- variableThe name of the variable that this constraint is applied to.
C++ Type:NonlinearVariableName
Description:The name of the variable that this constraint is applied to.
XFEMSingleVariableConstraint

The XFEMSingleVariableConstraint has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# XFEMSingleVariableConstraint
!syntax description /Constraints/XFEMSingleVariableConstraint
## Overview
!! Replace these lines with information regarding the XFEMSingleVariableConstraint object.
## Example Input File Syntax
!! Describe and include an example of how to use the XFEMSingleVariableConstraint object.
!syntax parameters /Constraints/XFEMSingleVariableConstraint
!syntax inputs /Constraints/XFEMSingleVariableConstraint
!syntax children /Constraints/XFEMSingleVariableConstraint
!syntax description /Constraints/XFEMSingleVariableConstraint
Input Parameters
- alpha100Stabilization parameter in Nitsche's formulation and penalty factor in the Penalty Method. In Nitsche's formulation this should be as small as possible while the method is still stable; while in the Penalty Method you want this to be quite large (e.g. 1e6).
Default:100
C++ Type:double
Options:
Description:Stabilization parameter in Nitsche's formulation and penalty factor in the Penalty Method. In Nitsche's formulation this should be as small as possible while the method is still stable; while in the Penalty Method you want this to be quite large (e.g. 1e6).
- execute_onLINEARThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:LINEAR
C++ Type:ExecFlagEnum
Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
- geometric_cut_userobjectName of GeometricCutUserObject associated with this constraint.
C++ Type:UserObjectName
Options:
Description:Name of GeometricCutUserObject associated with this constraint.
- interface_id0The id of the interface.
Default:0
C++ Type:unsigned int
Options:
Description:The id of the interface.
- jump0Jump at the interface. Can be a Real or FunctionName.
Default:0
C++ Type:FunctionName
Options:
Description:Jump at the interface. Can be a Real or FunctionName.
- jump_flux0Flux jump at the interface. Can be a Real or FunctionName.
Default:0
C++ Type:FunctionName
Options:
Description:Flux jump at the interface. Can be a Real or FunctionName.
- use_penaltyFalseUse the Penalty instead of Nitsche (Nitsche only works for simple diffusion problems).
Default:False
C++ Type:bool
Options:
Description:Use the Penalty instead of Nitsche (Nitsche only works for simple diffusion problems).
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime system
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime time
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_1constraint.i
- modules/xfem/test/tests/moving_interface/moving_bimaterial.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_equal.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_fluxjump.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
- modules/xfem/test/tests/single_var_constraint_2d/propagating_1field.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_jump.i
- modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump_func.i
- modules/xfem/test/tests/single_var_constraint_3d/stationary_equal_3d.i
- modules/xfem/test/tests/single_var_constraint_3d/stationary_fluxjump_3d.i
- modules/xfem/test/tests/moving_interface/moving_diffusion.i
- modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_3d.i
- modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_func.i
- modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
- modules/xfem/test/tests/mechanical_constraint/glued_penalty.i
- modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
- modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_fluxjump_3d.i
- modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_2constraint.i
- modules/xfem/test/tests/moving_interface/moving_level_set.i
- modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
- modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
- modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i
modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_1constraint.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/moving_bimaterial.i
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = generated_mesh
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5 + t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_equal.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_fluxjump.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 1
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008118
# 0.6 520 520.0038529
# 0.8 560 560.0089177
# 1.0 600 600.0133344
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + 200*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998745
# 0.6 520 519.9995067
# 0.8 560 559.9989409
# 1.0 600 599.9987054
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + 100*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/propagating_1field.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9999722
# 0.6 520 519.9998726
# 0.8 560 559.9997314
# 1.0 600 599.9996885
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'rhoCp*(-200*x+200)-(0.05*200*t/1.04)'
vars = 'rhoCp'
vals = 10
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '1.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 1
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_jump.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008131
# 0.6 520 520.0038333
# 0.8 560 560.0088286
# 1.0 600 600.0131612
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + (1/x)*(310*t - (10/1.02)*x*t - (1/1.02)*t^2)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/2.04)*(2.04-x-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/2.04)*(2.04-x-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump_func.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = jump_flux_func
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Functions]
[./jump_flux_func]
type = ParsedFunction
value = '1'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_3d/stationary_equal_3d.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_3d/stationary_fluxjump_3d.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 1
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/moving_diffusion.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
elem_type = QUAD4
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'x-0.76+0.21*t'
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = u
jump = 0
use_penalty = true
alpha = 1e5
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[../]
[./diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 0.5
[../]
[./diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
start_time = 0.0
dt = 1
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_3d.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 0
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_func.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = jump_func
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Functions]
[./jump_func]
type = ParsedFunction
value = '0.5'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_rz_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in cylindrical coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=1, y=1) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998717
# 0.6 520 519.9994963
# 0.8 560 559.9989217
# 1.0 600 599.9986735
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 1.0
xmax = 2.0
ymin = 1.0
ymax = 2.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+400) + t*(-2.5*y/(2.04*x) + 155/x - t/(2.04*x)
- 7.5/2.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/2.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+200)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+200)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/2.04)*(-2.5*x-2.5*y-t) + 1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 2.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_lsdep1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with thermal conductivity
# dependent upon the transient level set function. This problem can be
# exactly evaluated by FEM/Moose without the moving interface. Both the
# temperature and level set function are designed to be linear to attempt to
# minimize the error between the Moose/exact solution and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998738
# 0.6 520 519.9995114
# 0.8 560 559.9989360
# 1.0 600 599.9983833
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)-(5*t/1.04)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.01/1.04)*(-2.5*x-2.5*y-t)+1.55)*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./k_func]
type = ParsedFunction
value = '(0.01/1.04)*(-2.5*x-2.5*y-t)+1.55'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/mechanical_constraint/glued_penalty.i
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.0 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50 100'
y='0 0.02 0.1'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Constraints]
[./disp_x]
type = XFEMSingleVariableConstraint
variable = disp_x
use_penalty = true
alpha = 1.0e8
use_displaced_mesh = true
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[./disp_y]
type = XFEMSingleVariableConstraint
variable = disp_y
use_penalty = true
alpha = 1.0e8
use_displaced_mesh = true
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 2.0
num_steps = 5000
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/2D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: 2D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# Transient 2D heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance on linear elements in the presence of a moving interface
# sweeping across the x-y coordinates of a system with homogeneous material
# properties. This problem can be exactly evaluated by FEM/Moose without the
# moving interface. Both the temperature and level set function are designed
# to be linear to attempt to minimize error between the Moose/exact solution
# and XFEM results.
# Results:
# The temperature at the bottom left boundary (x=0, y=0) exhibits the largest
# difference between the FEM/Moose solution and XFEM results. We present the
# XFEM results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9998791
# 0.6 520 519.9995307
# 0.8 560 559.9989724
# 1.0 600 599.9984541
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraints]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-100*x-100*y+200)'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*100*t'
[../]
[./dirichlet_right_func]
type = ParsedFunction
value = '(-100*y+100)*t+400'
[../]
[./dirichlet_top_func]
type = ParsedFunction
value = '(-100*x+100)*t+400'
[../]
[./ls_func]
type = ParsedFunction
value = '-0.5*(x+y) + 1.04 - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = dirichlet_right_func
[../]
[./bottom_du]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = neumann_func
[../]
[./top_u]
type = FunctionDirichletBC
variable = u
boundary = 'top'
function = dirichlet_top_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_fluxjump_3d.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 1
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_2constraint.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Constraints]
[./xfem_constraint_u]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[./xfem_constraint_v]
type = XFEMSingleVariableConstraint
variable = v
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/moving_level_set.i
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutSetUserObject
cut_data = '0.3 1.0 0.3 0.2 0 3'
heal_always = false
[../]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '3 5'
[../]
[./ls_func]
type = ParsedFunction
value = 'x-0.7-0.07*(t-1)'
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
geometric_cut_userobject = 'level_set_cut_uo'
use_displaced_mesh = false
variable = u
use_penalty = true
alpha = 1e5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-9
start_time = 0.0
dt = 1
end_time = 3.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i
# This test is for a matrix-inclusion composite materials
# The global stress is determined by switching the stress based on level set values
# The inclusion geometry is marked by a level set function
# The matrix and inclusion are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'sqrt((y-2.5)*(y-2.5) + (x-2.5)*(x-2.5)) - 1.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = '0.03*t'
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.5
end_time = 1.0
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_discrete2mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types:discrete homog 2 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description
# A transient heat transfer problem in Cartesian coordinates designed with
# the Method of Manufactured Solutions. This problem was developed to verify
# XFEM performance in the presence of a moving interface separating two
# discrete material regions for linear element models. Both the temperature
# solution and level set function are designed to be linear to attempt to
# minimize error between the exact solution and XFEM results. Thermal
# conductivity, density, and heat capacity are homogeneous in each material
# region with a discontinuous jump in thermal flux between the two material
# regions.
# Results:
# The temperature at the left boundary is determined by the analytical
# solution, so temperature at the right boundary (x=1) should exhibit the
# largest difference between the analytical solution and XFEM results. We
# present the analytical and XFEM results at the material interface position
# and right side boundary at various times.
# Interface:
# Time Expected Temperature XFEM Calculated Temperature
# 20 746.75 746.7235521
# 40 893.05 893.0379081
# 60 1040.15 1040.1527530
#
# Right Boundary (x=1):
# Time Expected Temperature XFEM Calculated Temperature
# 20 720 719.9708681
# 40 840 839.9913293
# 60 960 960.0100886
#
# IMPORTANT NOTE:
# When running this input file, add the --allow-test-objects tag!!!
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = phi
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = 'diffusion_coefficient'
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = phi
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
jump_flux = jump_flux_func
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
10*(8-x),
(7/(1-i))*((i-2)*x + (8-7*i)) )'
[../]
[./right_du_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
(2.0/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./exact_u_func]
type = ParsedFunction
value = 'phi:=(0.75-x-0.001*t);
i:=(0.75-0.001*t);
if (phi>=0,
605 - 5*x + t*(8-x),
(1/(1-i))*((-5+5*i+i*t-2*t)*x + (605-605*i+8*t-7*t*i)) )'
[../]
[./jump_flux_func]
type = ParsedFunction
value = 'i:=(0.75-0.001*t);
k_1:=(20.0);
k_2:=(2.0);
k_1*(5+t) + (k_2/(1-i))*(-5+5*i+i*t-2*t)'
[../]
[./ls_func]
type = ParsedFunction
value = '0.75 - x - 0.001*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'A_rhoCp B_rhoCp'
prop_values = '10 7'
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'A_diffusion_coefficient B_diffusion_coefficient'
prop_values = '20.0 2.0'
[../]
[./combined_rhoCp]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = rhoCp
[../]
[./combined_diffusion_coefficient]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = phi
prop_name = diffusion_coefficient
[../]
[]
[BCs]
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = exact_u_func
[../]
[./right_du]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_du_func
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 600
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 20
end_time = 60.0
max_xfem_update = 2
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed linear level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0000064
# 0.6 520 520.0000323
# 0.8 560 560.0000896
# 1.0 600 600.0001870
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+200)'
[../]
[./ls_func]
type = ParsedFunction
value = '1-(x-0.04)-0.2*t'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
displacements = 'disp_x disp_y'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = gen
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]