
# is too large
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 2
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
modules/functional_expansion_tools/examples/2D_interface/sub.i
# Basic example coupling a master and sub app at an interface in a 2D model.
# The master app provides a flux term to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's interface conditions, both value and flux, are transferred back
# to the master app
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
modules/phase_field/test/tests/actions/both_direct_2vars.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 9
ny = 6
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = 1.0
kappa = 20.0
args = 'eta'
solve_type = direct
[../]
[../]
[./Nonconserved]
[./eta]
free_energy = F
mobility = 1.0
kappa = 20
args = 'c'
family = HERMITE
order = THIRD
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = 10
x2 = 25
y1 = 15
y2 = 35
inside = 0.1
outside = 0.9
[../]
[./eta_IC]
type = ConstantIC
variable = eta
value = 0.5
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
f_name = F
args = 'eta c'
function = '(1 - eta)*10.0*(c - 0.1)^2 + eta*(8.0*(c - 0.9)^2) + 10.0*eta^2*(1-eta)^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 5
dt = 0.05
[]
[Outputs]
perf_graph = true
[./out]
type = Exodus
refinements = 2
[../]
[]
modules/peridynamics/test/tests/failure_tests/2D_stretch_failure_BPD.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./damage]
[../]
[./intact_bonds_num]
[../]
[./critical_stretch]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = StretchBasedFailureCriterionPD
critical_variable = critical_stretch
variable = bond_status
[../]
[]
[UserObjects]
[./damage]
type = NodalDamageIndexPD
variable = damage
[../]
[./intact_bonds]
type = NodalNumIntactBondsPD
variable = intact_bonds_num
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stretch
value = 0.001
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialBPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
[]
[Outputs]
file_base = 2D_stretch_failure_BPD
exodus = true
[]
modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-action.i
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the slave block and the top of the
# master block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[./original_file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[../]
# These sidesets need to be deleted because the contact action adds them automatically. For this
# particular mesh, the new IDs will be identical to the deleted ones and will conflict if we don't
# remove the original ones.
[./delete_3]
type = BlockDeletionGenerator
input = original_file_mesh
block_id = 3
[../]
[./revised_file_mesh]
type = BlockDeletionGenerator
input = delete_3
block_id = 4
[../]
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[]
[Contact]
[frictional]
mesh = revised_file_mesh
master = 20
slave = 10
formulation = mortar
system = constraint
model = coulomb
friction_coefficient = 0.1
[]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
hide = 'contact_pressure nodal_area_frictional penetration'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = frictional_slave_subdomain
execute_on = 'nonlinear timestep_end'
[]
[]
modules/porous_flow/test/tests/poroperm/PermFromPoro02.i
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k0 * (1-phi0)^m/phi0^n * phi^n/(1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./poro]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[../]
[./perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[../]
[./perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[../]
[./perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[../]
[./perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[../]
[./perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_phi0
k0 = 1e-10
phi0 = 0.05
m = 2
n = 7
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
test/tests/postprocessors/difference_pps/difference_pps.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[./v_avg]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_end'
[../]
[./diff]
type = DifferencePostprocessor
value1 = v_avg
value2 = u_avg
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/richards/test/tests/gravity_head_2/gh06.i
# unsaturated = true
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGnone
[../]
[./SUPGgas]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-13 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh06
csv = true
[]
modules/porous_flow/test/tests/poroperm/PermFromPoro03.i
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * B * exp(A * phi)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./poro]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[../]
[./perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[../]
[./perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[../]
[./perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[../]
[./perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[../]
[./perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = exp_k
A = 10
B = 1e-8
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/phase_field/examples/nucleation/refine.i
#
# Example derived from cahn_hilliard.i demonstrating the use of Adaptivity
# with the DiscreteNucleation system. The DiscreteNucleationMarker triggers
# mesh refinement for the nucleus geometry. It is up to the user to specify
# refinement for the physics. In this example this is done using a GradientJumpIndicator
# with a ValueThresholdMarker. The nucleation system marker and the physics marker
# must be combined using a ComboMarker to combine their effect.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = ConstantIC
variable = c
value = 0.2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = 'if(c<0.21,c*1e-8,0)'
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 50
probability = P
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
radius = 10
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./ndof]
type = NumDOFs
[../]
[./rate]
type = DiscreteNucleationData
value = RATE
inserter = inserter
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.0005
dt_max = 10
[../]
[./update]
type = DiscreteNucleationData
value = UPDATE
inserter = inserter
[../]
[./count]
type = DiscreteNucleationData
value = COUNT
inserter = inserter
[../]
[]
[Adaptivity]
[./Indicators]
[./jump]
type = GradientJumpIndicator
variable = c
[../]
[../]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[./grad]
type = ValueThresholdMarker
variable = jump
coarsen = 0.1
refine = 0.2
[../]
[./combo]
type = ComboMarker
markers = 'nuc grad'
[../]
[../]
marker = combo
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 120
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
[]
modules/porous_flow/test/tests/poroperm/PermFromPoro05.i
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with ln k = A * phi + B
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./poro]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[../]
[./perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[../]
[./perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[../]
[./perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[../]
[./perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[../]
[./perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = ln_k
A = 10.0
B = -18.420681
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
test/tests/time_integrators/convergence/implicit_convergence.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
preset = false
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
end_time = 1.0
dt = 0.0625
[./TimeIntegrator]
type = ImplicitMidpoint
[../]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
csv = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008118
# 0.6 520 520.0038529
# 0.8 560 560.0089177
# 1.0 600 600.0133344
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + 200*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/porous_flow/test/tests/mass_conservation/mass10.i
# Checking that the mass postprocessor throws the correct error when kernel_variable_numer is illegal
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
kernel_variable_number = 2
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998745
# 0.6 520 519.9995067
# 0.8 560 559.9989409
# 1.0 600 599.9987054
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + 100*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/richards/test/tests/gravity_head_2/gh_bounded_17.i
# unsaturated = false
# gravity = true
# supg = true
# transient = true
# using RichardsMultiphaseProblem to bound pgas. i take big timesteps to illustrate that the bounding works. Note that s_res for gas = 0, in order to prevent the simulation from trying to reduce pgas at small x in order to conserve fluid mass by decreasing the density. Because there is zero gas to begin with, but due to numerical inprecisions there is some gas at the end, the mass error for the gas is 0.5.
[Problem]
type = RichardsMultiphaseProblem
bounded_var = pgas
lower_var = pwater
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SatGas]
type = RichardsSat
s_res = 0.00
sum_s_res = 0.1
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 0.01
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 1
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
# the following "dummy" variable is simply used for exception testing RichardsMultiphaseProblem
# It is not part of the "gravity head" simulation
[./dummy_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E6
dtmin = 1E6
line_search = bt
nl_rel_tol = 1.e-6
nl_max_its = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_bounded_17
csv = true
[]
test/tests/auxkernels/linear_combination/test.i
# All tested logic is in the aux system
# The non-linear problem is unrelated
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
[]
[Functions]
[./v1_func]
type = ParsedFunction
value = (1-x)/2
[../]
[./v2_func]
type = ParsedFunction
value = (1+x)/2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./lc]
[../]
[./v1]
[../]
[./v2]
[../]
[./w1]
[../]
[./w2]
[../]
[]
[ICs]
[./v1_ic]
type = FunctionIC
variable = v1
function = v1_func
[../]
[./v2_ic]
type = FunctionIC
variable = v2
function = v2_func
[../]
[./w1_ic]
type = ConstantIC
variable = w1
value = 0.3
[../]
[./w2_ic]
type = ConstantIC
variable = w2
value = 0.5
[../]
[]
[AuxKernels]
[./lc-aux]
type = ParsedAux
variable = lc
function = 'v1*w1+v2*w2'
args = 'v1 w1 v2 w2'
execute_on = 'timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
test/tests/executioners/executioner/steady_state_check_test.i
#
# Run transient simulation into steady state
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
# value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
value = -4
[../]
[./exact_fn]
type = ParsedFunction
# value = t*t*t*((x*x)+(y*y))
value = ((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
nl_abs_tol = 1e-14
start_time = 0.0
num_steps = 12
dt = 1
steady_state_detection = true
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_ss_check
exodus = true
[]
modules/phase_field/test/tests/MultiPhase/switchingfunction3phasematerial.i
# This is a test of the SwitchingFunction3PhaseMaterial, a switching function
# used in a 3-phase phase-field model to prevent formation of the third phase
# at the interface between the two other phases
# See Folch and Plapp, Phys. Rev. E, v 72, 011602 (2005) for details
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
nx = 20
ny = 2
elem_type = QUAD4
[]
[GlobalParams]
derivative_order = 0
outputs = exodus
[]
[AuxVariables]
[./eta1]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./eta2]
[./InitialCondition]
type = FunctionIC
function = 1.0-x
[../]
[../]
[./eta3]
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
[]
[Materials]
[./h_material_1]
type = SwitchingFunction3PhaseMaterial
f_name = h_i1
eta_i = eta1
eta_j = eta2
eta_k = eta3
outputs = exodus
[../]
# Next we reverse eta2 and eta3 to make sure the switching function is symmetric
# with respect to interchanging these two, as it is designed to be
[./h_material_2]
type = SwitchingFunction3PhaseMaterial
f_name = h_i2
eta_i = eta1
eta_j = eta3
eta_k = eta2
outputs = exodus
[../]
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
execute_on = 'TIMESTEP_END'
exodus = true
[]
modules/richards/test/tests/gravity_head_2/gh_fu_06.i
# unsaturated = true
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGnone
[../]
[./SUPGgas]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-13 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_06
csv = true
[]
test/tests/mesh/named_entities/named_entities_test.i
[Mesh]
file = named_entities.e
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_01.i
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFullyUpwindFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_fu_01
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
test/tests/misc/check_error/multiple_bad_ic_test.i
[Mesh]
file = sq-2blk.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./ic_u_1]
type = ConstantIC
variable = u
value = 42
block = '1'
[../]
[./ic_u_2]
type = ConstantIC
variable = u
value = 24
# Oops - can't have two ICs on the same block
[../]
[./ic_u_aux_1]
type = ConstantIC
variable = u_aux
value = 6.25
block = '1'
[../]
[./ic_u_aux_2]
type = ConstantIC
variable = u_aux
value = 9.99
block = '2'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
test/tests/postprocessors/function_sideintegral/function_sideintegral.i
# calculates the integral of various functions over
# boundaries of the mesh. See [Postprocessors] for
# a description of the functions
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = -1
xmax = 1
ymin = -2
ymax = 2
zmin = 0
zmax = 6
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ICs]
[./u]
type = ConstantIC
variable = u
value = 0
[../]
[]
[Postprocessors]
[./zmin]
# no function is provided, so it should default to 1
# yielding postprocessor = 8
type = FunctionSideIntegral
boundary = back
[../]
[./zmax]
# result should be -6*area_of_zmax_sideset = -48
type = FunctionSideIntegral
boundary = front
function = '-z'
[../]
[./ymin]
# since the integrand is odd in x, the result should be zero
type = FunctionSideIntegral
boundary = bottom
function = 'x*pow(z,4)'
[../]
[./ymax]
# result should be 24
type = FunctionSideIntegral
boundary = top
function = 'y*(1+x)*(z-2)'
[../]
[./xmin_and_xmax]
# here the integral is over two sidesets
# result should be 432
type = FunctionSideIntegral
boundary = 'left right'
function = '(3+x)*z'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = function_sideintegral
[./csv]
type = CSV
[../]
[]
modules/richards/test/tests/gravity_head_2/gh18.i
# with immobile saturation
# unsaturated = true
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 0.5E1 0.5E2 0.4E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.4
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.3
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = gh18
execute_on = 'timestep_end final'
interval = 100000
exodus = true
[./console]
type = Console
interval = 1
[../]
[]
test/tests/misc/check_error/wrong_displacement_order.i
[Mesh]
type = GeneratedMesh
dim = 2
# Mesh uses second-order elements
elem_type = QUAD8
displacements = 'disp_x disp_y'
block_name = pore
block_id = 0
[]
[Variables]
[./temperature]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
[]
# We are *not* allowed to use FIRST-order displacement vars!
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = displ
[../]
[../]
[]
[Functions]
[./displ]
type = ParsedFunction
value = -1/2*x*(y-0.5)
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = temperature
use_displaced_mesh = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 1
use_displaced_mesh = true
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 0
use_displaced_mesh = true
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = PJFNK
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-8
l_max_its = 50
num_steps = 2 # 200
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
nl_abs_step_tol = 1e-10
[./TimeStepper]
type = ConstantDT
dt = 0.001
[../]
dtmin = .001
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/gravity_head_2/gh_fu_17.i
# unsaturated = false
# gravity = true
# full upwinding = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 0.01
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 1
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_17
csv = true
[]
test/tests/ics/dependency/monomial.i
[GlobalParams]
family = MONOMIAL
order = FIRST
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./a]
[../]
[./b]
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = -1
[../]
[./v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 10
[../]
[./b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 256
[../]
[./b_ak]
type = ConstantAux
variable = b
value = 42
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = PenaltyDirichletBC
variable = u
boundary = left
value = 0
penalty = 1000
[../]
[./right_u]
type = PenaltyDirichletBC
variable = u
boundary = right
value = 1
penalty = 1000
[../]
[./left_v]
type = PenaltyDirichletBC
variable = v
boundary = left
value = 2
penalty = 1000
[../]
[./right_v]
type = PenaltyDirichletBC
variable = v
boundary = right
value = 1
penalty = 1000
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/richards/test/tests/sinks/s04.i
# apply a total flux (in kg/s) to two boundaries
# and check that it removes the correct amount of fluid
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 4
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.5
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.2
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
[../]
[]
[ICs]
[./pressure]
type = ConstantIC
variable = pressure
value = 2
[../]
[]
[Postprocessors]
[./area_left]
type = AreaPostprocessor
boundary = left
execute_on = initial
[../]
[./area_right]
type = AreaPostprocessor
boundary = right
execute_on = initial
[../]
[./mass_fin]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
point = '0 0 0'
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left_flux]
type = RichardsPiecewiseLinearSink
boundary = left
pressures = '0'
bare_fluxes = '0.1'
variable = pressure
use_mobility = false
use_relperm = false
area_pp = area_left
[../]
[./right_flux]
type = RichardsPiecewiseLinearSink
boundary = right
pressures = '0'
bare_fluxes = '0.1'
variable = pressure
use_mobility = false
use_relperm = false
area_pp = area_right
[../]
[]
[Kernels]
active = 'richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 13
[]
[Outputs]
file_base = s04
csv = true
[]
modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater poil'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[]
[Modules]
[./FluidProperties]
[./water]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
thermal_expansion = 0
viscosity = 1e-3
[../]
[./oil]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 20
thermal_expansion = 0
viscosity = 2e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = poil
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[../]
[./oil]
type = PorousFlowSingleComponentFluid
fp = oil
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[../]
[./relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[../]
[./relperm_oil]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = poil
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
family = MONOMIAL
order = CONSTANT
[../]
[./SOil]
family = MONOMIAL
order = CONSTANT
[../]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[AuxKernels]
[./SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[../]
[./SOil]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 1
variable = SOil
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = PorousFlowSink
variable = pwater
boundary = 'left'
flux_function = -1.0
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[../]
[]
[VectorPostprocessors]
[./swater]
type = LineValueSampler
variable = SWater
start_point = '0 0 0'
end_point = '7 0 0'
sort_by = x
num_points = 21
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc01
[./along_line]
type = CSV
execute_vector_postprocessors_on = final
[../]
[./exodus]
type = Exodus
execute_on = 'initial final'
[../]
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The coupling is performed via BodyForce instead of the
# FunctionSeriesToAux+CoupledForce approach
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = BodyForce
variable = m
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
enable_cache = true
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/coord_type/coord_type_rz_integrated.i
[Mesh]
type = GeneratedMesh
nx = 10
xmax = 1
ny = 10
ymax = 1
dim = 2
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[../]
[]
[BCs]
[./source]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = 'right'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[./vacuum]
boundary = 'top'
type = VacuumBC
variable = u
[../]
[]
[Functions]
[./exact_fn]
type = ConstantFunction
value = 1
[../]
[]
[ICs]
[./u]
type = ConstantIC
value = 1
variable = u
[../]
[]
modules/porous_flow/test/tests/mass_conservation/mass09.i
# Checking that the mass postprocessor throws the correct error when more than a single
# phase index is given when using the saturation_threshold parameter
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
saturation_threshold = 0.5
phase = '0 1'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i
# Basic example coupling a master and sub app in a 1D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/richards/test/tests/rogers_stallybrass_clements/rsc_lumped_01.i
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsLumpedMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_lumped_01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998717
# 0.6 520 519.9994963
# 0.8 560 559.9989217
# 1.0 600 599.9986735
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + t*(-2.5*y/(2.04*x) + 155/x - t/(2.04*x)
- 7.5/2.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/2.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/2.04)*(-2.5*x-2.5*y-t) + 1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
test/tests/time_integrators/implicit-euler/ie_adapt.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./forcing_fn2]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = t*x*y
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn2
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_elm_time_deriv
csv = true
[]
modules/richards/test/tests/pressure_pulse/pp_fu_lumped_22.i
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
end_time = 1E4
l_tol = 1.e-4
nl_rel_tol = 1.e-7
nl_max_its = 10
l_max_its = 20
line_search = 'none'
[]
[Outputs]
file_base = pp_fu_lumped_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[./console]
type = Console
interval = 1
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998791
# 0.6 520 519.9995307
# 0.8 560 559.9989724
# 1.0 600 599.9984541
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
python/peacock/tests/input_tab/InputTree/gold/transient.i
# ##########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Functions]
[forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = '3*t*t*((x*x)+(y*y))-(4*t*t*t)'
[]
[exact_fn]
type = ParsedFunction
value = 't*t*t*((x*x)+(y*y))'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
inactive = 'left right'
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[]
[]
[Postprocessors]
[l2_err]
type = ElementL2Error
variable = 'u'
function = exact_fn
[]
[dt]
type = TimestepSize
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
scheme = implicit-euler
solve_type = PJFNK
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
test/tests/time_integrators/implicit-euler/ie.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing a solution that is second order in space
# and first order in time
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# Test of the TimeIntegrator System
scheme = 'implicit-euler'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/mass_conservation/mass06.i
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases. Also tests that optional saturation threshold
# gives the correct mass
# 2phase, 2component, constant porosity
# saturation_threshold set to 0.6 for phase 1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[./sat]
[../]
[]
[AuxVariables]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[ICs]
[./pinit]
type = ConstantIC
value = 1
variable = pp
[../]
[./satinit]
type = FunctionIC
function = 1-x
variable = sat
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sat
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp sat'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[./simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pp
phase1_saturation = sat
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[../]
[./simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[Postprocessors]
[./comp0_phase0_mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = 0
[../]
[./comp0_phase1_mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = 1
[../]
[./comp0_total_mass]
type = PorousFlowFluidMass
fluid_component = 0
[../]
[./comp1_phase0_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 0
[../]
[./comp1_phase1_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 1
[../]
[./comp1_total_mass]
type = PorousFlowFluidMass
fluid_component = 1
[../]
[./comp1_phase1_threshold_mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = 0.6
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-16
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mass06
csv = true
[]
modules/porous_flow/examples/flow_through_fractured_media/coarse.i
# Flow and solute transport along a fracture embedded in a porous matrix
# The fracture is represented by lower dimensional elements
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m = phi * a
# fracture permeability = 1.8e-11 which is based on k=3e-8 from a**2/12, and k*a = 3e-8*6e-4
# matrix porosity = 0.1
# matrix permeanility = 1e-20
[Mesh]
type = FileMesh
file = 'coarse.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[../]
[./velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[../]
[]
[AuxKernels]
[./velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[../]
[./velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[../]
[]
[ICs]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[./pp_matrix]
type = ConstantIC
variable = pp
value = 1E6
[../]
[]
[BCs]
[./top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[../]
[./bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[../]
[./ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = pp
disp_trans = 0
disp_long = 0
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = massfrac0
disp_trans = 0
disp_long = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro_fracture]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'fracture'
[../]
[./poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[../]
[./diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[../]
[./diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[../]
[./permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'fracture'
[../]
[./permeability_matrix]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[]
[Preconditioning]
[./basic]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 10
dt = 1
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
[./xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = massfrac0
outputs = csv
[../]
[]
[Outputs]
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
test/tests/misc/check_error/ic_variable_not_specified.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 1
[../]
[../]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i
# exploring CONSTANT MONOMIAL
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
# try with and without the CONSTANT MONOMIAL to see that
# CONSTANT MONOMIAL yields the correct result that pressure(x=0) is unchanged
# but LINEAR LAGRANGE changes pressure(x=0) since pressure is not lumped at x=0
# (the x=0 eqn is a*dot(p0)+b*dot(p10)=0, and x=10 eqn a*dot(p10)+b*dot(p20)=desorption,
# and since dot(p10)>0, we get dot(p0)<0)
family = MONOMIAL
order = CONSTANT
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./rock]
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
[../]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
mat_desorption_time_const = 0.1
mat_adsorption_time_const = 0.1
mat_langmuir_density = 1
mat_langmuir_pressure = 1
pressure_var = pressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = langmuir_lumping_problem
exodus = true
[]
test/tests/executioners/full_jacobian_thread_active_bcs/full_jacobian_thread_active_bcs.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./ic]
type = ConstantIC
variable = u
value = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = RobinBC
variable = u
boundary = left
enable = false
[../]
[./right]
type = RobinBC
variable = u
boundary = right
[../]
[]
[Preconditioning]
[./pc]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_max_its = 1
[]
modules/richards/test/tests/rogers_stallybrass_clements/rsc01.i
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[ICs]
[./ic_x]
type = ScalarConstantIC
variable = x
value = 11
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*((x*x)+(y*y))
[../]
[]
[AuxScalarKernels]
[./const_x]
type = ConstantScalarAux
variable = x
value = 11
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[./x]
type = ScalarVariable
variable = x
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
modules/contact/test/tests/bouncing-block-contact/grid-sequencing/grid-sequencing.i
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the slave block and the top of the
# master block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarsest mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
[]
[Mesh]
file = level0.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[./tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
ncp_function_type = min
[../]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = normal_lm
friction_coefficient = .1
ncp_function_type = fb
[]
[tangential_x]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
num_steps = 3
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
nl_abs_tol = 1e-10
num_grids = 5
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
sync_times = '15'
sync_only = true
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/combined/test/tests/poro_mechanics/borehole_highres.i
# Poroelastic response of a borehole.
#
# HIGHRES VERSION: this version gives good agreement with the analytical solution, but it takes a while so is a "heavy" test
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_highres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.1
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_highres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_highres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_highres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_highres_t
type = CSV
[../]
[]
test/tests/ics/constant_ic/constant_ic_test.i
###########################################################
# This is a simple test demonstrating the use of the
# user-defined initial condition system.
#
# @Requirement F3.20
# @Requirement F5.20
###########################################################
[Mesh]
file = square.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
# Initial Condition on Nonlinear variable
[./InitialCondition]
type = ConstantIC
value = 6.2
[../]
[../]
[]
[AuxVariables]
active = 'u_aux'
[./u_aux]
order = FIRST
family = LAGRANGE
# Initial Condition on Auxiliary variable
[./InitialCondition]
type = ConstantIC
value = 9.3
[../]
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
modules/richards/test/tests/gravity_head_2/gh08.i
# unsaturated = true
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh08
csv = true
[]
modules/chemical_reactions/test/tests/desorption/langmuir_desorption.i
# testing the entire desorption DEs
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = 0
xmax = 1
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
variable = pressure
conc_var = conc
[../]
[]
[Postprocessors]
[./mass_rho]
type = ElementIntegralVariablePostprocessor
block = 0
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./mass_conc]
type = ElementIntegralVariablePostprocessor
block = 0
variable = conc
execute_on = 'initial timestep_end'
[../]
[./mass_tot]
type = FunctionValuePostprocessor
function = mass_fcn
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
variable = pressure
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[./c0]
type = PointValue
variable = conc
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./mass_fcn]
type = ParsedFunction
value = a+b
vars = 'a b'
vals = 'mass_rho mass_conc'
[../]
[]
[Materials]
[./lang_stuff]
type = LangmuirMaterial
block = 0
one_over_desorption_time_const = 0.90909091
one_over_adsorption_time_const = 0.90909091
langmuir_density = 0.88
langmuir_pressure = 1.23
pressure_var = pressure
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 2
[]
[Outputs]
file_base = langmuir_desorption
interval = 10
exodus = true
csv = 10
[] # Outputs
python/peacock/tests/common/transient.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
test/tests/mesh/named_entities/named_entities_test_xda.i
[Mesh]
file = named_entities.xda
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-mortar-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
ncp_function_type = 'fb'
[../]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-lm-mortar-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[./tangential_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalNodalLMMechanicalContact
master = 20
slave = 10
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
ncp_function_type = min
[]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialNodalLMMechanicalContact
master = 20
slave = 10
variable = tangential_lm
master_variable = disp_x
disp_y = disp_y
contact_pressure = normal_lm
ncp_function_type = min
mu = .1
[]
[tangential_x]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exodus]
type = Exodus
sync_times = '0 5 10 15 20 25 30 35 40 45 50'
file_base = frictional-nodal-min-lm-mortar-disp_out
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The number of x and y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in x and z
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
python/peacock/tests/common/transient_with_date.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = with_date
exodus = true
[./with_date]
type = Exodus
file_base = with_date
append_date = true
append_date_format = '%Y-%m-%d'
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9999722
# 0.6 520 519.9998726
# 0.8 560 559.9997314
# 1.0 600 599.9996885
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'rhoCp*(-200*x+200)-(0.05*200*t/1.04)'
vars = 'rhoCp'
vals = 10
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '1.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater poil'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[]
[Modules]
[./FluidProperties]
[./water]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
thermal_expansion = 0
viscosity = 1e-3
[../]
[./oil]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 20
thermal_expansion = 0
viscosity = 2e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = poil
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[../]
[./oil]
type = PorousFlowSingleComponentFluid
fp = oil
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[../]
[./relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[../]
[./relperm_oil]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = poil
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
family = MONOMIAL
order = CONSTANT
[../]
[./SOil]
family = MONOMIAL
order = CONSTANT
[../]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[]
[AuxKernels]
[./SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[../]
[./SOil]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 1
variable = SOil
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = PorousFlowSink
variable = pwater
boundary = 'left'
flux_function = -1.0
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[../]
[]
[VectorPostprocessors]
[./swater]
type = LineValueSampler
variable = SWater
start_point = '0 0 0'
end_point = '7 0 0'
sort_by = x
num_points = 21
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc02
[./along_line]
type = CSV
execute_vector_postprocessors_on = final
[../]
[./exodus]
type = Exodus
execute_on = 'initial final'
[../]
[]
test/tests/ics/constant_ic/subdomain_constant_ic_test.i
[Mesh]
file = sq-2blk.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./ic_u_1]
type = ConstantIC
variable = u
value = 42
block = '1 2'
[../]
[./ic_u_aux_1]
type = ConstantIC
variable = u_aux
value = 6.25
block = '1'
[../]
[./ic_u_aux_2]
type = ConstantIC
variable = u_aux
value = 9.99
block = '2'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/dispersion/diff01_action.i
# Test diffusive part of PorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 10
bias_x = 1.1
[]
[GlobalParams]
PorousFlowDictator = andy_heheheh
[]
[Variables]
[./pp]
[../]
[./massfrac0]
[../]
[]
[ICs]
[./pp]
type = ConstantIC
variable = pp
value = 1e5
[../]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[BCs]
[./left]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[../]
[./right]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[../]
[./pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[../]
[./pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1e5
[../]
[]
[Kernels]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = massfrac0
disp_trans = 0
disp_long = 0
gravity = '0 0 0'
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = pp
disp_trans = 0
disp_long = 0
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E7
viscosity = 0.001
density0 = 1000.0
[../]
[../]
[]
[PorousFlowUnsaturated]
porepressure = pp
gravity = '0 0 0'
fp = the_simple_fluid
dictator_name = andy_heheheh
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
mass_fraction_vars = massfrac0
[]
[Materials]
[./poro]
type = PorousFlowPorosityConst
porosity = 0.3
[../]
[./diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1 1'
tortuosity = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 20
[]
[VectorPostprocessors]
[./xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = final
[../]
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-nodal-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
[../]
[./disp_x]
type = NormalNodalMechanicalContact
slave = 10
master = 20
variable = disp_x
master_variable = disp_x
lambda = normal_lm
component = x
[../]
[./disp_y]
type = NormalNodalMechanicalContact
slave = 10
master = 20
variable = disp_y
master_variable = disp_y
lambda = normal_lm
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/navier_stokes/test/tests/ins/lid_driven/lid_driven_split.i
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-acceleration
[./a1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-acceleration
[./a2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
# split-momentum, x
[./x_split_momentum]
type = INSSplitMomentum
variable = a1
u = u
v = v
a1 = a1
a2 = a2
component = 0
[../]
# split-momentum, y
[./y_split_momentum]
type = INSSplitMomentum
variable = a2
u = u
v = v
a1 = a1
a2 = a2
component = 1
[../]
# projection-x, space
[./x_proj_space]
type = INSProjection
variable = u
a1 = a1
a2 = a2
p = p
component = 0
[../]
# projection-y, space
[./y_proj_space]
type = INSProjection
variable = v
a1 = a1
a2 = a2
p = p
component = 1
[../]
# projection-x, time
[./x_proj_time]
type = TimeDerivative
variable = u
[../]
# projection-y, time
[./y_proj_time]
type = TimeDerivative
variable = v
[../]
# Pressure
[./pressure_poisson]
type = INSPressurePoisson
variable = p
a1 = a1
a2 = a2
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = u
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = DirichletBC
variable = u
boundary = 'top'
value = 100.0
[../]
[./y_no_slip]
type = DirichletBC
variable = v
boundary = 'bottom right top left'
value = 0.0
[../]
# Acceleration boundary conditions. What should these
# be on the lid? What should they be in general? I tried pinning
# values of acceleration at one node but that didn't seem to work.
# I also tried setting non-zero acceleration values on the lid but
# that didn't converge.
[./x_no_accel]
type = DirichletBC
variable = a1
boundary = 'bottom right top left'
value = 0.0
[../]
[./y_no_accel]
type = DirichletBC
variable = a2
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
# [./FDP_Newton]
# type = FDP
# full = true
# petsc_options = '-snes'
# #petsc_options_iname = '-mat_fd_coloring_err'
# #petsc_options_value = '1.e-10'
# [../]
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Transient
dt = 1.e-4
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 100
start_time = 0.0
num_steps = 1000
[]
[Outputs]
file_base = lid_driven_split_out
exodus = true
[]
modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when k_anisotropy is not specified.
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[AuxVariables]
[./perm_var]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./perm_var]
type = ConstantAux
value = 2
variable = perm_var
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[../]
[./perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[../]
[./perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[../]
[./perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[../]
[./perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[../]
[./perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityTensorFromVar
perm = perm_var
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
test/tests/executioners/executioner/transient.i
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
modules/functional_expansion_tools/examples/2D_interface_different_submesh/main.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) The number of y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in y
# 3) The Functional Expansion order for the flux term was increased to 7
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[Materials]
[./Impervium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.00001 50.0 100.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '7'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = thermal_conductivity
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i
# Using a mixed-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
[../]
[]
[ICs]
[./pp]
type = ConstantIC
variable = pp
value = 1e6
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[../]
[]
[Kernels]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m. 1.8e-11 = kf * a
block = 'fracture'
[../]
[./permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i
# Using a mixed-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_steady.i must be run to initialise the porepressure properly
[Mesh]
file = 'gold/fine_steady_out.e'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[./pp]
initial_from_file_var = pp
initial_from_file_timestep = 1
[../]
[./massfrac0]
[../]
[]
[AuxVariables]
[./velocity_x]
family = MONOMIAL
order = CONSTANT
block = fracture
[../]
[./velocity_y]
family = MONOMIAL
order = CONSTANT
block = fracture
[../]
[]
[AuxKernels]
[./velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[../]
[./velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[../]
[]
[ICs]
[./massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[../]
[]
[BCs]
[./top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[../]
[./bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[../]
[./ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[../]
[./pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[../]
[./diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[../]
[./adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[../]
[./diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./poro_fracture]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'fracture'
[../]
[./poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[../]
[./diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[../]
[./diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[../]
[./relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[../]
[./permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m. 1.8e-11 = kf * a
block = 'fracture'
[../]
[./permeability_matrix]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[../]
[]
[Functions]
[./dt_controller]
type = PiecewiseConstant
x = '0 30 40 100 200 83200'
y = '0.01 0.1 1 10 100 32'
[../]
[]
[Preconditioning]
active = basic
[./mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[./basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 86400
[./TimeStepper]
type = FunctionDT
function = dt_controller
[../]
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
[./xmass]
type = LineValueSampler
start_point = '0.4 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 167
variable = massfrac0
[../]
[]
[Outputs]
perf_graph = true
console = true
csv = true
exodus = true
[]
test/tests/time_integrators/implicit-euler/ie-monomials.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 1
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
nl_rel_tol = 1e-10
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
console = true
[]
modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, and two-phase Richards flow, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1.1E-5'
gravity = '0 0 -10'
linear_shape_fcns = true
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityMethane20degC
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.2
n = 3
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E+1
[../]
[]
[Variables]
[./pwater]
[../]
[./pgas]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./water]
type = ConstantIC
variable = pwater
value = 0.0
[../]
[./gas]
type = RandomIC
variable = pgas
min = 0
max = 5E5
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = 0
max = 20
block = centre_block
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pgas
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pgas
conc_var = conc
[../]
[]
[Materials]
[./all_blocks]
type = RichardsMaterial
block = 'left_block centre_block right_block'
mat_porosity = 0.02
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[../]
[./langmuir_params]
type = LangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813
one_over_adsorption_time_const = 0.813
langmuir_density = 20.0
langmuir_pressure = 1.5E6
pressure_var = pgas
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3 # get rid of the large c_dot contribution
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac3
[]
modules/combined/test/tests/poro_mechanics/borehole_lowres.i
# Poroelastic response of a borehole.
#
# LOWRES VERSION: this version does not give perfect agreement with the analytical solution
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_lowres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.3
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_lowres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_lowres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_lowres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_lowres_t
type = CSV
[../]
[]
modules/richards/test/tests/gravity_head_2/gh_lumped_08.i
# unsaturated = true
# gravity = true
# supg = true
# transient = true
# lumped = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[./pg_left]
type = PointValue
point = '0 0 0'
variable = pgas
outputs = none
[../]
[./pg_right]
type = PointValue
point = '1 0 0'
variable = pgas
outputs = none
[../]
[./error_gas]
type = FunctionValuePostprocessor
function = fcn_error_gas
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[./fcn_error_gas]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '0.5E2 -0.5 pg_left 1 pg_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_lumped_08
csv = true
[]
modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when scalar is a FunctionAux.
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[../]
[]
[BCs]
[./ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[../]
[./pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[../]
[]
[Functions]
[./perm_fn]
type = ParsedFunction
value = '2*(x+1)'
[../]
[]
[AuxVariables]
[./perm_var]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_x]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_y]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./perm_var]
type = FunctionAux
function = perm_fn
variable = perm_var
[../]
[./perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[../]
[./perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[../]
[./perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[../]
[]
[Postprocessors]
[./perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[../]
[./perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[../]
[./perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[../]
[./perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[../]
[./perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[../]
[./perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
[../]
[../]
[]
[Materials]
[./permeability]
type = PorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[../]
[./temperature]
type = PorousFlowTemperature
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
modules/richards/test/tests/sinks/s_fu_04.i
# apply a total flux (in kg/s) to two boundaries
# and check that it removes the correct amount of fluid
# fully-upwind sink
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 4
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.5
al = 1 # same deal with PETSc constant state
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.2
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
[../]
[]
[ICs]
[./pressure]
type = ConstantIC
variable = pressure
value = 2
[../]
[]
[Postprocessors]
[./area_left]
type = AreaPostprocessor
boundary = left
execute_on = initial
[../]
[./area_right]
type = AreaPostprocessor
boundary = right
execute_on = initial
[../]
[./mass_fin]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
point = '0 0 0'
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left_flux]
type = RichardsPiecewiseLinearSink
boundary = left
pressures = '0'
bare_fluxes = '0.1'
variable = pressure
use_mobility = false
use_relperm = false
area_pp = area_left
fully_upwind = true
[../]
[./right_flux]
type = RichardsPiecewiseLinearSink
boundary = right
pressures = '0'
bare_fluxes = '0.1'
variable = pressure
use_mobility = false
use_relperm = false
area_pp = area_right
fully_upwind = true
[../]
[]
[Kernels]
active = 'richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 13
[]
[Outputs]
file_base = s_fu_04
csv = true
[]
modules/contact/test/tests/bouncing-block-contact/frictional-mortar-fb-lm-mortar-disp.i
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the slave block and the top of the
# master block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[./tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = fb
[]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = normal_lm
friction_coefficient = .1
ncp_function_type = fb
[]
[tangential_x]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
# [./Predictor]
# type = SimplePredictor
# scale = 1.0
# [../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
# checkpoint = true
# [./dofmap]
# type = DOFMap
# execute_on = 'initial'
# [../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/richards/test/tests/pressure_pulse/pp21.i
# investigating pressure pulse in 1D with 2 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardsfgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1.e-10
nl_max_its = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp21
exodus = true
[]
test/tests/ics/check_error/two_ics_on_same_block.i
[Mesh]
type = FileMesh
file = 'rectangle.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./block]
type = ConstantIC
variable = u
block = 1
value = 0.5
[../]
[./block2]
type = ConstantIC
variable = u
block = 1
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
[]
modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-mortar-disp.i
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
slave = 10
master = 20
variable = normal_lm
master_variable = disp_x
disp_y = disp_y
[../]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
test/tests/postprocessors/element_integral_var_pps/initial_pps.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./initial_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = initial
[../]
[./initial_v]
type = ElementIntegralVariablePostprocessor
variable = v
execute_on = initial
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out_initial_pps
exodus = true
[]
test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i
###########################################################
# This is a test of the Discontinuous Galerkin System.
# Discontinous basis functions are used (Monomials) and
# a the Laplacian DGKernel contributes to the
# internal edges around each element. Jumps are allowed
# by penalized by this method.
#
# @Requirement F3.60
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
# xmin = -1
# xmax = 1
# ymin = -1
# ymax = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
# function = -4.0+(x*x)+(y*y)
# function = x
# function = (x*x)-2.0
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
# function = (x*x*x)-6.0*x
[../]
[./exact_fn]
type = ParsedGradFunction
# function = x
# grad_x = 1
# grad_y = 0
# function = (x*x)+(y*y)
# grad_x = 2*x
# grad_y = 2*y
# function = (x*x)
# grad_x = 2*x
# grad_y = 0
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
# function = (x*x*x)
# grad_x = 3*x*x
# grad_y = 0
[../]
[]
[Kernels]
active = 'diff abs forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
active = 'dg_diff'
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
# petsc_options = '-snes_mf'
# max_r_steps = 2
[./Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[../]
nl_rel_tol = 1e-10
# nl_rel_tol = 1e-12
[]
[Postprocessors]
active = 'h dofs l2_err'
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
modules/porous_flow/test/tests/dirackernels/squarepulse1.i
# Test PorousFlowSquarePulsePointSource DiracKernel
[Mesh]
type = GeneratedMesh
dim = 2
bias_x = 1.1
bias_y = 1.1
ymax = 1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[./pp]
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = pp
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[]
[Postprocessors]
[./total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 200
end_time = 2000
[]
[Outputs]
perf_graph = true
file_base = squarepulse1
csv = true
execute_on = 'initial timestep_end'
[./con]
output_linear = true
type = Console
[../]
[]
[ICs]
[./PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[../]
[]
[DiracKernels]
[./sink1]
type = PorousFlowSquarePulsePointSource
start_time = 100
end_time = 300
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[../]
[./sink]
type = PorousFlowSquarePulsePointSource
start_time = 600
end_time = 1400
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[../]
[./source]
point = '0.5 0.5 0'
start_time = 1500
mass_flux = 0.2
end_time = 2000
variable = pp
type = PorousFlowSquarePulsePointSource
[../]
[]
test/tests/time_integrators/convergence/explicit_convergence.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# We are solving only mass matrices in this problem. The Jacobi
# preconditioner is a bit faster than ILU or AMG for this.
petsc_options_iname = '-pc_type'
petsc_options_value = 'jacobi'
start_time = 0.0
end_time = 0.03125
dt = 0.00390625
[./TimeIntegrator]
type = Heun
[../]
# For explicit methods, we use the LINEAR solve type.
solve_type = 'LINEAR'
l_tol = 1e-13
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
csv = true
[]
modules/functional_expansion_tools/test/tests/standard_use/interface_coupled.i
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = 0.1
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = 0.1
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = interface_sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[./AnotherFunction]
type = ConstantFunction
value = -1
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumPicardIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = AnotherFunction
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
modules/richards/test/tests/gravity_head_2/gh17.i
# unsaturated = false
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1E0 1E1 1E3 1E4 1E5 1E6 1E7'
x = '0 1E-1 1E0 1E1 1E2 1E3 1E4 1E5 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E2
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 0.5
bulk_mod = 0.5E2
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.15
[../]
[./SatGas]
type = RichardsSat
s_res = 0.05
sum_s_res = 0.15
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 0.01
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 1
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 1
variable = pgas
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxVariables]
[./seffgas]
[../]
[./seffwater]
[../]
[]
[AuxKernels]
[./seffgas_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffGas
variable = seffgas
[../]
[./seffwater_kernel]
type = RichardsSeffAux
pressure_vars = 'pwater pgas'
seff_UO = SeffWater
variable = seffwater
[../]
[]
[Postprocessors]
[./mwater_init]
type = RichardsMass
variable = pwater
execute_on = timestep_begin
outputs = none
[../]
[./mgas_init]
type = RichardsMass
variable = pgas
execute_on = timestep_begin
outputs = none
[../]
[./mwater_fin]
type = RichardsMass
variable = pwater
execute_on = timestep_end
outputs = none
[../]
[./mgas_fin]
type = RichardsMass
variable = pgas
execute_on = timestep_end
outputs = none
[../]
[./mass_error_water]
type = FunctionValuePostprocessor
function = fcn_mass_error_w
[../]
[./mass_error_gas]
type = FunctionValuePostprocessor
function = fcn_mass_error_g
[../]
[./pw_left]
type = PointValue
point = '0 0 0'
variable = pwater
outputs = none
[../]
[./pw_right]
type = PointValue
point = '1 0 0'
variable = pwater
outputs = none
[../]
[./error_water]
type = FunctionValuePostprocessor
function = fcn_error_water
[../]
[]
[Functions]
[./fcn_mass_error_w]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mwater_init mwater_fin'
[../]
[./fcn_mass_error_g]
type = ParsedFunction
value = 'abs(0.5*(mi-mf)/(mi+mf))'
vars = 'mi mf'
vals = 'mgas_init mgas_fin'
[../]
[./fcn_error_water]
type = ParsedFunction
value = 'abs((-b*log(-(gdens0*xval+(-b*exp(-p0/b)))/b)-p1)/p1)'
vars = 'b gdens0 p0 xval p1'
vals = '1E2 -1 pw_left 1 pw_right'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 0.5E-3'
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh17
csv = true
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed linear level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0000064
# 0.6 520 520.0000323
# 0.8 560 560.0000896
# 1.0 600 600.0001870
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+200)'
[../]
[./ls_func]
type = ParsedFunction
value = '1-(x-0.04)-0.2*t'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/contact/test/tests/bouncing-block-contact/frictional-mortar-min-lm-mortar-disp.i
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the slave block and the top of the
# master block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[./tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = min
[]
[normal_x]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = normal_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialMortarLMMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
slave_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = normal_lm
friction_coefficient = .1
ncp_function_type = min
[]
[tangential_x]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
master_boundary = 20
slave_boundary = 10
master_subdomain = 4
slave_subdomain = 3
variable = tangential_lm
slave_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
modules/functional_expansion_tools/examples/2D_interface_no_material/main.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) No materials are used
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = 0.1
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideFluxIntegral
variable = m
boundary = right
diffusivity = 0.1
[../]
[./picard_iterations]
type = NumPicardIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
picard_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
picard_rel_tol = 1e-8
picard_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
direction = to_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
direction = from_multiapp
multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i
# Derived from the example '2D_interface' with the following differences:
#
# 1) No materials are used
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]