- solutionThe SolutionUserObject to extract data from.
C++ Type:UserObjectName
Description:The SolutionUserObject to extract data from.
SolutionFunction

The SolutionFunction has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# SolutionFunction
!syntax description /Functions/SolutionFunction
## Overview
!! Replace these lines with information regarding the SolutionFunction object.
## Example Input File Syntax
!! Describe and include an example of how to use the SolutionFunction object.
!syntax parameters /Functions/SolutionFunction
!syntax inputs /Functions/SolutionFunction
!syntax children /Functions/SolutionFunction
!syntax description /Functions/SolutionFunction
Input Parameters
- add_factor0Add this value (b) to the solution (x): ax+b, where a is the 'scale_factor'
Default:0
C++ Type:double
Options:
Description:Add this value (b) to the solution (x): ax+b, where a is the 'scale_factor'
- from_variableThe name of the variable in the file that is to be extracted
C++ Type:std::string
Options:
Description:The name of the variable in the file that is to be extracted
- scale_factor1Scale factor (a) to be applied to the solution (x): ax+b, where b is the 'add_factor'
Default:1
C++ Type:double
Options:
Description:Scale factor (a) to be applied to the solution (x): ax+b, where b is the 'add_factor'
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- test/tests/functions/solution_function/solution_function_rot4.i
- test/tests/functions/solution_function/solution_function_scale_mult.i
- test/tests/functions/solution_function/solution_function_exodus_interp_test.i
- test/tests/functions/solution_function/solution_function_rot2.i
- test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i
- test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i
- examples/ex14_pps/ex14_compare_solutions_2.i
- test/tests/functions/solution_function/solution_function_grad_p2.i
- test/tests/functions/solution_function/solution_function_rot3.i
- test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i
- test/tests/functions/solution_function/solution_function_rot1.i
- test/tests/auxkernels/solution_aux/thread_xda.i
- test/tests/functions/solution_function/solution_function_exodus_test.i
- test/tests/functions/solution_function/solution_function_scale_transl.i
- modules/porous_flow/examples/restart/gas_injection_new_mesh.i
- test/tests/functions/solution_function/solution_function_test.i
test/tests/functions/solution_function/solution_function_rot4.i
# checking rotation of points by 45 deg about z axis in a SolutionUserObject for a 2D situation
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y direction
type = GeneratedMesh
dim = 2
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot4
exodus = true
[]
test/tests/functions/solution_function/solution_function_scale_mult.i
# checking scale_multiplier
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
scale_multiplier = '2 2 0'
transformation_order = scale_multiplier
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_mult
exodus = true
[]
test/tests/functions/solution_function/solution_function_exodus_interp_test.i
[Mesh]
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[]
[Functions]
[./sourcen]
type = SolutionFunction
solution = cube_soln
[../]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
#[Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
#[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/functions/solution_function/solution_function_rot2.i
# checking rotation of points by 45 deg about y axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 1 0'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot2
exodus = true
[]
test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = aux_nonlinear_solution_adapt_out_0004_mesh.xda
parallel_type = replicated
[]
[Adaptivity]
marker = error_frac
steps = 2
[./Indicators]
[./jump_indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./error_frac]
type = ErrorFractionMarker
indicator = jump_indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
examples/ex14_pps/ex14_compare_solutions_2.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = forced
[../]
[./forcing]
type = BodyForce
variable = forced
function = 'x*x+y*y' # Any object expecting a function name can also receive a ParsedFunction string
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = forced
boundary = 'bottom right top left'
value = 0
[../]
[]
[UserObjects]
[./fine_solution]
# Read in the fine grid solution
type = SolutionUserObject
system_variables = forced
mesh = ex14_compare_solutions_1_out_0000_mesh.xda
es = ex14_compare_solutions_1_out_0000.xda
[../]
[]
[Functions]
[./fine_function]
# Create a Function out of the fine grid solution
# Note: This references the SolutionUserObject above
type = SolutionFunction
solution = fine_solution
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Quadrature]
# The integration of the error happens on the coarse mesh
# To reduce integration error of the finer solution we can
# raise the integration order.
# Note: This will slow down the calculation a bit
order = SIXTH
[../]
[]
[Postprocessors]
[./error]
# Compute the error between the computed solution and the fine-grid solution
type = ElementL2Error
variable = forced
function = fine_function
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/functions/solution_function/solution_function_grad_p2.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./test_variable_x]
order = FIRST
family = LAGRANGE
[../]
[./test_variable_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./test_variable_x_aux]
type = FunctionGradAux
variable = test_variable_x
dimension_index = x
function = solution_function
[../]
[./test_variable_y_aux]
type = FunctionGradAux
variable = test_variable_y
dimension_index = y
function = solution_function
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = test_variable
mesh = solution_function_grad_p1.e
[../]
[]
[Functions]
[./solution_function]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = solution_function_grad_p2
exodus = true
[]
test/tests/functions/solution_function/solution_function_rot3.i
# checking rotation of points by 90 deg about z axis, then 45 deg about x axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
# the following takes:
# (0.7, 0.7, +/-0.7) -> (-0.7, 0.7, +/-0.7)
# (-0.7, 0.7, +/-0.7) -> (-0.7, -0.7, +/-0.7)
# (0.7, -0.7, +/-0.7) -> (0.7, 0.7, +/-0.7)
# (-0.7, -0.7, +/-0.7) -> (0.7, -0.7, +/-0.7)
rotation0_vector = '0 0 1'
rotation0_angle = 90
# then the following takes:
# (+/-0.7, 0.7, 0.7) -> (+/-0.7, 0, 1)
# (+/-0.7, 0.7, -0.7) -> (+/-0.7, 1, 0)
# (+/-0.7, -0.7, 0.7) -> (+/-0.7, -1, 0)
# (+/-0.7, -0.7, -0.7) -> (+/-0.7, 0, -1)
rotation1_vector = '1 0 0'
rotation1_angle = 45
# so, in total: a point y = +/-0.7 takes values from x = -/+0.7, so solution_function_rot3 should have u = -y
transformation_order = 'rotation0 rotation1'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot3
exodus = true
[]
test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xdr_func]
type = SolutionFunction
solution = xdr_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xdr_kernel]
type = SolutionAux
variable = u_aux
solution = xdr_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xdr_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[./xdr_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xdr_func
variable = u
type = FunctionIC
[../]
[]
test/tests/functions/solution_function/solution_function_rot1.i
# checking rotation of points by 45 deg about z axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = LATEST
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot1
exodus = true
[]
test/tests/auxkernels/solution_aux/thread_xda.i
[Mesh]
# This test uses SolutionUserObject which doesn't work with ParallelMesh.
type = GeneratedMesh
parallel_type = REPLICATED
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[./uerror]
type = ElementL2Error
variable = u
function = u_xda_func
[../]
[]
[Outputs]
csv = true
[]
test/tests/functions/solution_function/solution_function_exodus_test.i
# [Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
# []
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[./sourcen]
type = SolutionFunction
scale_factor = 2.0
solution = cube_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
timestep = 2
system_variables = source_nodal
mesh = cubesource.e
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
test/tests/functions/solution_function/solution_function_scale_transl.i
# checking scale and translation, with ordering scale first, then translation second
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
zmin = -1
zmax = 1
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
scale = '0.5 1 1'
translation = '2 0 0'
transformation_order = 'scale translation'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_transl
exodus = true
[]
modules/porous_flow/examples/restart/gas_injection_new_mesh.i
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 25
nx = 50
ymax = 100
xmin = 0.1
xmax = 5000
bias_x = 1.05
bias_y = 0.95
[]
[Problem]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[./pp_liq]
[../]
[./sat_gas]
initial_condition = 0
[../]
[]
[ICs]
[./ppliq_ic]
type = FunctionIC
variable = pp_liq
function = ppliq_ic
[../]
[]
[AuxVariables]
[./temperature]
initial_condition = 50
[../]
[./xnacl]
initial_condition = 0.1
[../]
[./brine_density]
family = MONOMIAL
order = CONSTANT
[../]
[./methane_density]
family = MONOMIAL
order = CONSTANT
[../]
[./massfrac_ph0_sp0]
initial_condition = 1
[../]
[./massfrac_ph1_sp0]
initial_condition = 0
[../]
[./pp_gas]
family = MONOMIAL
order = CONSTANT
[../]
[./sat_liq]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[../]
[./flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[../]
[./mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[../]
[./flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[../]
[]
[AuxKernels]
[./brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[../]
[./methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[../]
[./pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[../]
[./sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[../]
[./brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
use_relperm = true
mass_fraction_component = 0
[../]
[]
[Functions]
[./injection_rate]
type = ParsedFunction
vals = injection_area
vars = area
value = '-1/area'
[../]
[./ppliq_ic]
type = SolutionFunction
solution = soln
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
pc_max = 1e7
[../]
[./soln]
type = SolutionUserObject
mesh = gravityeq_out.e
system_variables = porepressure
[../]
[]
[Modules]
[./FluidProperties]
[./brine]
type = BrineFluidProperties
[../]
[./methane]
type = MethaneFluidProperties
[../]
[./methane_tab]
type = TabulatedFluidProperties
fp = methane
save_file = false
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temperature
[../]
[./ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[../]
[./methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 5e-14 0 0 0 1e-13'
[../]
[./relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[../]
[./relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
growth_factor = 1.5
[../]
[]
[Postprocessors]
[./mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[../]
[./mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[../]
[./injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[../]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
test/tests/functions/solution_function/solution_function_test.i
[Mesh]
type = FileMesh
file = square.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[Functions]
[./initial_cond_func]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = u
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]