- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Description:The list of boundary IDs from the mesh where this boundary condition applies
- componentThe component for the pressure
C++ Type:unsigned int
Description:The component for the pressure
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Description:The name of the variable that this boundary condition applies to
ADPressure
Applies a pressure on a given boundary in a given direction
Description
The boundary condition, ADPressure
applies a force to a mesh boundary in the magnitude specified by the user. A component
of the normal vector to the mesh surface (0, 1, or 2 corresponding to the , , and vector components) is used to determine the direction in which to apply the traction. The boundary condition is always applied to the displaced mesh and uses forward mode automatic differentiation to compute an exact Jacobian contribution (this is contingent on coupling only AD enabled objects in the parameters).
The magnitude of the ADPressure
boundary condition can be specified as either a constant scalar factor (use the input parameter constant
), a factor from a function
, a factor from a postprocessor
, or any combination thereof.
Input Parameters
- alpha0alpha parameter required for HHT time integration scheme
Default:0
C++ Type:double
Options:
Description:alpha parameter required for HHT time integration scheme
- constant1The magnitude to use in computing the pressure
Default:1
C++ Type:double
Options:
Description:The magnitude to use in computing the pressure
- displacementsThe displacements
C++ Type:std::vector
Options:
Description:The displacements
- functionThe function that describes the pressure
C++ Type:FunctionName
Options:
Description:The function that describes the pressure
- postprocessorPostprocessor that will supply the pressure value
C++ Type:PostprocessorName
Options:
Description:Postprocessor that will supply the pressure value
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector
Options:
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector
Options:
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector
Options:
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime system
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime time
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_test.i
- modules/tensor_mechanics/test/tests/ad_2D_geometries/3D-RZ_finiteStrain_test.i
- modules/combined/test/tests/ad_power_law_creep/power_law_creep_smallstrain.i
- modules/tensor_mechanics/test/tests/rom_stress_update/2drz.i
- modules/tensor_mechanics/test/tests/ad_1D_spherical/finiteStrain_1DSphere_hollow.i
- modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart2.i
- modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_test.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
- modules/tensor_mechanics/test/tests/rom_stress_update/3d.i
- modules/combined/test/tests/ad_power_law_creep/power_law_creep.i
- modules/tensor_mechanics/test/tests/rom_stress_update/verification.i
- modules/tensor_mechanics/test/tests/ad_1D_spherical/smallStrain_1DSphere.i
- modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart1.i
modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculator ComputeAxisymmetricRZFiniteStrain,
# which is generated through the use of the TensorMechanics MasterAction.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./_elastic_strain]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = ADDirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = ADDirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 1
function = '200000*t'
[../]
[./interior_pressure_r]
type = ADPressure
variable = disp_r
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 1
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_2D_geometries/3D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 3D geometry.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 3D_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./elastic_strain]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = xzero
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = yzero
value = 0.0
[../]
[./no_disp_z]
type = ADDirichletBC
variable = disp_z
boundary = zzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_x]
type = ADPressure
variable = disp_x
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_y]
type = ADPressure
variable = disp_y
boundary = outer
component = 1
function = '200000*t'
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 2
function = '200000*t'
[../]
[./interior_pressure_x]
type = ADPressure
variable = disp_x
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_y]
type = ADPressure
variable = disp_y
boundary = inner
component = 1
function = '100000*t'
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 2
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/ad_power_law_creep/power_law_creep_smallstrain.i
# 1x1x1 unit cube with uniform pressure on top face for the case of small strain.
# This test does not have a solid mechanics analog because there is not an equvialent
# small strain with rotations strain calculator material in solid mechanics
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/rom_stress_update/2drz.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temperature]
initial_condition = 900.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_automatic_differentiation = true
[../]
[]
[BCs]
[./symmy]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./pressure_x]
type = ADPressure
variable = disp_x
component = 0
boundary = right
constant = 3.1675e5
[../]
[./pressure_y]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = 6.336e5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_mobile_dislocation_density = 6.0e12
initial_immobile_dislocation_density = 4.4e11
outputs = all
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 5
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
[../]
[./mobile_dislocations]
type = ElementAverageValue
variable = mobile_dislocations
[../]
[./immobile_disloactions]
type = ElementAverageValue
variable = immobile_dislocations
[../]
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/ad_1D_spherical/finiteStrain_1DSphere_hollow.i
# This simulation models the mechanics solution for a hollow sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner radius of the sphere, r = 4mm, is pinned to prevent
# rigid body movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{P(1 + v)(1 - 2v)b^3}{E(b^3(1 + v) + 2a^3(1-2v))} * (\frac{a^3}{r^2} - r)
#
# where P is the applied pressure, b is the outer radius, a is the inner radius,
# v is Poisson's ration, E is Young's Modulus, and r is the radial position.
#
# The radial stress is given by:
#
# S(r) = \frac{Pb^3}{b^3(1 + v) + 2a^3(1 - 2v)} * (\frac{2a^3}{r^3}(2v - 1) - (1 + v))
#
# The test assumes an inner radius of 4mm, and outer radius of 9 mm,
# zero displacement at r = 4mm, and an applied outer pressure of 2MPa.
# The radial stress is largest in the inner most element and, at an assumed
# mid element coordinate of 4.5mm, is equal to -2.545MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 4
xmax = 9
nx = 5
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = ADDirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = ADPressure
boundary = right
variable = disp_r
component = 0
constant = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart2.i
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.6
end_time = 1.0
num_steps = 12
dt = 0.1
[]
[Outputs]
file_base = power_law_creep_out
exodus = true
[]
[Problem]
restart_file_base = power_law_creep_restart1_out_cp/0006
[]
modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculators ComputeAxisymmetricRZSmallStrain
# and ComputeAxisymmetricRZIncrementalStrain which are generated by the
# TensorMechanics MasterAction depending on the cli_args given in the tests file.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000, respectively. The resulting compressive tangential
# stress is largest at the inner wall and, from the above equation, has a value
# of -271429.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_zz'
use_automatic_differentiation = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./stress]
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = outer
component = 0
constant = 200000
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 1
constant = 200000
[../]
[./interior_pressure_r]
type = ADPressure
variable = disp_r
boundary = inner
component = 0
constant = 100000
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 1
constant = 100000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
# num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = right
component = 0
constant = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
modules/tensor_mechanics/test/tests/rom_stress_update/3d.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temperature]
initial_condition = 900.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./symmy]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./pressure_x]
type = ADPressure
variable = disp_x
component = 0
boundary = right
constant = 1.0e5
[../]
[./pressure_y]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -1.0e5
[../]
[./pressure_z]
type = ADPressure
variable = disp_z
component = 2
boundary = front
constant = -1.0e5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_mobile_dislocation_density = 6.0e12
initial_immobile_dislocation_density = 4.4e11
outputs = all
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 5
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
[../]
[./mobile_dislocations]
type = ElementAverageValue
variable = mobile_dislocations
[../]
[./immobile_disloactions]
type = ElementAverageValue
variable = immobile_dislocations
[../]
[]
[Outputs]
csv = true
[]
modules/combined/test/tests/ad_power_law_creep/power_law_creep.i
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[./temp]
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/rom_stress_update/verification.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temperature]
[../]
[]
[AuxKernels]
[./temp_aux]
type = FunctionAux
variable = temperature
function = temp_fcn
execute_on = 'initial timestep_begin'
[../]
[]
[Functions]
[./rhom_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 1
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhoi_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 2
format = columns
xy_in_file_only = false
direction = right
[../]
[./vmJ2_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 3
format = columns
xy_in_file_only = false
direction = right
[../]
[./evm_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 4
format = columns
xy_in_file_only = false
direction = right
[../]
[./temp_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 5
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhom_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 7
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhoi_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 8
format = columns
xy_in_file_only = false
direction = right
[../]
[./creep_rate_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 10
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhom_diff_fcn]
type = ParsedFunction
vars = 'rhom_soln rhom'
vals = 'rhom_soln rhom'
value = 'abs(rhom_soln - rhom) / rhom_soln'
[../]
[./rhoi_diff_fcn]
type = ParsedFunction
vars = 'rhoi_soln rhoi'
vals = 'rhoi_soln rhoi'
value = 'abs(rhoi_soln - rhoi) / rhoi_soln'
[../]
[./creep_rate_diff_fcn]
type = ParsedFunction
vars = 'creep_rate_soln creep_rate'
vals = 'creep_rate_soln creep_rate'
value = 'abs(creep_rate_soln - creep_rate) / creep_rate_soln'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./symmx]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmy]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmz]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./pressure_x]
type = ADPressure
variable = disp_x
component = 0
boundary = right
function = vmJ2_fcn
constant = 0.5e6
[../]
[./pressure_y]
type = ADPressure
variable = disp_y
component = 1
boundary = top
function = vmJ2_fcn
constant = -0.5e6
[../]
[./pressure_z]
type = ADPressure
variable = disp_z
component = 2
boundary = front
function = vmJ2_fcn
constant = -0.5e6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
effective_inelastic_strain_name = effective_creep_strain
internal_solve_full_iteration_history = true
apply_strain = false
outputs = all
immobile_dislocation_density_forcing_function = rhoi_fcn
mobile_dislocation_density_forcing_function = rhom_fcn
old_creep_strain_forcing_function = evm_fcn
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'# -ksp_error_if_not_converged -snes_error_if_not_converged'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
automatic_scaling = true
compute_scaling_once = false
nl_abs_tol = 1e-10
dt = 1e-3
end_time = 1e-2
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
outputs = console
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
outputs = console
[../]
[./rhom]
type = ElementAverageValue
variable = mobile_dislocations
[../]
[./rhoi]
type = ElementAverageValue
variable = immobile_dislocations
[../]
[./vonmises_stress]
type = ElementAverageValue
variable = vonmises_stress
outputs = console
[../]
[./creep_rate]
type = ElementAverageValue
variable = creep_rate
[../]
[./rhom_in]
type = FunctionValuePostprocessor
function = rhom_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./rhoi_in]
type = FunctionValuePostprocessor
function = rhoi_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./vmJ2_in]
type = FunctionValuePostprocessor
function = vmJ2_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./rhom_soln]
type = FunctionValuePostprocessor
function = rhom_soln_fcn
outputs = console
[../]
[./rhoi_soln]
type = FunctionValuePostprocessor
function = rhoi_soln_fcn
outputs = console
[../]
[./creep_rate_soln]
type = FunctionValuePostprocessor
function = creep_rate_soln_fcn
outputs = console
[../]
[./rhom_diff]
type = FunctionValuePostprocessor
function = rhom_diff_fcn
outputs = console
[../]
[./rhoi_diff]
type = FunctionValuePostprocessor
function = rhoi_diff_fcn
outputs = console
[../]
[./creep_rate_diff]
type = FunctionValuePostprocessor
function = creep_rate_diff_fcn
outputs = console
[../]
[./rhom_max_diff]
type = TimeExtremeValue
postprocessor = rhom_diff
outputs = console
[../]
[./rhoi_max_diff]
type = TimeExtremeValue
postprocessor = rhoi_diff
outputs = console
[../]
[./creep_rate_max_diff]
type = TimeExtremeValue
postprocessor = creep_rate_diff
outputs = console
[../]
[]
[Outputs]
csv = true
file_base = 'verification_1e-3_out'
[]
modules/tensor_mechanics/test/tests/ad_1D_spherical/smallStrain_1DSphere.i
# This simulation models the mechanics solution for a solid sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner center of the sphere, r = 0, is pinned to prevent
# movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{- P * (1 - 2 * v) * r}{E}
#
# where P is the applied pressure, v is Poisson's ration, E is Young's Modulus,
# and r is the radial position.
#
# The test assumes a radius of 4, zero displacement at r = 0mm, and an applied
# outer pressure of 1MPa. Under these conditions in a solid sphere, the radial
# stress is constant and has a value of -1 MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 4
nx = 4
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
save_in = residual_r
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./residual_r]
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./residual_r]
type = NodalSum
variable = residual_r
boundary = right
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = ADDirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = ADPressure
boundary = right
variable = disp_r
component = 0
constant = 1
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart1.i
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 6
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]