- index_iThe index i of ij for the tensor to output (0, 1, 2)
C++ Type:unsigned int
Description:The index i of ij for the tensor to output (0, 1, 2)
- index_jThe index j of ij for the tensor to output (0, 1, 2)
C++ Type:unsigned int
Description:The index j of ij for the tensor to output (0, 1, 2)
- rank_two_tensorThe rank two material tensor name
C++ Type:MaterialPropertyName
Description:The rank two material tensor name
- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Description:The name of the variable that this object applies to
Rank Two Aux
Access a component of a RankTwoTensor
Description
The AuxKernel RankTwoAux
is used to save single components of Rank-2 tensors into an AuxVariable for visualization and/or post-processing purposes. An antisymmetric Rank-2 tensor would require nine separate RankTwoAux
AuxKernel-AuxVariable pairs to store all of the components of the antisymmetric Rank-2 tensor; six separate AuxKernel-AuxVariable pairs are required to print out all the unique components of a symmetric Rank-2 tensor. Quantities commonly examined with RankTwoAux
are stress () and strain ().
The RankTwoAux
takes as arguments the values of the index_i
and the index_j
for the single tensor component to save into an AuxVariable. Eq. (1) shows the index values for each Rank-2 tensor component. (1)
If desired, RankTwoAux
can be restricted to save data from a Rank-2 tensor at a single specified quadrature point per element. This option is generally used for debugging purposes.
AuxVariable Order
Results will have different quality based on the AuxVariable:
Elemental Constant Monomial Using an AuxVariable with
family = MONOMIAL
andorder = CONSTANT
will give a constant value of the AuxVariable for the entire element, which is computed by taking a volume-weighted average of the integration point quantities. This is the default option using TensorMechanics Action and requires the least computational cost.Elemental Higher-order Monomial Using an AuxVariable with
family = MONOMIAL
andorder = FIRST
or higher will result in fields that vary linearly (or with higher order) within each element. Because the Exodus mesh format does not support higher-order elemental variables, these AuxVariables are output by libMesh as nodal variables for visualization purposes. Using higher order monomial variables in this way can produce smoother visualizations of results for a properly converged simulation.Nodal Lagrange Using an AuxVariable with
family = LAGRANGE
will result in a smooth nodal field of the material property, constructed using nodal patch recovery.patch_polynomial_order
is set to equal the order of the AuxVariable by default. Use this option for the best (smoothest, most accurate) results, but there is some additional computational cost. Furthermore, this method is suitable only for serial simulations at present.
Example Input File Syntax
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
(modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i)/opt/civet/build_0/moose/modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = elastic_patch.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./firstinv]
order = CONSTANT
family = MONOMIAL
[../]
[./secondinv]
order = CONSTANT
family = MONOMIAL
[../]
[./thirdinv]
order = CONSTANT
family = MONOMIAL
[../]
[./maxprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./midprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./minprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./direction]
order = CONSTANT
family = MONOMIAL
[../]
[./max_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./sint]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = hydrostatic
[../]
[./fi]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = firstinv
scalar_type = firstinvariant
[../]
[./si]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = secondinv
scalar_type = secondinvariant
[../]
[./ti]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = thirdinv
scalar_type = thirdinvariant
[../]
[./maxprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = maxprincipal
scalar_type = MaxPRiNCIpAl
[../]
[./midprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = midprincipal
scalar_type = MidPRiNCIpAl
[../]
[./minprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = minprincipal
scalar_type = MiNPRiNCIpAl
[../]
[./direction]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = direction
scalar_type = direction
direction = '1 1 1'
[../]
[./max_shear]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = max_shear
scalar_type = MaxShear
[../]
[./sint]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = sint
scalar_type = StressIntensity
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
exodus = true
[] # Outputs
An AuxVariable is required to store the RankTwoAux
AuxKernel information. Note that the name of the AuxVariable is used as the argument for the variable
input parameter in the RankTwoAux
block.
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
(modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i)/opt/civet/build_0/moose/modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = elastic_patch.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./firstinv]
order = CONSTANT
family = MONOMIAL
[../]
[./secondinv]
order = CONSTANT
family = MONOMIAL
[../]
[./thirdinv]
order = CONSTANT
family = MONOMIAL
[../]
[./maxprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./midprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./minprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./direction]
order = CONSTANT
family = MONOMIAL
[../]
[./max_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./sint]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = hydrostatic
[../]
[./fi]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = firstinv
scalar_type = firstinvariant
[../]
[./si]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = secondinv
scalar_type = secondinvariant
[../]
[./ti]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = thirdinv
scalar_type = thirdinvariant
[../]
[./maxprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = maxprincipal
scalar_type = MaxPRiNCIpAl
[../]
[./midprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = midprincipal
scalar_type = MidPRiNCIpAl
[../]
[./minprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = minprincipal
scalar_type = MiNPRiNCIpAl
[../]
[./direction]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = direction
scalar_type = direction
direction = '1 1 1'
[../]
[./max_shear]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = max_shear
scalar_type = MaxShear
[../]
[./sint]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = sint
scalar_type = StressIntensity
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
exodus = true
[] # Outputs
Input Parameters
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Options:
Description:The list of block ids (SubdomainID) that this object will be applied
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Options:
Description:The list of boundary IDs from the mesh where this boundary condition applies
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM PRE_DISPLACE
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- patch_polynomial_orderPolynomial order used in least squares fitting of material property over the local patch of elements connected to a given node
C++ Type:MooseEnum
Options:CONSTANT FIRST SECOND THIRD FOURTH
Description:Polynomial order used in least squares fitting of material property over the local patch of elements connected to a given node
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- selected_qpEvaluate the tensor at this specific quadpoint
C++ Type:unsigned int
Options:
Description:Evaluate the tensor at this specific quadpoint
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_resid.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform2.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_aug.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_tip.i
- modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_3.i
- modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardeningRestart2.i
- modules/tensor_mechanics/test/tests/action/two_block.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
- modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/lambda_shear_modulus_test.i
- modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1.i
- modules/combined/test/tests/beam_eigenstrain_transfer/subapp1_uo_transfer.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_template1.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_template1.i
- modules/combined/test/tests/ad_cavity_pressure/3d.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform6.i
- modules/tensor_mechanics/test/tests/jacobian/cto16.i
- modules/tensor_mechanics/test/tests/material_limit_time_step/elas_plas/nafems_nl1_lim.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_template2.i
- modules/porous_flow/test/tests/mass_conservation/mass04.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard5.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp_substep.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_mu_0_2_pen.i
- modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i
- modules/combined/test/tests/ad_cavity_pressure/multiple_postprocessors.i
- modules/tensor_mechanics/test/tests/multi/three_surface09.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i
- modules/tensor_mechanics/test/tests/initial_stress/gravity.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i
- modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_errors.i
- modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard2.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform1.i
- modules/tensor_mechanics/test/tests/generalized_plane_strain/out_of_plane_pressure.i
- modules/tensor_mechanics/test/tests/ad_2D_geometries/3D-RZ_finiteStrain_test.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_mu_0_2_pen.i
- modules/combined/test/tests/solid_mechanics/hoop_stress/hoop_stress_default_yaxis.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard1.i
- modules/tensor_mechanics/test/tests/multi/two_surface01.i
- modules/combined/test/tests/thermo_mech/ad-youngs_modulus_function_temp.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i
- modules/combined/test/tests/DiffuseCreep/strain.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i
- modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZQuadratic.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i
- modules/tensor_mechanics/test/tests/cp_user_object/user_object_Voce_BCC.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_template2.i
- modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i
- modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_template2.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/Rayleigh_HHT.i
- modules/tensor_mechanics/test/tests/multi/three_surface08.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
- modules/combined/test/tests/contact_verification/hertz_cyl/quart_symm_q8/hertz_cyl_qsym_1deg_template1.i
- modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i
- modules/tensor_mechanics/test/tests/multi/paper1.i
- modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard4.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_template2.i
- modules/tensor_mechanics/test/tests/1D_spherical/finiteStrain_1DSphere_hollow.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except3.i
- modules/tensor_mechanics/test/tests/multi/three_surface05.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_edge.i
- modules/tensor_mechanics/test/tests/stress_recovery/patch/patch_finite_stress.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform3.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_mu_0_2_pen.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_template1.i
- modules/tensor_mechanics/test/tests/visco/gen_kv_creep.i
- modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide.i
- modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i
- modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i
- modules/tensor_mechanics/test/tests/multi/three_surface21.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/ad_1D_spherical/finiteStrain_1DSphere_hollow.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform7.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i
- modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i
- modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i
- modules/tensor_mechanics/test/tests/initial_stress/gravity_cosserat.i
- modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i
- modules/tensor_mechanics/test/tests/j2_plasticity/hard1.i
- modules/tensor_mechanics/test/tests/jacobian_damper/cube_load.i
- modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion.i
- modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i
- modules/tensor_mechanics/test/tests/cp_user_object/user_object.i
- modules/tensor_mechanics/test/tests/mean_cap/small_deform1.i
- modules/combined/test/tests/cavity_pressure/initial_temperature.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform1.i
- modules/tensor_mechanics/test/tests/poro/vol_expansion.i
- modules/combined/test/tests/generalized_plane_strain_tm_contact/out_of_plane_pressure.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_template2.i
- modules/tensor_mechanics/test/tests/1D_spherical/smallStrain_1DSphere.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i
- modules/tensor_mechanics/test/tests/multi/special_rock1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation.i
- modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_squares.i
- modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read_3d.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar1.i
- modules/tensor_mechanics/test/tests/multi/eight_surface14.i
- modules/tensor_mechanics/test/tests/stress_recovery/stress_concentration/stress_concentration.i
- modules/tensor_mechanics/test/tests/multi/two_surface02.i
- modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_template1.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_edge.i
- modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_elem_read.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_template2.i
- modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1_cycle.i
- modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform4.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_template1.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
- modules/tensor_mechanics/test/tests/2D_geometries/3D-RZ_finiteStrain_test.i
- modules/tensor_mechanics/test/tests/cp_user_object/patch_recovery.i
- modules/tensor_mechanics/test/tests/interface_stress/test.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i
- modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i
- modules/combined/test/tests/concentration_dependent_elasticity_tensor/concentration_dependent_elasticity_tensor.i
- modules/porous_flow/examples/coal_mining/fine_with_fluid.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_native.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i
- modules/tensor_mechanics/examples/coal_mining/fine.i
- modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform1_uo.i
- modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardeningRestart1.i
- modules/xfem/test/tests/crack_tip_enrichment/penny_crack_3d.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD.i
- modules/tensor_mechanics/test/tests/multi/three_surface15.i
- modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/lambda_shear_modulus_test.i
- modules/tensor_mechanics/test/tests/multi/six_surface14.i
- modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/orthotropic_rotation_Cijkl.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_tip.i
- modules/porous_flow/test/tests/energy_conservation/heat04.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i
- modules/tensor_mechanics/test/tests/multi/three_surface00.i
- modules/combined/test/tests/eigenstrain/variable.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except4.i
- modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template3.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i
- modules/tensor_mechanics/test/tests/action/two_block_base_name.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_template1.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_template1.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i
- modules/combined/test/tests/power_law_hardening/PowerLawHardening.i
- modules/combined/test/tests/contact_verification/hertz_cyl/quart_symm_q4/hertz_cyl_qsym_1deg_template1.i
- modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i
- modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/Rayleigh_Newmark.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i
- modules/tensor_mechanics/test/tests/cp_user_object/substep.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push.i
- modules/tensor_mechanics/test/tests/visco/gen_kv_driving.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_template1.i
- modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinearConstant.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_stress_free_temp.i
- modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i
- modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_finite.i
- modules/combined/test/tests/eigenstrain/inclusion.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i
- modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_scalar_vector.i
- modules/tensor_mechanics/test/tests/multi/two_surface04.i
- modules/tensor_mechanics/test/tests/multi/three_surface03.i
- modules/tensor_mechanics/test/tests/multi/three_surface16.i
- modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardening_test.i
- modules/tensor_mechanics/test/tests/jacobian/cto15.i
- modules/combined/test/tests/multiphase_mechanics/twophasestress.i
- modules/combined/test/tests/thermo_mech/youngs_modulus_function_temp.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_template1.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_mu_0_2_pen.i
- modules/porous_flow/test/tests/poro_elasticity/mandel.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_template1.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_lode_zero.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_substep.i
- modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_lode_zero.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform5.i
- modules/tensor_mechanics/test/tests/cp_user_object/save_euler.i
- modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2_small_strain.i
- modules/tensor_mechanics/test/tests/multi/four_surface24.i
- modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_cutback.i
- modules/tensor_mechanics/test/tests/ad_action/two_block.i
- modules/tensor_mechanics/test/tests/multi/three_surface06.i
- modules/tensor_mechanics/test/tests/multi/rock1.i
- modules/tensor_mechanics/test/tests/jacobian/cto17.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i
- modules/combined/test/tests/poro_mechanics/borehole_lowres.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_template2.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i
- modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_01.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i
- modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
- modules/tensor_mechanics/test/tests/initial_stress/gravity_with_aux.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i
- modules/combined/test/tests/ACGrGrElasticDrivingForce/bicrystal.i
- modules/tensor_mechanics/test/tests/multi/three_surface01.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_template1.i
- modules/tensor_mechanics/test/tests/visco/gen_maxwell_relax.i
- modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template1.i
- modules/combined/test/tests/poro_mechanics/pp_generation.i
- modules/xfem/test/tests/crack_tip_enrichment/edge_crack_2d.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i
- modules/porous_flow/examples/tutorial/11_2D.i
- modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i
- modules/tensor_mechanics/test/tests/multi/two_surface03.i
- modules/combined/test/tests/solid_mechanics/LinearStrainHardening/lsh_pressure.i
- modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/HHT_test.i
- modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i
- modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_outer_tip.i
- modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i
- modules/combined/examples/phase_field-mechanics/Conserved.i
- modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i
- modules/tensor_mechanics/test/tests/jacobian/cto14.i
- modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform3.i
- modules/tensor_mechanics/test/tests/visco/gen_maxwell_driving.i
- modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD_2.i
- modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_3D_tm.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp_linesearch.i
- modules/tensor_mechanics/test/tests/multi/four_surface14.i
- modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform5.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard2.i
- modules/tensor_mechanics/test/tests/action/two_block_new.i
- modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard_cubic.i
- modules/porous_flow/examples/tutorial/11.i
- modules/tensor_mechanics/examples/coal_mining/coarse.i
- modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform2.i
- modules/tensor_mechanics/test/tests/multi/three_surface22.i
- modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i
- modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_template2.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_template2.i
- modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp.i
- modules/tensor_mechanics/test/tests/multi/three_surface14.i
- modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i
- modules/tensor_mechanics/test/tests/jacobian/cto18.i
- modules/combined/examples/periodic_strain/global_strain_pfm.i
- modules/tensor_mechanics/test/tests/multi/two_surface05.i
- modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
- modules/tensor_mechanics/test/tests/multi/three_surface07.i
- modules/tensor_mechanics/test/tests/cp_user_object/linesearch.i
- modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
- modules/combined/test/tests/solid_mechanics/hoop_stress/hoop_stress.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform2.i
- modules/tensor_mechanics/test/tests/cp_user_object/orthotropic_rotation_Cijkl.i
- modules/tensor_mechanics/test/tests/multi/special_joint1.i
- modules/combined/test/tests/eigenstrain/variable_finite.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_template2.i
- modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i
- modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template3.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i
- modules/tensor_mechanics/test/tests/multi/three_surface11.i
- modules/combined/test/tests/poro_mechanics/mandel.i
- modules/combined/test/tests/poro_mechanics/borehole_highres.i
- modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_2.i
- modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_tm.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_template2.i
- modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
- modules/tensor_mechanics/test/tests/multi/three_surface10.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinear.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_fileread.i
- modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
- modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
- modules/porous_flow/test/tests/energy_conservation/heat03.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i
- modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_sampler.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i
- modules/tensor_mechanics/test/tests/stress_recovery/patch/patch.i
- modules/tensor_mechanics/test/tests/ad_action/two_block_no_action.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_user_object.i
- modules/tensor_mechanics/test/tests/visco/burgers_creep.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform2.i
- modules/tensor_mechanics/test/tests/cp_user_object/test.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_template1.i
- modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i
- modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard3.i
- modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i
- modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_linesearch.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i
- modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_template2.i
- modules/tensor_mechanics/test/tests/ad_1D_spherical/smallStrain_1DSphere.i
- modules/tensor_mechanics/test/tests/j2_plasticity/hard2.i
- modules/xfem/test/tests/moving_interface/moving_bimaterial.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except1.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i
- modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch_quadratic.i
- modules/tensor_mechanics/test/tests/cp_user_object/exception.i
- modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read.i
- modules/tensor_mechanics/test/tests/interface_stress/multi.i
- modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_small.i
- modules/tensor_mechanics/test/tests/action/no_block.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard3.i
- modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_save_euler.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_template2.i
- modules/tensor_mechanics/test/tests/material_limit_time_step/creep/nafems_test5a_lim.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
- modules/combined/test/tests/inelastic_strain/creep/creep_nl1.i
- modules/tensor_mechanics/test/tests/recompute_radial_return/affine_plasticity.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform1.i
- modules/combined/test/tests/multiphase_mechanics/multiphasestress.i
- modules/tensor_mechanics/test/tests/multi/three_surface13.i
- modules/tensor_mechanics/test/tests/j2_plasticity/small_deform3.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i
- modules/combined/test/tests/cavity_pressure/3d.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform4.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_template2.i
- modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_test.i
- modules/tensor_mechanics/test/tests/multi/three_surface02.i
- modules/combined/test/tests/DiffuseCreep/stress.i
- modules/tensor_mechanics/test/tests/auxkernels/principalstress.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_outer_tip.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform5.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/karthik-eg-1.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_aug.i
- modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_test.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar3.i
- modules/combined/test/tests/beam_eigenstrain_transfer/subapp2_uo_transfer.i
- modules/combined/test/tests/cavity_pressure/multiple_postprocessors.i
- modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_02.i
- modules/tensor_mechanics/test/tests/multi/three_surface12.i
- modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i
- modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
- modules/tensor_mechanics/test/tests/multi/three_surface20.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard1.i
- modules/tensor_mechanics/test/tests/multi/mc_wpt_1.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_mu_0_2_pen.i
- modules/combined/test/tests/poro_mechanics/undrained_oedometer.i
- modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_03.i
- modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template1.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/except2.i
- modules/tensor_mechanics/test/tests/visco/visco_finite_strain.i
- modules/tensor_mechanics/test/tests/visco/visco_small_strain.i
- modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i
- modules/porous_flow/examples/coal_mining/coarse_with_fluid.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
- modules/tensor_mechanics/test/tests/multi/paper3.i
- modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
- modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i
- modules/tensor_mechanics/test/tests/multi/paper5.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_template1.i
- modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_incremental.i
- modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
- modules/combined/test/tests/gravity/gravity_qp_select.i
- modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i
- modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_template1.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_template2.i
- modules/porous_flow/examples/thm_example/2D.i
- modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform1_cosserat.i
- modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_cylinder.i
- modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_4.i
- modules/tensor_mechanics/test/tests/cp_user_object/fileread.i
- modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i
- modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform6.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_mu_0_2_pen.i
- modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_disps.i
- modules/porous_flow/test/tests/thm_rehbinder/fixed_outer_rz.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_template2.i
- modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_read_slip_prop.i
- modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_mu_0_2_pen.i
- modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i
- modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i
- modules/tensor_mechanics/test/tests/mean_cap/small_deform2.i
- modules/tensor_mechanics/test/tests/multi/three_surface04.i
- modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i
- modules/combined/test/tests/reference_residual/group_variables.i
- modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_native.i
- modules/tensor_mechanics/test/tests/ad_action/two_block_new.i
- modules/tensor_mechanics/test/tests/thermal_expansion/multiple_thermal_eigenstrains.i
- modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_template1.i
- modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i
- modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_template1.i
- modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_resid.i
- modules/combined/test/tests/eigenstrain/composite.i
modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_resid.i
# This tests the save_in_disp residual aux-variables for
# ComputeAxisymmetricRZFiniteStrain, which is generated through the use of the
# TensorMechanics MasterAction. The GeneratedMesh is 1x1, rotated via axisym to
# create a cylinder of height 1, radius 1.
#
# PostProcessor force_z plots the force on the top surface of the cylinder.
#
# Displacement of 0.1 is applied to top of cylinder while other surfaces are
# constrained. Plotting force_z vs stress_z will show a slope of 3.14159 (pi),
# consistent with formula for normal stress:
#
# Stress = force / area
#
# where area is A = pi * r^2 for a circle.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
save_in = 'force_r force_z'
[../]
[]
[AuxVariables]
[./stress_r]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_r]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_z]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_z]
order = CONSTANT
family = MONOMIAL
[../]
[./force_r]
order = FIRST
family = LAGRANGE
[../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_r]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_r
execute_on = timestep_end
[../]
[./strain_r]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = strain_r
execute_on = timestep_end
[../]
[./stress_z]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_z
execute_on = timestep_end
[../]
[./strain_z]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = strain_z
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[]
[BCs]
[./no_disp_r_left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_r_right]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.0
[../]
[./no_disp_z_bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 't'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.1
dt = 0.01
[]
[Postprocessors]
[./strainR]
type = ElementAverageValue
variable = strain_r
[../]
[./stressR]
type = ElementAverageValue
variable = stress_r
[../]
[./strainZ]
type = ElementAverageValue
variable = strain_z
[../]
[./stressZ]
type = ElementAverageValue
variable = stress_z
[../]
[./force_r]
type = NodalSum
variable = force_r
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
#csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i
# checking for small deformation
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialRealAux
property = weak_plane_tensile_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = -1.0
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform2.i
# UserObject J2 test
# apply uniform stretch in z direction to give
# trial stress_zz = 7, so sqrt(3*J2) = 7
# with zero Poisson's ratio, this should return to
# stress_zz = 3, stress_xx = 2 = stress_yy
# (note that stress_zz - stress_xx = stress_zz - stress_yy = 1, so sqrt(3*j2) = 1,
# and that the mean stress remains = 7/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_aug.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
tangential_tolerance = 1e-3
formulation = augmented_lagrange
system = constraint
normalize_penalty = true
penalty = 1e8
model = frictionless
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = inner_tip
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_3.i
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = axial_strain
num_points = 21
sort_by = 'y'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardeningRestart2.i
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = LinearStrainHardening_test.e
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_mag]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t/5.0
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_mag]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_mag
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = '1'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 2.4e2
hardening_constant = 1206
relative_tolerance = 1e-25
absolute_tolerance = 1e-5
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 6e-3
end_time = 0.0105
# num_steps = 100
dt = 1.5e-3
[]
[Outputs]
exodus = true
csv = true
[]
[Problem]
restart_file_base = LinearStrainHardeningRestart1_out_cp/0004
[]
modules/tensor_mechanics/test/tests/action/two_block.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
#block = 1
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = right
component = 0
constant = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/lambda_shear_modulus_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 113636
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1.i
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
# This is not a verification test. The boundary conditions are applied such
# that the first step generates only elastic stresses. The second and third
# steps generate plastic deformation and the effective strain should be
# increasing throughout the run.
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./eff_plastic_strain]
type = MaterialRealAux
property = effective_plastic_strain
variable = eff_plastic_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0.0 0.208e-4 0.50e-4 1.00e-4'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 3.0
[] # Executioner
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./pl_strain_xx]
type = ElementAverageValue
variable = plastic_strain_xx
[../]
[./pl_strain_yy]
type = ElementAverageValue
variable = plastic_strain_yy
[../]
[./pl_strain_zz]
type = ElementAverageValue
variable = plastic_strain_zz
[../]
[./eff_plastic_strain]
type = ElementAverageValue
variable = eff_plastic_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[] # Outputs
modules/combined/test/tests/beam_eigenstrain_transfer/subapp1_uo_transfer.i
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = 'axial_strain'
num_points = 21
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
petsc_options = '-mat_superlu_dist_iterrefine -mat_superlu_dist_replacetinypivot'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/ad_cavity_pressure/3d.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform6.i
# apply repeated stretches in z direction, and smaller stretches in the x and y directions
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# The allows yield surface in meridional plane to be mapped out
# Using cap smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.9E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.9E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0
cap_start = 3
cap_rate = 0.8
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto16.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the tip of the tensile yield surface
# This is a very nonlinear test and a delicate test because it perturbs around
# a tip of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '15 1 0.2 1 10 -0.3 -0.3 0.2 8'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto16
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/material_limit_time_step/elas_plas/nafems_nl1_lim.i
#
# Tests material model IsotropicPlasticity with material based time stepper
# Boundary conditions from NAFEMS test NL1
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]#Comment
file = one_elem2.e
[] # Mesh
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_eff]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
[../]
[./plastic_strain_eff]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_eff
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
[../]
[] # AuxKernels
[Functions]
[./appl_dispx]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
y = '0.0 0.25e-4 0.50e-4 0.50e-4 0.50e-4 0.25e-4 0.0 0.0 0.0'
[../]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
y = '0.0 0.0 0.0 0.25e-4 0.50e-4 0.50e-4 0.50e-4 0.25e-4 0.0 '
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = appl_dispx
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
relative_tolerance = 1e-20
absolute_tolerance = 1e-8
max_inelastic_increment = 0.000001
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
time_t = '1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
time_dt = '0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1'
optimal_iterations = 30
iteration_window = 9
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = matl_ts_min
[../]
start_time = 0.0
num_steps = 1000
end_time = 8.0
[] # Executioner
[Postprocessors]
[./matl_ts_min]
type = MaterialTimeStepPostprocessor
[../]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./plas_strain_eff]
type = ElementAverageValue
variable = plastic_strain_eff
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[] # Outputs
modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0 0 0 5e9 5e9 5e9'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e01]
type = ElementL2Error
variable = e01
function = 0.095 #Shear strain check
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/porous_flow/test/tests/mass_conservation/mass04.i
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
# Fluid mass conservation is checked.
#
# Under these conditions
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it comes from preserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
initial_condition = 0.1
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = mass04
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard5.i
# apply repeated stretches in z direction, and smaller stretches along the y direction, and compression along x direction
# Both return to the plane and edge (lode angle = 30deg, ie 010100) are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E6*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 5
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard5
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+6
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i
# Checking evolution tensile strength
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 4
rate = 1E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp_substep.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.01 5 8 0.001 0.01 9 12 0.001 0.01'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
maximum_substep_iteration = 8
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.2
dtmax = 10.0
dtmin = 0.05
end_time = 1
[]
[Outputs]
file_base = crysp_substep_out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i
# Checking solution of hardening
# A single element is stretched by 1E-6 in z direction.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Exp(-1E6*q) Pa
#
# The trial stress is
# trial_stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
#
# Therefore the equations we have to solve are
# 0 = f = stress_zz - 10 Exp(-1E6*q)
# 0 = epp = ga - (20 - stress_zz)/2E7
# 0 = intnl = q - ga
#
# The result is
# q = 0.76803905E-6
# stress_zz = 4.6392191 Pa
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 0
rate = 1E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = 'diffuse gb_relax'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i
# Elastic deformation.
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# should yield stress:
# stress_xz = 8*t
# stress_xy = 6*t
# stress_zz = 2*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = ''
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
csv = true
[]
modules/combined/test/tests/ad_cavity_pressure/multiple_postprocessors.i
#
# Cavity Pressure Test (Volume input as a vector of postprocessors)
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# In this test the internal volume is calculated as the sum of two Postprocessors
# internalVolumeInterior and internalVolumeExterior. This sum equals the value
# reported by the internalVolume postprocessor.
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = 'internalVolumeInterior internalVolumeExterior'
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./internalVolumeInterior]
type = InternalVolume
boundary = '1 2 3 4 5 6'
execute_on = 'initial linear'
[../]
[./internalVolumeExterior]
type = InternalVolume
boundary = '13 14 15 16 17 18'
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface09.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0.0E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 0.0
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# However, this will mean that internal2<0, so SimpleTester2 will be deactivated
# and the algorithm will return to stress_yy=1
# internal1 should be 1.0, and internal2 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface09
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/s. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In standard porous_flow, everything is based on mass, eg the source has
# units kg/s/m^3. This is discussed in the other pp_generation_unconfined
# models. In this test, we use the FullySaturated Kernel and set
# multiply_by_density = false
# meaning the fluid Kernel has units of volume, and the source, s, has units 1/time
#
# The ratios are:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
#
# Finally, note that the volumetric strain has
# consistent_with_displaced_mesh = false
# which is needed when using the FullySaturated version of the Kernels
# in order to generate the above results
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
multiply_by_density = false
coupling_type = HydroMechanical
biot_coefficient = 0.3
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature_qp]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated_volume
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./Pressure]
[./top]
boundary = top
function = 0.3
[../]
[./bottom]
boundary = bottom
function = 0.3
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/initial_stress/gravity.i
# Apply an initial stress that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./weight]
type = ParsedFunction
value = '0.5*z' # initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 weight'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 416666
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_errors.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx] # stress aux variables are defined for output; this is a way to get integration point variables to the output file
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1.
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_x]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
variable = disp_y
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-8
start_time = 0.0
dt = 0.1
dtmin = 0.1 # die instead of cutting the timestep
end_time = 0.5
[]
[Outputs]
file_base = disp_about_axis_errors_out
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 0.3, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 0.3t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 0.3t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 0.3t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./p_does_not_really_diffuse]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_z
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'p'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = p
capillary_pressure = pc
[../]
[./p_eff]
type = PorousFlowEffectiveFluidPressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((min(t/end_t,1)*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*min(t/end_t,1)*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 10000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_wp
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard2.i
# apply uniform stretches in x, y and z directions.
# let friction_angle = 60deg, friction_angle_residual=10deg, friction_angle_rate = 0.5E4
# With cohesion = C, friction_angle = phi, tip_smoother = T, the
# algorithm should return to
# sigma_m = (C*Cos(phi) - T)/Sin(phi)
# Or, when T=C,
# phi = 2*pi*n - 2*arctan(sigma_m/C)
# This allows checking of the relationship for phi
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 1.04719755 # 60deg
value_residual = 0.17453293 # 10deg
rate = 0.5E4
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 10
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-3
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform1.i
# rotate the mesh by 90degrees
# then pull in the z direction - should be no plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0*y+1*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0*y+1*z-y'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform1
[./csv]
type = CSV
[../]
[./exodus]
type = Exodus
[../]
[]
modules/tensor_mechanics/test/tests/generalized_plane_strain/out_of_plane_pressure.i
# Tests for application of out-of-plane pressure in generalized plane strain.
[Mesh]
file = square.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
out_of_plane_pressure = traction_function
factor = 1e5
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./traction_function]
type = PiecewiseLinear
x = '0 2'
y = '0 1'
[../]
[]
[BCs]
[./leftx]
type = DirichletBC
boundary = 4
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-11
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/ad_2D_geometries/3D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 3D geometry.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 3D_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./elastic_strain]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = xzero
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = yzero
value = 0.0
[../]
[./no_disp_z]
type = ADDirichletBC
variable = disp_z
boundary = zzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_x]
type = ADPressure
variable = disp_x
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_y]
type = ADPressure
variable = disp_y
boundary = outer
component = 1
function = '200000*t'
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 2
function = '200000*t'
[../]
[./interior_pressure_x]
type = ADPressure
variable = disp_x
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_y]
type = ADPressure
variable = disp_y
boundary = inner
component = 1
function = '100000*t'
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 2
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/solid_mechanics/hoop_stress/hoop_stress_default_yaxis.i
#
# Hoop stress
#
# This test checks that hoop stress is calculated correctly for the default orientation.
# It calculates the hoop stress for a hoop cenetered at (-25,0,0) with the default vector (0,1,0).
# The hoop has a radius = 20, t = 1.
#
# Hoop stress should be P*r/t -> 1e3*20/1 = 20e3
#
# The output hoop stress is close to this value (nonlinear geometry is on) for all
# elements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = hoop_default_yaxis.e
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e3
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./radial2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./axial2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./hoop2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = HoopStress
variable = hoop2
block = 2
execute_on = timestep_end
[../]
[./radial2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = RadialStress
variable = radial2
block = 2
execute_on = timestep_end
[../]
[./axial2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = AxialStress
variable = axial2
block = 2
execute_on = timestep_end
[../]
[] # AuxKernels
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = '11'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = '200'
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = '13'
value = 0
[../]
[./Pressure]
[./internal_pressure]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
boundary = 1
function = pressure
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1e6
poissons_ratio = 0.35
[../]
[./small_strain]
type = ComputeIncrementalSmallStrain
block = 2
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '201 hypre boomeramg '
line_search = 'none'
l_tol = 1e-8
nl_rel_tol = 1e-12
nl_abs_tol = 1e-14
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 1
end_time = 1.0
[] # Executioner
[Outputs]
exodus = true
file_base = hoop_stress_default_yaxis_out
[] # Outputs
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard1.i
# apply uniform stretches in x, y and z directions.
# let mc_cohesion = 10, mc_cohesion_residual = 2, mc_cohesion_rate =
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (C*Cos(60) - 4)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 2
rate = 1E4
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-4
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-8
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/two_surface01.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in the z directions.
# stress_zz = 1.5
#
# Then only the first SimpleTester should activate, and the final stress
# should have have only nonzero component stress_zz = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface01
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/thermo_mech/ad-youngs_modulus_function_temp.i
# ---------------------------------------------------------------------------
# This test is designed to verify the variable elasticity tensor functionality in the
# ADComputeFiniteStrainElasticStress class with the elasticity_tensor_has_changed flag
# by varying the young's modulus with temperature. A constant strain is applied
# to the mesh in this case, and the stress varies with the changing elastic constants.
#
# Geometry: A single element cube in symmetry boundary conditions and pulled
# at a constant displacement to create a constant strain in the x-direction.
#
# Temperature: The temperature varies from 400K to 700K in this simulation by
# 100K each time step. The temperature is held constant in the last
# timestep to ensure that the elasticity tensor components are constant
# under constant temperature.
#
# Results: Because Poisson's ratio is set to zero, only the stress along the x
# axis is non-zero. The stress changes with temperature.
#
# Temperature(K) strain_{xx}(m/m) Young's Modulus(Pa) stress_{xx}(Pa)
# 400 0.001 10.0e6 1.0e4
# 500 0.001 10.0e6 1.0e4
# 600 0.001 9.94e6 9.94e3
# 700 0.001 9.93e6 9.93e3
#
# The tensor mechanics results align exactly with the analytical results above
# when this test is run with ComputeIncrementalSmallStrain. When the test is
# run with ComputeFiniteStrain, a 0.05% discrepancy between the analytical
# strains and the simulation strain results is observed, and this discrepancy
# is carried over into the calculation of the elastic stress.
#-------------------------------------------------------------------------
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 400
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_function]
type = PiecewiseLinear
x = '1 4'
y = '400 700'
[../]
[]
[Kernels]
[./heat]
type = ADDiffusion
variable = temp
[../]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./u_left_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_back_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./u_pull_right]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[./temp_bc_1]
type = ADFunctionDirichletBC
variable = temp
preset = false
boundary = '1 2 3 4'
function = temperature_function
[../]
[]
[Materials]
[./youngs_modulus]
type = ADPiecewiseLinearInterpolationMaterial
xy_data = '0 10e+6
599.9999 10e+6
600 9.94e+6
99900 10e3'
property = youngs_modulus
variable = temp
[../]
[./elasticity_tensor]
type = ADComputeVariableIsotropicElasticityTensor
youngs_modulus = youngs_modulus
poissons_ratio = 0.0
[../]
[./strain]
type = ADComputeIncrementalSmallStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
end_time = 5
[]
[Postprocessors]
[./elastic_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elastic_stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./temp]
type = AverageNodalVariableValue
variable = temp
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i
# apply repeated stretches to observe cohesion hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 4E4
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/DiffuseCreep/strain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i
# Plastic deformation, tensile failure, with normal=(1,0,0)
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = t
# should yield trial stress:
# stress_xx = 2*t
# Use tensile strength = 1, we should return to stress_xx = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 0
[../]
[]
[AuxVariables]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '0 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = except6
csv = true
[]
modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZQuadratic.i
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'reduced_order_eigenstrain', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# quite different.
#
# Open the reducedOrderRZQuadratic_out_hydro_0001.csv file and plot the hydro variables as
# a function of x.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
second_order = true
[]
[Functions]
[./tempLinear]
type = ParsedFunction
value = '715-5*x'
[../]
[./tempQuadratic]
type = ParsedFunction
vars = 'Tc Te'
vals = '701 700'
value = '(Te-Tc)/4.0*x*x+(Tc-Te)/2.0*x+Te+3.0*(Tc-Te)/4.0'
[../]
[./tempCubic]
type = ParsedFunction
value = '-1.25*x*x*x+11.25*x*x-33.75*x+733.75'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 295.0
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[./thermal_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./thermal_first]
order = FIRST
family = MONOMIAL
[../]
[./thermal_second]
order = SECOND
family = MONOMIAL
[../]
[./reduced_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./reduced_first]
order = FIRST
family = MONOMIAL
[../]
[./reduced_second]
order = SECOND
family = MONOMIAL
[../]
[./temp2]
order = SECOND
family = LAGRANGE
initial_condition = 700
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp2
#eigenstrain_names = thermal_eigenstrain
eigenstrain_names = reduced_order_eigenstrain
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./thermal_constant_aux]
type = RankTwoAux
variable = thermal_constant
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./thermal_first_aux]
type = RankTwoAux
variable = thermal_first
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./thermal_second_aux]
type = RankTwoAux
variable = thermal_second
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_constant_aux]
type = RankTwoAux
variable = reduced_constant
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_first_aux]
type = RankTwoAux
variable = reduced_first
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_second_aux]
type = RankTwoAux
variable = reduced_second
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./temp2]
type = FunctionAux
variable = temp2
function = tempQuadratic
execute_on = timestep_begin
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom #'bottom top'
value = 0.0
[../]
[./temp_right]
type = DirichletBC
variable = temp
boundary = right
value = 700
[../]
[./temp_left]
type = DirichletBC
variable = temp
boundary = left
value = 710
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e8
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp2
stress_free_temperature = 295.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'reduced_order_eigenstrain'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
num_steps = 1
nl_rel_tol = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[VectorPostprocessors]
[./hydro]
type = LineValueSampler
num_points = 50
start_point = '1 0.07e-3 0'
end_point = '3 0.07e-3 0'
sort_by = x
variable = 'temp2 disp_x disp_y hydro_constant hydro_first hydro_second sxx_constant sxx_first sxx_second szz_constant szz_first szz_second thermal_constant thermal_first thermal_second reduced_constant reduced_first reduced_second'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 5Pa
# Since maximum stress which is 2Pa is less than tension cutoff, plastic yeilding shoud not be observed.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 5
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/user_object_Voce_BCC.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 48
slip_sys_file_name = input_slip_sys_bcc48.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 12 0.001 0.1 13 24 0.001 0.1 25 48 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 48
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 48
groups = '0 12 24 48'
group_values = '50 51 52'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_voce
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_voce]
type = CrystalPlasticityStateVarRateComponentVoce
variable_size = 48
crystal_lattice_type = 'BCC'
groups = '0 12 24 48'
h0_group_values = '1 2 3'
tau0_group_values = '50 51 52'
tauSat_group_values = '70 81 92'
hardeningExponent_group_values = '1 2 3'
selfHardening_group_values ='4 5 6'
coplanarHardening_group_values='7 8 9'
GroupGroup_Hardening_group_values = '10 20 30
40 50 60
70 80 90'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_voce'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_template2.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 5e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 17
nz = 0
xmax = 1000
ymax = 866
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 3
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./hex_ic]
type = PolycrystalHex
coloring_algorithm = bt
grain_num = 36
x_offset = 0.0
output_adjacency_matrix = true
[../]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_test2_2D.tex
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = hex_ic
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
variable = 'gr0 gr1 gr2'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
block = 0
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[./bnd_length]
type = GrainBoundaryArea
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 40
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = elastic_patch.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./firstinv]
order = CONSTANT
family = MONOMIAL
[../]
[./secondinv]
order = CONSTANT
family = MONOMIAL
[../]
[./thirdinv]
order = CONSTANT
family = MONOMIAL
[../]
[./maxprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./midprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./minprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./direction]
order = CONSTANT
family = MONOMIAL
[../]
[./max_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./sint]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = hydrostatic
[../]
[./fi]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = firstinv
scalar_type = firstinvariant
[../]
[./si]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = secondinv
scalar_type = secondinvariant
[../]
[./ti]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = thirdinv
scalar_type = thirdinvariant
[../]
[./maxprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = maxprincipal
scalar_type = MaxPRiNCIpAl
[../]
[./midprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = midprincipal
scalar_type = MidPRiNCIpAl
[../]
[./minprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = minprincipal
scalar_type = MiNPRiNCIpAl
[../]
[./direction]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = direction
scalar_type = direction
direction = '1 1 1'
[../]
[./max_shear]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = max_shear
scalar_type = MaxShear
[../]
[./sint]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = sint
scalar_type = StressIntensity
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
exodus = true
[] # Outputs
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source, s, has units m^3/second/m^3. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/second/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
constant_fluid_bulk_modulus = 3.3333333333
constant_biot_modulus = 10.0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_constM
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/HHT_time_integration/Rayleigh_HHT.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping alpha, beta and gamma are HHT time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old] +
# zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)] +
# alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next three terms on the left involving zeta and
# alpha are evaluated using the StressDivergence Kernel The residual
# due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_automatic_differentiation = true
alpha = 0.11
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface08.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0.5E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 0.5
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# internal1 should be 1.0, and internal2 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface08
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i
# A beam with its ends fully clamped
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 10
nz = 10
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -50
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./gravity_y]
type = Gravity
use_displaced_mesh = false
variable = disp_y
value = -10
[../]
[]
[BCs]
[./zmax_xfixed]
type = DirichletBC
variable = disp_x
boundary = front
value = 0
[../]
[./zmax_yfixed]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./zmax_zfixed]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./zmin_xfixed]
type = DirichletBC
variable = disp_x
boundary = back
value = 0
[../]
[./zmin_yfixed]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./zmin_zfixed]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 2E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.5
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 0
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 1E5
smoothing_tol = 1E5
yield_function_tol = 1E-5
perfect_guess = true
min_step_size = 0.1
[../]
[./density]
type = GenericFunctionMaterial
block = 0
prop_names = density
prop_values = 1E3*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = beam
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i
# This is identical to vol_expansion.i, but uses the PoroMechanics action
#
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./PoroMechanics]
porepressure = p
displacements = 'disp_x disp_y disp_z'
[../]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion_action
exodus = true
[]
modules/combined/test/tests/contact_verification/hertz_cyl/quart_symm_q8/hertz_cyl_qsym_1deg_template1.i
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_qsym_1deg_q8.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_zero]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.0 0.0'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 4
paired_boundary = 3
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./disp_x281]
type = NodalVariableValue
nodeid = 280
variable = disp_x
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = disp_ramp_vert
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
start_time = 0.0
dt = 0.1
dtmin = 0.1
num_steps = 10
end_time = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '4'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x281 top_react_x top_react_y x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 3
slave = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+11
[../]
[]
modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i
[Mesh]
displacements = 'disp_x disp_y disp_z'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[node]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = node
[]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = disp_x
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = disp_y
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = disp_y
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = disp_z
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./L2norm]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = Hydrostatic
[../]
[./L2norm]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = L2norm
scalar_type = L2norm
[../]
[./peeq]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
variable = peeq
scalar_type = EffectiveStrain
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
block = 'ANY_BLOCK_ID 0'
[../]
[./hydrostatic]
type = ElementAverageValue
variable = hydrostatic
block = 'ANY_BLOCK_ID 0'
[../]
[./L2norm]
type = ElementAverageValue
variable = L2norm
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 100
slope = 10
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_linear_harden
exodus = true
csv = false
[]
modules/tensor_mechanics/test/tests/multi/paper1.i
# This runs the models mentioned in the first example of the Multi-Surface paper
#
# Plasticity models:
# SimpleTester with a = 1 and b = 0 and strength = 1E9 (only does elasticity)
# SimpleTester with a = 1 and b = 0 and strength = 0
# SimpleTester with a = 1 and b = 0 and strength = 1E-3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 125
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = console
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = console
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = console
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1E9
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 0
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1E-3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
active = 'elasticity_tensor strain single'
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./elastic_model]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple0'
[../]
[./single]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple1'
[../]
[./double]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'simple1 simple2'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper1
exodus = false
csv = true
[]
modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard4.i
# apply repeated stretches in x direction, and smaller stretches along the y and z directions,
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# Both return to the edge (at lode_angle=-30deg, ie 000101) and tip are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.05E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E5*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 2
type = Transient
[]
[Outputs]
file_base = planar_hard4
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_template2.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/1D_spherical/finiteStrain_1DSphere_hollow.i
# This simulation models the mechanics solution for a hollow sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner radius of the sphere, r = 4mm, is pinned to prevent
# rigid body movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{P(1 + v)(1 - 2v)b^3}{E(b^3(1 + v) + 2a^3(1-2v))} * (\frac{a^3}{r^2} - r)
#
# where P is the applied pressure, b is the outer radius, a is the inner radius,
# v is Poisson's ration, E is Young's Modulus, and r is the radial position.
#
# The radial stress is given by:
#
# S(r) = \frac{Pb^3}{b^3(1 + v) + 2a^3(1 - 2v)} * (\frac{2a^3}{r^3}(2v - 1) - (1 + v))
#
# The test assumes an inner radius of 4mm, and outer radius of 9 mm,
# zero displacement at r = 4mm, and an applied outer pressure of 2MPa.
# The radial stress is largest in the inner most element and, at an assumed
# mid element coordinate of 4.5mm, is equal to -2.545MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 4
xmax = 9
nx = 5
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = DirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = Pressure
boundary = right
variable = disp_r
component = 0
factor = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except3.i
# checking for exception error messages on the edge smoothing
# here edge_smoother=5deg, which means the friction_angle must be <= 35.747
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 36
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 5
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface05.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1E-6m in y direction and 1.1E-6 in z direction.
# trial stress_yy = 1 and stress_zz = 1.1
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# However, this will mean internal0 < 0, so SimpleTester0 will be deactivated and
# then the algorithm will return to
# stress_yy=0.7, stress_zz=0.8
# internal0 should be 0.0, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface05
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_edge.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = inner_edge
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_inner_edge
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/stress_recovery/patch/patch_finite_stress.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[stress_xx]
order = FIRST
family = MONOMIAL
[]
[stress_yy]
order = FIRST
family = MONOMIAL
[]
[stress_xx_recovered]
order = FIRST
family = LAGRANGE
[]
[stress_yy_recovered]
order = FIRST
family = LAGRANGE
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[stress_xx_recovered]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_recovered
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy_recovered]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy_recovered
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[]
[Materials]
[strain]
type = ComputeFiniteStrain
[]
[Cijkl]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2.1e+5
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[BCs]
[top_xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'top'
function = 0
[]
[top_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = t
[]
[bottom_xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'bottom'
function = 0
[]
[bottom_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom'
function = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = default
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 30
dt = 0.01
dtmin = 1e-11
start_time = 0
end_time = 0.05
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform3.i
# apply nonuniform compression in x, y and z directions such that
# trial_stress(0, 0) = 2
# trial_stress(1, 1) = -8
# trial_stress(2, 2) = -10
# With compressive_strength = -1, the algorithm should return to trace(stress) = -1, or
# stress(0, 0) = 7
# stress(1, 1) = -3
# stress(2, 2) = -5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-4E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+6
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/visco/gen_kv_creep.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_kv_creep_out
exodus = true
[]
modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide.i
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_out
exodus = true
csv = true
[]
modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i
# This test is for a matrix-inclusion composite materials
# The global stress is determined by switching the stress based on level set values
# The inclusion geometry is marked by a level set function
# The matrix and inclusion are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'sqrt((y-2.5)*(y-2.5) + (x-2.5)*(x-2.5)) - 1.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = '0.03*t'
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.5
end_time = 1.0
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i
[Mesh]
displacements = 'x_disp y_disp z_disp'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = cnode
[]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
use_displaced_mesh = true
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block=0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = x_disp
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = y_disp
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = z_disp
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = y_disp
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = z_disp
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./pe11]
order = CONSTANT
family = MONOMIAL
[../]
[./pe22]
order = CONSTANT
family = MONOMIAL
[../]
[./pe33]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./pe11]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe11
index_i = 0
index_j = 0
[../]
[./pe22]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe22
index_i = 1
index_j = 1
[../]
[./pe33]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe33
index_i = 2
index_j = 2
[../]
[./eqv_plastic_strain]
type = MaterialRealAux
property = eqv_plastic_strain
variable = peeq
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full=true
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmax=1
dtmin=0.1
end_time=1.0
nl_abs_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface21.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 2.0 and stress_zz = 2.0
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester1 or SimpleTester0 will be rutned off (they are equi-distant).
# The algorithm will return to one corner point, but there will be negative plastic multipliers
# so the other SimpleTester0 or SimpleTester1 will turn off, and the algorithm will return to
# stress_yy=0.75 and stress_zz=0.75
# internal2=1.25
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface21
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/ad_1D_spherical/finiteStrain_1DSphere_hollow.i
# This simulation models the mechanics solution for a hollow sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner radius of the sphere, r = 4mm, is pinned to prevent
# rigid body movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{P(1 + v)(1 - 2v)b^3}{E(b^3(1 + v) + 2a^3(1-2v))} * (\frac{a^3}{r^2} - r)
#
# where P is the applied pressure, b is the outer radius, a is the inner radius,
# v is Poisson's ration, E is Young's Modulus, and r is the radial position.
#
# The radial stress is given by:
#
# S(r) = \frac{Pb^3}{b^3(1 + v) + 2a^3(1 - 2v)} * (\frac{2a^3}{r^3}(2v - 1) - (1 + v))
#
# The test assumes an inner radius of 4mm, and outer radius of 9 mm,
# zero displacement at r = 4mm, and an applied outer pressure of 2MPa.
# The radial stress is largest in the inner most element and, at an assumed
# mid element coordinate of 4.5mm, is equal to -2.545MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 4
xmax = 9
nx = 5
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = ADDirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = ADPressure
boundary = right
variable = disp_r
component = 0
constant = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform7.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
# THEN apply a nonuniform compression in x, y, and z so that
# trial_stress(0, 0)
# With compressive_strength = -1, decaying to -0.5 at internal parameter 1E-8
# via a Cubic, the algorithm should return to
# trial_stress(0, 0) = -3.1
# trial_stress(1, 1) = -3.1
# trial_stress(2, 2) = 2.9
# the algorithm should return to trace(stress) = -0.5 = compressive_strength
# stress(0, 0) = -2.1667
# stress(1, 1) = -2.1667
# stress(2, 2) = 3.8333
# and internal parameter = 2.0406E-7
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = 'if(t<1.5,-1E-7*x,1E-7*x)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = 'if(t<1.5,3E-7*y,1E-7*y)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'if(t<1.5,5E-7*z,4E-7*z)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = -0.5
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform7
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
base_name = test
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = test_stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = test_fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
base_name = test
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
base_name = test
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
base_name = test
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
base_name = test
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_base
exodus = true
csv = false
[]
modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01.i
# Beam bending. One end is clamped and the other end is subjected to
# a surface traction.
# The joint normal and shear stiffnesses are set very large, so
# that this situation should be identical to the standard (non-Cosserat)
# isotropic elasticity case.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
xmax = 10
ny = 1
nz = 4
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'bottom top back front left right'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_x wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 1
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E16
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01
csv = true
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedMassTimeDerivative kernels
# Note the use of consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
coupling_type = HydroMechanical
variable = porepressure
[../]
[./flux]
type = PorousFlowFullySaturatedDarcyBase
variable = porepressure
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i
# This is identical to pp_generation_unconfined.i but it uses
# and action instead of explicitly writing all the Kernels out
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./PoroMechanics]
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_action
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/initial_stress/gravity_cosserat.i
# Apply an initial stress that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
# TODO: currently this has no div(moment_stress)
# contriution to the Kernels. This is because
# there is no way in MOOSE of calculating
# moment stresses and applying initial stresses.
# This will become possible after issue #7243 is
# resolved.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./weight]
type = ParsedFunction
value = '0.5*z' # initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
fill_method = symmetric_isotropic
E_ijkl = '0.4 0.4' # young = 1, poisson = 0.25
[../]
[./strain]
type = ComputeCosseratSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 weight'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity_cosserat
exodus = true
[]
modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/j2_plasticity/hard1.i
# UserObject J2 test, with hardening, but with rate=0
# apply uniform compression in x direction to give
# trial stress_xx = -5, so sqrt(3*J2) = 5
# with zero Poisson's ratio, this should return to
# stress_xx = -3, stress_yy = -1 = stress_zz,
# for strength = 2
# (note that stress_xx - stress_yy = stress_xx - stress_zz = -2, so sqrt(3*j2) = 2,
# and that the mean stress remains = -5/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-2.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian_damper/cube_load.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
displacements = 'disp_x disp_y disp_z'
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.025 0.05'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 3
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[]
[Postprocessors]
[./stress_yy_el]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2e5
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Dampers]
[./disp_x_damp]
type = ElementJacobianDamper
max_increment = 0.002
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 2
dt = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_xx] # stress aux variables are defined for output; this is a way to get integration point variables to the output file
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1.
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_x]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[../]
# Because want to keep the rotation fixed about the z axis,
# do not apply a DisplacementAboutAxis BC on the disp_z
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-8
start_time = 0.0
dt = 0.1
dtmin = 0.1 # die instead of cutting the timestep
end_time = 0.5
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = disp_about_axis_axial_motion_out
exodus = true
[]
modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i
#
# Rotation Test
#
# This test is designed to compute a uniaxial stress and then follow that
# stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the x and y directions are prescribed. Poisson's
# ratio is zero.
#
[Mesh]
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./x_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[]
[BCs]
# BCs
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Outputs
modules/tensor_mechanics/test/tests/cp_user_object/user_object.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap/small_deform1.i
# apply uniform stretch in x, y and z directions.
# With a = 1 and strength = 2, the algorithm should return to sigma_m = 2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = 1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/cavity_pressure/initial_temperature.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform1.i
# UserObject J2 test
# apply uniform stretch in x, y and z directions.
# no plasticity should be observed
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/poro/vol_expansion.i
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
modules/combined/test/tests/generalized_plane_strain_tm_contact/out_of_plane_pressure.i
# Tests for application of out-of-plane pressure in generalized plane strain.
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./saved_zz]
order = FIRST
family = SCALAR
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
out_of_plane_pressure = traction_function
factor = 1e5
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxScalarKernels]
[./gps_ref_res]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_zz
generalized_plane_strain = gps_GeneralizedPlaneStrainUserObject
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./traction_function]
type = PiecewiseLinear
x = '0 2'
y = '0 1'
[../]
[]
[BCs]
[./leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-11
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_template2.i
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/1D_spherical/smallStrain_1DSphere.i
# This simulation models the mechanics solution for a solid sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner center of the sphere, r = 0, is pinned to prevent
# movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{- P * (1 - 2 * v) * r}{E}
#
# where P is the applied pressure, v is Poisson's ration, E is Young's Modulus,
# and r is the radial position.
#
# The test assumes a radius of 4, zero displacement at r = 0mm, and an applied
# outer pressure of 1MPa. Under these conditions in a solid sphere, the radial
# stress is constant and has a value of -1 MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 4
nx = 4
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
save_in = residual_r
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./residual_r]
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./residual_r]
type = NodalSum
variable = residual_r
boundary = right
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = DirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = Pressure
boundary = right
variable = disp_r
component = 0
factor = 1
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform1.i
# rotate the mesh by 90degrees
# then pull in the z direction - should be no plasticity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0*y+1*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0*y+1*z-y'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1*y+0*z-z+if(t>0,0.5-y,0)' # note that this uses original nodal values of (x,y,z)
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0.5
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
debug_fspb = crash
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform1
[./csv]
type = CSV
[../]
[./exodus]
type = Exodus
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-9
nl_rel_tol = 1E-11
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/special_rock1.i
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
use_custom_returnMap = false
yield_function_tolerance = 1.0E+2 # Note larger value
shift = 1.0E+2 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./mc_smooth]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E+2 # Note larger value
shift = 1.0E+2 # Note larger value
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
use_custom_cto = false
[../]
[./tensile_smooth]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5 # Note larger value, to match the larger yield_function_tolerances
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = special_rock1
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial2_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation.i
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 13
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Functions]
[./porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_max_it -snes_stol'
petsc_options_value = 'bcgs bjacobi 10000 1E-11'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_squares.i
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = 1
eigenstrain_names = eigenstrain
[../]
[./strain2]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = 2
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read_3d.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
nx = 30
ny = 30
nz = 30
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'input_file.txt'
nprop = 4
read_type = grain
ngrain = 4
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 2
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_grain_read_3d_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensileN
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
normal_vector = '0 0 1'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1N
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar1.i
# apply uniform stretch in x, y and z directions.
# With cohesion = 10, friction_angle = 60deg, the
# algorithm should return to
# sigma_m = 10*Cos(60)/Sin(60) = 5.773503
# using planar surfaces (not smoothed)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.2E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 1.04719756
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = phi
dilation_angle = psi
yield_function_tolerance = 1E-3
shift = 1E-12
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
deactivation_scheme = safe
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = planar1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/eight_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
# SimpleTester6 with a = 1 and b = 2 and strength = 3.1
# SimpleTester7 with a = 2 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./f6]
order = CONSTANT
family = MONOMIAL
[../]
[./f7]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 4
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 5
variable = f5
[../]
[./f6]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 6
variable = f6
[../]
[./f7]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 7
variable = f7
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 4
variable = int4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 5
variable = int5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 6
variable = int6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 7
variable = int7
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = f4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = f5
[../]
[./f6]
type = PointValue
point = '0 0 0'
variable = f6
[../]
[./f7]
type = PointValue
point = '0 0 0'
variable = f7
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[./int4]
type = PointValue
point = '0 0 0'
variable = int4
[../]
[./int5]
type = PointValue
point = '0 0 0'
variable = int5
[../]
[./int6]
type = PointValue
point = '0 0 0'
variable = int6
[../]
[./int7]
type = PointValue
point = '0 0 0'
variable = int7
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple6]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 2
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple7]
type = TensorMechanicsPlasticSimpleTester
a = 2
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5 simple6 simple7'
deactivation_scheme = optimized_to_safe
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = eight_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/stress_recovery/stress_concentration/stress_concentration.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = FileMesh
file = geo.msh
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx_recovered]
[]
[stress_yy_recovered]
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[stress_xx_recovered]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_recovered
patch_polynomial_order = SECOND
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy_recovered]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy_recovered
patch_polynomial_order = SECOND
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[]
[Materials]
[strain]
type = ComputeSmallStrain
[]
[Cijkl]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2.1e+5
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[BCs]
[top_xdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = 0
[]
[top_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = 0.01
[]
[bottom_xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'bottom'
function = 0
[]
[bottom_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom'
function = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = default
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
nl_rel_tol = 1e-14
l_max_its = 100
nl_max_its = 30
[]
[Outputs]
interval = 1
exodus = true
print_linear_residuals = false
[]
modules/tensor_mechanics/test/tests/multi/two_surface02.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in the y z directions.
# trial stress_zz = 1.5 and stress_yy = 1.5
#
# Then both SimpleTesters should activate, and the final stress
# should have have stress_zz = 1 = stress_yy (ie, the "corner" point)
# the plastic strain for SimpleTester1 should be zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface02
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/examples/periodic_strain/global_strain_pfm_3D.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
file_base = "3D_QStatic_1_Ramped_Displacement_out"
exodus = true
csv = true
perf_graph = true
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_inner_edge.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = inner_edge
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_inner_edge
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_elem_read.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'input_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 4
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 1
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_elem_read_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_template2.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1_cycle.i
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
#
# This is not a verification test. The boundary conditions are applied such
# that the first step generates only elastic stresses. The rest of the load
# steps generate cycles of tension and compression in the axial (i.e., y-axis)
# direction. The axial stresses and strains also cycle, however the effective
# plastic strain increases in value throughout the analysis.
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./eff_plastic_strain]
type = MaterialRealAux
property = effective_plastic_strain
variable = eff_plastic_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0'
y = '0.0 0.208e-4 0.50e-4 1.00e-4 0.784e-4 0.50e-4 0.0 0.216e-4 0.5e-4 1.0e-4 0.785e-4 0.50e-4 0.0'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
relative_tolerance = 1e-20
absolute_tolerance = 1e-8
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 12.0
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./pl_strain_xx]
type = ElementAverageValue
variable = plastic_strain_xx
[../]
[./pl_strain_yy]
type = ElementAverageValue
variable = plastic_strain_yy
[../]
[./pl_strain_zz]
type = ElementAverageValue
variable = plastic_strain_zz
[../]
[./eff_plastic_strain]
type = ElementAverageValue
variable = eff_plastic_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# This example uses plasticity, but with inifinitely large yield strength, so it is really elasticity
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./stress_fake_plasticity]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-12
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_fake_plastic_out
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform4.i
# apply repeated stretches in z direction, and smaller stretches in the x and y directions
# so that sigma_II = sigma_III,
# which means that lode angle = -30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.25E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 32*t/Gt = 9.6*t
# strain_yz = 24*t/Gt = 7.2*t
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# Although this has resulted in a non-symmetric stress tensor, the
# moments generated are cancelled by the boundary conditions on
# omega_x and omega_y. (Removing these boundary conditions results
# in a symmetric stress tensor, and some omega!=0 being generated.)
# No moment stresses are generated because omega=0=curvature.
#
# The total strains are given above (strain_xz = 9.6,
# strain_yz = 7.2 and strain_zz = 1.23333).
# Since q returned from 40 to 20, plastic_strain_xz = strain_xz/2 = 4.8
# and plastic_strain_yz = strain_yz/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./bottom_wc_x]
type = DirichletBC
variable = wc_x
boundary = back
value = 0.0
[../]
[./bottom_wc_y]
type = DirichletBC
variable = wc_y
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[./top_wc_x]
type = DirichletBC
variable = wc_x
boundary = front
value = 0.0
[../]
[./top_wc_y]
type = DirichletBC
variable = wc_y
boundary = front
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat3
csv = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_template1.i
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integrator scheme
scheme = "newmark-beta"
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_hht_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/2D_geometries/3D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 3D geometry.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 3D_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_x]
type = DirichletBC
variable = disp_x
boundary = xzero
value = 0.0
[../]
[./no_disp_y]
type = DirichletBC
variable = disp_y
boundary = yzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = zzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_x]
type = Pressure
variable = disp_x
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_y]
type = Pressure
variable = disp_y
boundary = outer
component = 1
function = '200000*t'
[../]
[./exterior_pressure_z]
type = Pressure
variable = disp_z
boundary = outer
component = 2
function = '200000*t'
[../]
[./interior_pressure_x]
type = Pressure
variable = disp_x
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_y]
type = Pressure
variable = disp_y
boundary = inner
component = 1
function = '100000*t'
[../]
[./interior_pressure_z]
type = Pressure
variable = disp_z
boundary = inner
component = 2
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/cp_user_object/patch_recovery.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
displacements = 'ux uy'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[]
[AuxVariables]
[./stress_xx_recovered]
order = FIRST
family = LAGRANGE
[../]
[./stress_yy_recovered]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx_recovered]
type = RankTwoAux
patch_polynomial_order = first
rank_two_tensor = stress
variable = stress_xx_recovered
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./stress_yy_recovered]
type = RankTwoAux
patch_polynomial_order = first
rank_two_tensor = stress
variable = stress_yy_recovered
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uy
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/interface_stress/test.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
xmax = 1
ymax = 1
zmax = 1
xmin = -1
ymin = -1
zmin = -1
[]
[GlobalParams]
order = CONSTANT
family = MONOMIAL
rank_two_tensor = extra_stress
[]
[Functions]
[./sphere]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2); if(r>1,0,1-3*r^2+2*r^3)'
[../]
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[AuxVariables]
[./eta]
[./InitialCondition]
type = FunctionIC
function = sphere
[../]
order = FIRST
family = LAGRANGE
[../]
[./s00]
[../]
[./s01]
[../]
[./s02]
[../]
[./s10]
[../]
[./s11]
[../]
[./s12]
[../]
[./s20]
[../]
[./s21]
[../]
[./s22]
[../]
[]
[AuxKernels]
[./s00]
type = RankTwoAux
variable = s00
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
index_i = 0
index_j = 1
[../]
[./s02]
type = RankTwoAux
variable = s02
index_i = 0
index_j = 2
[../]
[./s10]
type = RankTwoAux
variable = s10
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
index_i = 1
index_j = 1
[../]
[./s12]
type = RankTwoAux
variable = s12
index_i = 1
index_j = 2
[../]
[./s20]
type = RankTwoAux
variable = s20
index_i = 2
index_j = 0
[../]
[./s21]
type = RankTwoAux
variable = s21
index_i = 2
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./interface]
type = ComputeInterfaceStress
v = eta
stress = 3.0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
execute_on = timestep_end
hide = 'dummy eta'
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_soft]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_hard]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq_soft]
type = MaterialRealAux
variable = peeq_soft
property = ep_eqv1
execute_on = timestep_end
block = 0
[../]
[./peeq_hard]
type = MaterialRealAux
variable = peeq_hard
property = ep_eqv2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress1]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv1
[../]
[./flowstress2]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.3
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv2
[../]
[./flowrate1]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress1
[../]
[./flowrate2]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress2
[../]
[./ep_eqv1]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate1
[../]
[./ep_eqv_rate1]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate1
[../]
[./ep_eqv2]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate2
[../]
[./ep_eqv_rate2]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate2
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate1 flowrate2'
strength_user_objects = 'flowstress1 flowstress2'
internal_var_user_objects = 'ep_eqv1 ep_eqv2'
internal_var_rate_user_objects = 'ep_eqv_rate1 ep_eqv_rate2'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_soft]
type = ElementAverageValue
variable = peeq_soft
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_hard]
type = ElementAverageValue
variable = peeq_hard
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_multi
exodus = true
csv = false
[]
modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = strain
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = strain
index_i = 1
index_j = 1
[../]
[./strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./strain]
type = SumTensorIncrements
tensor_name = strain
coupled_tensor_increment_names = gb_relax
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/concentration_dependent_elasticity_tensor/concentration_dependent_elasticity_tensor.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -0.5
ymin = -0.5
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
disp_x = disp_x
disp_y = disp_y
[../]
[]
[AuxVariables]
[./c]
[../]
[./C11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
variable = s11_aux
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./matl_C11]
type = RankFourAux
variable = C11_aux
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
block = 0
c = c
C1_ijkl = '6 6'
C0_ijkl = '1 1'
fill_method1 = symmetric_isotropic
fill_method0 = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 0
disp_x = disp_x
disp_y = disp_y
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.5
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-8
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.2
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/porous_flow/examples/coal_mining/fine_with_fluid.i
#################################################################
#
# NOTE:
# The mesh for this model is too large for the MOOSE repository
# so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = fine.e
[]
[./xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
input = file
[../]
[./xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[../]
[./ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[../]
[./ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[../]
[./zmax]
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
input = ymax
[../]
[./zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsBetweenSubdomainsGenerator
master_block = 3
paired_block = 1
input = excav
new_boundary = roof
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./porepressure]
scaling = 1E-5
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[../]
[]
[AuxVariables]
[./saturation]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_x]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_y]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_z]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[../]
[./darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[../]
[./darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[../]
[./perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[../]
[./perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[../]
[./roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[../]
[./ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[../]
[./ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[./roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[../]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity_for_aux]
type = PorousFlowPorosity
at_nodes = false
fluid = true
mechanical = true
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[../]
[./permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[../]
[./permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[../]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[./min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[../]
[./max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = perm_zz
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
# best if you don't have mumps:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.0025
end_time = 0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_native.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = native
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i
# Wave propogation in 1D using Newmark time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i
# Using Cosserat with large layer thickness, so this should reduce to standard
# Using CappedMohrCoulombCosserat with tensile failure only
# A single unit element is stretched in a complicated way that
# the trial stress is
# 1.51515 0.8 0.666667
# 0.8 -3.74545 -1.85037e-17
# 0.7 -1.66533e-17 -1.27273
# with symmetric part
# 1.51515 0.8 0.6833
# 0.8 -3.74545 -1.85037e-17
# 0.6833 -1.66533e-17 -1.27273
#
# This has eigenvalues
# la = {-3.86844, 1.78368, -1.41827}
# and eigenvectors
#
# {0.15183, -0.987598, -0.03997},
# {-0.966321, -0.139815, -0.216044},
# {-0.207777, -0.0714259, 0.975565}}
#
# The tensile strength is 0.5 and Young=1 and Poisson=0.25,
# with E_0000/E_0011 = nu / (1 - nu) = 0.333333
# Using smoothing_tol=0.01, the return-map algorithm should
# return to stress_I = 0.5, which is a reduction of 1.28368, so
# stress_II = -1.41827 - 1.28368 * 0.33333 = -1.846
# stress_III = -3.86844 - 1.28368 * 0.33333 = -4.296
#
# The final stress symmetric stress is
#
# {0.29, 0.69, 0.51},
# {0.69, -4.19, -0.03},
# {0.51, -0.03, -1.74}
#
# and a final unsymmetric stress of
#
# {0.29, 0.69, 0.49},
# {0.69, -4.19, -0.03},
# {0.52, -0.03, -1.74}
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '3*x-y+z'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3*x-4*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'x-2*z'
[../]
[./wc_x]
type = DirichletBC
variable = wc_x
boundary = 'front back'
value = 0.0
[../]
[./wc_y]
type = DirichletBC
variable = wc_y
boundary = 'front back'
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_I]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_II]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_III]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_I]
type = RankTwoScalarAux
scalar_type = MaxPrincipal
rank_two_tensor = stress
variable = stress_I
selected_qp = 0
[../]
[./stress_II]
type = RankTwoScalarAux
scalar_type = MidPrincipal
rank_two_tensor = stress
variable = stress_II
selected_qp = 0
[../]
[./stress_III]
type = RankTwoScalarAux
scalar_type = MinPrincipal
rank_two_tensor = stress
variable = stress_III
selected_qp = 0
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = stress_I
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = stress_II
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = stress_III
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1.0
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./tensile]
type = CappedMohrCoulombCosseratStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.001
yield_function_tol = 1.0E-12
host_youngs_modulus = 1.0
host_poissons_ratio = 0.25
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
nl_abs_tol = 1E-10
type = Transient
[]
[Outputs]
file_base = small_deform9_cosserat
csv = true
[]
modules/tensor_mechanics/examples/coal_mining/fine.i
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/fine.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '100.0 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '100.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5
end_time = 100.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i
# UserObject Orthotropic test, with power rule hardening with rate 1e1.
# Linear strain is applied in the x direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e1
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.1
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = .25
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = false
csv = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform1_uo.i
# apply uniform stretch in x, y and z directions.
# With cohesion = 10, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (10*Cos(60) - 4)/Sin(60) = 1.1547
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1_uo
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardeningRestart1.i
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = LinearStrainHardening_test.e
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_mag]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t/5.0
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_mag]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_mag
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = '1'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 2.4e2
hardening_constant = 1206
relative_tolerance = 1e-25
absolute_tolerance = 1e-5
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.0105
num_steps = 4
dt = 1.5e-3
[]
[Outputs]
exodus = true
csv = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]
modules/xfem/test/tests/crack_tip_enrichment/penny_crack_3d.i
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_tip_enrichment = true
crack_front_definition = crack_front
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y enrich1_z enrich2_z enrich3_z enrich4_z'
displacements = 'disp_x disp_y disp_z'
cut_off_boundary = all
cut_off_radius = 0.3
[]
[UserObjects]
[./circle_cut_uo]
type = CircleCutUserObject
cut_data = '0 0 0
0.5 0 0
0 0.5 0'
[../]
[./crack_front]
type = CrackFrontDefinition
crack_direction_method = CurvedCrackFront
crack_front_points = '0.500000000000000 0 0
0.000000000000000 0.500000000000000 0
-0.500000000000000 0.000000000000000 0
-0.000000000000000 -0.500000000000000 0'
[../]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 3
xmin = -1.0
xmax = 1.0
ymin = -1.0
ymax = 1.0
zmin = -0.75
zmax = 0.75
elem_type = HEX8
[]
[./all_node]
type = BoundingBoxNodeSetGenerator
input = gen
new_boundary = 'all'
top_right = '1 1 1'
bottom_left = '-1 -1 -1'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = false
volumetric_locking_correction = false
[../]
[]
[BCs]
[./top_z]
type = Pressure
variable = disp_z
boundary = front
component = 2
factor = -1
[../]
[./bottom_x]
type = DirichletBC
boundary = back
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = back
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = back
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeCrackTipEnrichmentSmallStrain
displacements = 'disp_x disp_y disp_z'
crack_front_definition = crack_front
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y enrich1_z enrich2_z enrich3_z enrich4_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
[./Quadrature]
type = GAUSS
order = SECOND
[../]
# controls for linear iterations
l_max_its = 10
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD.i
# Test that models bending of a cantilever beam using shell elements
# A cantilever beam of length 10 m (in Y direction) and cross-section
# 1 m x 0.1 m is modeled using 4 shell elements placed along the length
# (Figure 6a from Dvorkin and Bathe, 1984). All displacements and
# X rotations are fixed on the bottom boundary. E = 2100000 and v = 0.0.
# A load of 0.5 N (in the Z direction) is applied at each node on the top
# boundary resulting in a total load of 1 N.
# The analytical solution for displacement at tip using small strain/rotations # is PL^3/3EI + PL/AG = 1.90485714 m
# The FEM solution using 4 shell elements is 1.875095 m with a relative error
# of 1.5%.
# Similarly, the analytical solution for slope at tip is PL^2/2EI = 0.285714286
# The FEM solution is 0.2857143 and the relative error is 5e-6%.
# The stress_yy for the four elements at z = -0.57735 * (t/2) (first qp below mid-surface of shell) are:
# 3031.089 Pa, 2165.064 Pa, 1299.038 Pa and 433.0127 Pa.
# Note the above values are the average stresses in each element.
# Analytically, stress_yy decreases linearly from y = 0 to y = 10 m.
# The maximum value of stress_yy at y = 0 is Mz/I = PL * 0.57735*(t/2)/I = 3464.1 Pa
# Therefore, the analytical value of stress at z = -0.57735 * (t/2) at the mid-point
# of the four elements are:
# 3031.0875 Pa, 2165.0625 Pa, 1299.0375 Pa ,433.0125 Pa
# The relative error in stress_yy is in the order of 5e-5%.
# The stress_yz at z = -0.57735 * (t/2) at all four elements from the simulation is 10 Pa.
# The analytical solution for the shear stress is: V/2/I *((t^2)/4 - z^2), where the shear force (V)
# is 1 N at any y along the length of the beam. Therefore, the analytical shear stress at
# z = -0.57735 * (t/2) is 10 Pa at any location along the length of the beam.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_z
boundary = 'top'
rate = 0.5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 5e-4
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 10.0 0.0'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 10.0 0.0'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface15.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 3.0 and stress_zz = 3
#
# A complicated return will follow, with various contraints being
# deactivated, kuhn-tucker failing, line-searching, etc, but
# the result should be
# stress_yy=1=stress_zz, and internal0=2 internal1=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface15
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i
# In this example, an initial stress is applied that
# is inadmissible, and the return-map algorithm must be
# used to return to the yield surface before any other
# computations can be carried out.
# In this case, the return-map algorithm must subdivide
# the initial stress, otherwise it does not converge.
# This test is testing that subdivision process.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = 'back'
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = 'back'
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front'
function = '2*t-1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front'
function = 't-1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = 't-1'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
outputs = console
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4.0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./pt]
type = TensorMechanicsPlasticTensile
tensile_strength = str
yield_function_tolerance = 1E-3
tensile_tip_smoother = 0.05
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '8E6 4E6 -18E6 4E6 -40E6 -2E6 -18E6 -2E6 -34E6'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-9
plastic_models = 'pt mc'
deactivation_scheme = safe
max_NR_iterations = 100
min_stepsize = 0.1
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = mc_tensile
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/lambda_shear_modulus_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = ADDirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 113636
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/six_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
# SimpleTester4 with a = 1 and b = 0 and strength = 1.1
# SimpleTester5 with a = 1 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./f4]
order = CONSTANT
family = MONOMIAL
[../]
[./f5]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./f4]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 4
variable = f4
[../]
[./f5]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 5
variable = f5
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 4
variable = int4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 5
variable = int5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = f4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = f5
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[./int4]
type = PointValue
point = '0 0 0'
variable = int4
[../]
[./int5]
type = PointValue
point = '0 0 0'
variable = int5
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple4]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple5]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3 simple4 simple5'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = six_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[Mesh]
# Comment
# Mesh
file = patch_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[]
[BCs]
# BCs
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2 3 4 5 6 7'
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = '1 2 3 4 5 6 7'
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
petsc_options_iname = -pc_type
petsc_options_value = lu
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Output
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i
# Checking internal-parameter evolution
# A single element is stretched by 1E-6*t in z directions.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Pa
#
# There are two time steps.
# In the first
# trial stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
# so this returns to stress_zz = 10 Pa, and half of the deformation
# goes to plastic strain, yielding ep_zz_plastic = 0.5E-6
# In the second
# trial stress_zz = 10 + Youngs Modulus*(Strain increment) = 10 + 2E7*1E-6 = 30 Pa
# so this returns to stress_zz = 10 Pa, and all of the deformation
# goes to plastic strain, yielding ep_zz_plastic increment = 1E-6,
# so total plastic strain_zz = 1.5E-6.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/orthotropic_rotation_Cijkl.i
# This test is designed to test the correct application of the Euler angle
# rotations to the elasticity tensor. The test uses values for the nine C_ijkl
# entries that correspond to the engineering notation placement:
# e.g. C11 = 11e3, c12 = 12e3, c13 = 13e3, c22 = 22e3 ..... c66 = 66e3
#
# A rotation of (0, 90, 0) is applied to the 1x1x1 cube, such that the values of
# c12 and c13 switch, c22 and c33 switch, and c55 and c66 switch. Postprocessors
# are used to verify this switch (made simple with the value convention above)
# and to verify that the unrotated components along the x-axis remain constant.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./lage_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./c11]
order = CONSTANT
family = MONOMIAL
[../]
[./c12]
order = CONSTANT
family = MONOMIAL
[../]
[./c13]
order = CONSTANT
family = MONOMIAL
[../]
[./c22]
order = CONSTANT
family = MONOMIAL
[../]
[./c23]
order = CONSTANT
family = MONOMIAL
[../]
[./c33]
order = CONSTANT
family = MONOMIAL
[../]
[./c44]
order = CONSTANT
family = MONOMIAL
[../]
[./c55]
order = CONSTANT
family = MONOMIAL
[../]
[./c66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxKernels]
[./lage_xx]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./lage_yy]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./pk2_yy]
type = RankTwoAux
variable = pk2_yy
rank_two_tensor = pk2
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./lage_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./c11]
type = RankFourAux
variable = c11
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
execute_on = timestep_end
[../]
[./c12]
type = RankFourAux
variable = c12
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c13]
type = RankFourAux
variable = c13
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c22]
type = RankFourAux
variable = c22
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c23]
type = RankFourAux
variable = c23
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c33]
type = RankFourAux
variable = c33
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c44]
type = RankFourAux
variable = c44
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
execute_on = timestep_end
[../]
[./c55]
type = RankFourAux
variable = c55
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 0
index_k = 2
index_l = 0
execute_on = timestep_end
[../]
[./c66]
type = RankFourAux
variable = c66
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8e3 5 8 60.8e3 9 12 60.8e3'
tan_mod_type = exact
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '11e3 12e3 13e3 22e3 23e3 33e3 44e3 55e3 66e3'
fill_method = symmetric9
euler_angle_1 = 0.0
euler_angle_2 = 90.0
euler_angle_3 = 0.0
[../]
[]
[Postprocessors]
[./lage_xx]
type = ElementAverageValue
variable = lage_xx
[../]
[./pk2_yy]
type = ElementAverageValue
variable = pk2_yy
[../]
[./lage_yy]
type = ElementAverageValue
variable = lage_yy
[../]
[./lage_zz]
type = ElementAverageValue
variable = lage_zz
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./c11]
type = ElementAverageValue
variable = c11
[../]
[./c12]
type = ElementAverageValue
variable = c12
[../]
[./c13]
type = ElementAverageValue
variable = c13
[../]
[./c22]
type = ElementAverageValue
variable = c22
[../]
[./c23]
type = ElementAverageValue
variable = c23
[../]
[./c33]
type = ElementAverageValue
variable = c33
[../]
[./c44]
type = ElementAverageValue
variable = c44
[../]
[./c55]
type = ElementAverageValue
variable = c55
[../]
[./c66]
type = ElementAverageValue
variable = c66
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-3
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 1 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
dtmax = 0.1
dtmin = 1.0e-3
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernls are only for checking output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integration scheme
scheme = 'newmark-beta'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'hht_test_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_inner_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = inner_tip
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_inner_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/energy_conservation/heat04.i
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[../]
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
[../]
[./temp]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[./poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[../]
[./heat_source]
type = BodyForce
function = 1
variable = temp
[../]
[]
[Functions]
[./err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[../]
[./err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
temperature_unit = Kelvin
fp = the_simple_fluid
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[../]
[./porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[../]
[./err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = 0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = 0.0244*t.
#
# With large cohesion, but tensile strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = 0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = 0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0.024449878
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat1
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface00.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1E-6m in y direction and 1E-6 in z direction.
# trial stress_yy = 1 and stress_zz = 1
#
# Then SimpleTester2 should activate and the algorithm will return to
# stress_yy = 0.75, stress_zz = 0.75
# internal2 should be 0.25
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface00
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/eigenstrain/variable.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./eigen_strain00]
type = RankTwoAux
variable = eigen_strain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.5*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.01
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-50
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except4.i
# checking for exception error messages on the edge smoothing
# here edge_smoother=5deg, which means the friction_angle must be <= 35.747
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0.52359878 # 30deg
value_residual = 0.62831853 # 36deg
rate = 3000.0
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 5
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template3.i
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x639]
type = NodalVariableValue
nodeid = 638
variable = disp_x
[../]
[./disp_y639]
type = NodalVariableValue
nodeid = 638
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 2.0
l_tol = 5e-4
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x639 disp_y639 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 2
slave = 3
model = coulomb
friction_coefficient = 0.0
system = constraint
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
master = '2'
slave = '3'
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 0'
ep_plastic_tolerance = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = ADDirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/action/two_block_base_name.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
# base_name can be specified inside or outside a block
base_name = 'block1'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
base_name = 'block2'
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
block = 1
rank_two_tensor = block1_stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
block = 2
rank_two_tensor = block2_total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor_1]
type = ComputeIsotropicElasticityTensor
block = 1
base_name = block1
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./elasticity_tensor_2]
type = ComputeIsotropicElasticityTensor
block = 2
base_name = block2
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
base_name = block1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
base_name = block2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_template1.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_template1.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/combined/test/tests/power_law_hardening/PowerLawHardening.i
# This is a test of the isotropic power law hardening constitutive model.
# In this problem, a single Hex 8 element is fixed at the bottom and pulled at the top
# at a constant rate of 0.1.
# Before yield, stress = strain (=0.1*t) as youngs modulus is 1.0.
# The yield stress for this problem is 0.25 ( as strength coefficient is 0.5 and strain rate exponent is 0.5).
# Therefore, the material should start yielding at t = 2.5 seconds and then follow stress = K *pow(strain,n) or
# stress ~ 0.5*pow(0.1*t,0.5).
#
# This tensor mechanics version of the power law hardening plasticity model matches
# the solid mechanics version for this toy problem under exodiff limits
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[AuxVariables]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t*(0.1)
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
generate_output = 'stress_yy'
[]
[]
[AuxKernels]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./power_law_hardening]
type = IsotropicPowerLawHardeningStressUpdate
strength_coefficient = 0.5 #K
strain_hardening_exponent = 0.5 #n
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_hardening'
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 5.0
dt = 0.25
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = total_strain_yy
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/combined/test/tests/contact_verification/hertz_cyl/quart_symm_q4/hertz_cyl_qsym_1deg_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_qsym_1deg_q4.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_zero]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.0 0.0'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 4
paired_boundary = 3
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./disp_x281]
type = NodalVariableValue
nodeid = 280
variable = disp_x
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = disp_ramp_vert
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 50
nl_max_its = 100
start_time = 0.0
dt = 0.1
dtmin = 0.1
num_steps = 10
end_time = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '4'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x281 top_react_x top_react_y x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 3
slave = 4
system = constraint
model = glued
formulation = kinematic
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Rayleigh_damping/Newmark_time_integration/Rayleigh_Newmark.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional
# rayleigh damping beta and gamma are Newmark time integration
# parameters The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial
# force kernel The next two terms on the left involving zeta ise
# evaluated using the StressDivergence Kernel The residual due to
# Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = true
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see weak-plane parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = mc
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/substep.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 0
stol = 1e-2
tan_mod_type = exact
maximum_substep_iteration = 10
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss]
type = ElementAverageValue
variable = gss
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 30.0
dtmin = 0.5
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
gnuplot = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push.i
# A column of elements has its bottom pulled down, and then pushed up again.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = 'if(t>1,-2.0+t,-t)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 2E6
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E8
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 6.4e9
shear_modulus = 6.4e9 # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 10
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-2
perfect_guess = false
min_step_size = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 3.0
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_push
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/visco/gen_kv_driving.i
# Represents a unique Maxwell module with E = 10GPa and eta = 10 days with an imposed eigenstrain alpha = 0.001.
# The behavior is set up so that the creep strain is driven by both the elastic stress and the internal
# stress induced by the eigenstrain (E * alpha).
#
# In this test, the specimen is free of external stress (sigma = 0) so the creep deformation only derives from
# the eigenstrain. The total strain to be expected is:
# epsilon = alpha * (1 + t / eta)
# Both the stress and the elastic strain are 0.
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[Materials]
[./eigen]
type = ComputeEigenstrain
eigenstrain_name = eigen_true
eigen_base = '1e-3 1e-3 1e-3 0 0 0'
[../]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = ''
creep_viscosity = '10'
poisson_ratio = 0.2
young_modulus = 10e9
driving_eigenstrain = eigen_true
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigen_true'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-11
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_kv_driving_out
exodus = true
csv = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinearConstant.i
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'fred', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# identical since the thermal strain is constant in the elements.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
[]
[Functions]
[./tempBC]
type = ParsedFunction
value = '700+2*t*t'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp
eigenstrain_names = 'fred' #'thermal_eigenstrain'
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./temp_right]
type = FunctionDirichletBC
variable = temp
boundary = right
function = tempBC
[../]
[./temp_left]
type = FunctionDirichletBC
variable = temp
boundary = left
function = tempBC
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp
stress_free_temperature = 700.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'fred'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
dt = 1
num_steps = 10
nl_rel_tol = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_stress_free_temp.i
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
initial_condition = 300.0
[../]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./eigenstrain_yy]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_finite.i
# this test checks the asixymmetric 1D generalized plane strain formulation using finite strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-3'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DFiniteStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
modules/combined/test/tests/eigenstrain/inclusion.i
# This test allows comparison of simulation and analytical solution for a misfitting precipitate
# using ComputeVariableEigenstrain for the simulation and the InclusionProperties material
# for the analytical solution. Increasing mesh resolution will improve agreement.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 1.5
ymax = 1.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./fel_an]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = s11_aux
[../]
[./matl_s12]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = s12_aux
[../]
[./matl_s22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = s22_aux
[../]
[./matl_s11_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 0
variable = s11_an
[../]
[./matl_s12_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 1
variable = s12_an
[../]
[./matl_s22_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 1
index_j = 1
variable = s22_an
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./matl_e11_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 0
variable = e11_an
[../]
[./matl_e12_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 1
variable = e12_an
[../]
[./matl_e22_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 1
index_j = 1
variable = e22_an
[../]
[./matl_fel_an]
type = MaterialRealAux
variable = fel_an
property = fel_an_mat
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.005*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 0 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./analytical]
type = InclusionProperties
a = 0.1
b = 0.1
lambda = 1
mu = 1
misfit_strains = '0.005 0.005'
strain_name = strain_an
stress_name = stress_an
energy_name = fel_an_mat
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 30
nl_max_its = 10
nl_rel_tol = 1.0e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.1
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i
# Part of the bottom (minimum z) is pulled down by a Preset displacement
# This causes tensile failure in the elements immediately above.
# Because only the bottom row of elements ever fail, and because these
# fail in the first nonlinear step, Moose correctly converges in
# 1 nonlinear step, despite this problem being inelastic.
# (If the problem had lower cohesion, then the top row would also
# fail, but in the second nonlinear step, and so the simulation
# would require at least two nonlinear steps.)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -15 -105'
top_right = '1 15 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = -1
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 1E60
value_residual = 1E60
internal_limit = 0.01E8
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01E8
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 1E80
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-2
perfect_guess = true
min_step_size = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 1.0
dt = 1.0
type = Transient
[]
[Outputs]
file_base = pull_and_shear_1step
exodus = true
[]
modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_scalar_vector.i
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
subblock_index_provider = test_subblock_index_provider
scalar_out_of_plane_strain = 'scalar_strain_zz1 scalar_strain_zz2'
block = '1 2'
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[UserObjects]
[./test_subblock_index_provider]
type = TestSubblockIndexProvider
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/two_surface04.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 4.0E-6m in y directions and 2.0E-6 in z direction.
# trial stress_zz = 2 and stress_yy = 4
#
# Then both SimpleTesters should activate initially and return to the "corner" point
# (stress_zz = 1 = stress_yy), but then the plastic multiplier for SimpleTester1 will
# be negative, and so it will be deactivated, and the algorithm will return to
# stress_zz = 0, stress_yy = 2
# internal1 should be zero, internal2 should be 2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '4E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface04
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface03.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0.5E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 0.5 and stress_zz = 2.0
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# internal0 should be 1.0, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface03
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface16.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in y direction and 2.1E-6 in z direction.
# trial stress_yy = 3.0 and stress_zz = 2.1
#
# A complicated return will follow, with various contraints being
# deactivated, kuhn-tucker failing, line-searching, etc, but
# the result should be
# stress_yy=1=stress_zz, and internal0=1.1 internal1=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface16
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/solid_mechanics/LinearStrainHardening/LinearStrainHardening_test.i
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = LinearStrainHardening_test.e
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_mag]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t/5.0
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_mag]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_mag
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = '1'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 2.4e2
hardening_constant = 1206
relative_tolerance = 1e-25
absolute_tolerance = 1e-05
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.0105
# num_steps = 100
dt = 1.5e-3
[]
[Outputs]
file_base = LinearStrainHardeningRestart2_out
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto15.i
# Jacobian check for nonlinear, multi-surface plasticity
# This returns to the edge of Mohr Coulomb.
# This is a very nonlinear test and a delicate test because it perturbs around
# an edge of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[./int8]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int3
index = 3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int4
index = 4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int5
index = 5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int6
index = 6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int7
index = 7
[../]
[./int8]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int8
index = 8
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_int3]
type = ElementExtremeValue
variable = int3
outputs = console
[../]
[./max_int4]
type = ElementExtremeValue
variable = int4
outputs = console
[../]
[./max_int5]
type = ElementExtremeValue
variable = int5
outputs = console
[../]
[./max_int6]
type = ElementExtremeValue
variable = int6
outputs = console
[../]
[./max_int7]
type = ElementExtremeValue
variable = int7
outputs = console
[../]
[./max_int8]
type = ElementExtremeValue
variable = int8
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E1
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '100.1 0.1 -0.2 0.1 0.9 0 -0.2 0 1.1'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = cto14
exodus = false
csv = true
[]
modules/combined/test/tests/multiphase_mechanics/twophasestress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./eta]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
[../]
[./combined]
type = TwoPhaseStressMaterial
base_A = A
base_B = B
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/thermo_mech/youngs_modulus_function_temp.i
# ---------------------------------------------------------------------------
# This test is designed to verify the variable elasticity tensor functionality in the
# ComputeFiniteStrainElasticStress class with the elasticity_tensor_has_changed flag
# by varying the young's modulus with temperature. A constant strain is applied
# to the mesh in this case, and the stress varies with the changing elastic constants.
#
# Geometry: A single element cube in symmetry boundary conditions and pulled
# at a constant displacement to create a constant strain in the x-direction.
#
# Temperature: The temperature varies from 400K to 700K in this simulation by
# 100K each time step. The temperature is held constant in the last
# timestep to ensure that the elasticity tensor components are constant
# under constant temperature.
#
# Results: Because Poisson's ratio is set to zero, only the stress along the x
# axis is non-zero. The stress changes with temperature.
#
# Temperature(K) strain_{xx}(m/m) Young's Modulus(Pa) stress_{xx}(Pa)
# 400 0.001 10.0e6 1.0e4
# 500 0.001 10.0e6 1.0e4
# 600 0.001 9.94e6 9.94e3
# 700 0.001 9.93e6 9.93e3
#
# The tensor mechanics results align exactly with the analytical results above
# when this test is run with ComputeIncrementalSmallStrain. When the test is
# run with ComputeFiniteStrain, a 0.05% discrepancy between the analytical
# strains and the simulation strain results is observed, and this discrepancy
# is carried over into the calculation of the elastic stress.
#-------------------------------------------------------------------------
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 400
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_function]
type = PiecewiseLinear
x = '1 4'
y = '400 700'
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./u_left_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_back_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./u_pull_right]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[./temp_bc_1]
type = FunctionDirichletBC
variable = temp
preset = false
boundary = '1 2 3 4'
function = temperature_function
[../]
[]
[Materials]
[./youngs_modulus]
type = PiecewiseLinearInterpolationMaterial
xy_data = '0 10e+6
599.9999 10e+6
600 9.94e+6
99900 10e3'
property = youngs_modulus
variable = temp
[../]
[./elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
args = temp
youngs_modulus = youngs_modulus
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
end_time = 5
[]
[Postprocessors]
[./elastic_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elastic_stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./temp]
type = AverageNodalVariableValue
variable = temp
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = out
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/mandel.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true. Therefore the solution is
# a little different than in the paper. This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_template1.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_lode_zero.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = lode_zero
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_lode_zero
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_substep.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
gen_random_stress_flag = false
maximum_substep_iteration = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.5
dtmax = 10.0
dtmin = 0.5
num_steps = 3
[]
[Outputs]
file_base = crysp_substep_out
exodus = true
csv = true
gnuplot = true
[]
modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_test.i
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_lode_zero.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = lode_zero
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_lode_zero
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = NEWTON
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
#line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.5
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform5.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = 0
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/save_euler.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i
# Beam bending. One end is clamped and the other end is subjected to
# a constant surface traction.
# The beam thickness is 1, and the Cosserat layer thickness is 0.5,
# so the beam contains 2 Cosserat layers.
# The joint normal stiffness is set very large and the shear stiffness very small
# so that the situation should be very close to a single beam of thickness
# 0.5.
# The deflection should be described by
# u_z = 2sx/G + 2s(1-nu^2)x^2(3L-x)/(Eh^2)
# wc_y = sx(x-2L)/(2B)
# Here
# s = applied shear stress = -2E-4
# x = coordinate along bar (0<=x<=10)
# G = shear modulus = E/2/(1+nu) = 0.4615
# nu = Poisson = 0.3
# L = length of bar = 10
# E = Young = 1.2
# h = Cosserat layer thickness = 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 80
xmax = 10
ny = 1
nz = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'left'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_x]
[../]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0'
end_point = '10 0 0'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 0.5
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E-6
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01_slippery
csv = true
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2_small_strain.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_small_strain
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/four_surface24.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 2 and strength = 3.1
# SimpleTester3 with a = 2 and b = 1 and strength = 3.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to four_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 2
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 2
b = 1
strength = 3.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3'
deactivation_scheme = 'optimized_to_safe'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = four_surface24
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i
# An unconsolidated-undrained test is performed.
# A sample's boundaries are impermeable. The sample is
# squeezed by a uniform mechanical pressure, and the
# rise in porepressure is observed.
#
# Expect:
# volumetricstrain = -MechanicalPressure/UndrainedBulk
# porepressure = SkemptonCoefficient*MechanicalPressure
# stress_zz = -MechanicalPresure + BiotCoefficient*porepressure
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# Undrained Bulk modulus = 2 + 0.3^2*10 = 2.9
# Skempton coefficient = 0.3*10/2.9 = 1.034483
#
# The mechanical pressure is applied using Neumann BCs,
# since the Neumann BCs are setting stressTOTAL.
#
# MechanicalPressure = 0.1*t (ie, totalstress_zz = total_stress_xx = totalstress_yy = -0.1*t)
#
# Expect:
# disp_z = volumetricstrain/3 = -MechanicalPressure/3/2.9 = -0.1149*0.1*t
# prorepressure = 1.034483*0.1*t
# stress_zz = -0.1*t + 0.3*1.034483*0.1*t = -0.68966*0.1*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./pressure_x]
type = FunctionNeumannBC
variable = disp_x
function = -0.1*t
boundary = 'right'
[../]
[./pressure_y]
type = FunctionNeumannBC
variable = disp_y
function = -0.1*t
boundary = 'top'
[../]
[./pressure_z]
type = FunctionNeumannBC
variable = disp_z
function = -0.1*t
boundary = 'front'
[../]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = unconsolidated_undrained
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_cutback.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
gen_random_stress_flag = true
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1.0
dtmax = 10.0
dtmin = 1e-5
num_steps = 3
[]
[Outputs]
file_base = crysp_cutback_out
exodus = true
csv = true
gnuplot = true
[]
modules/tensor_mechanics/test/tests/ad_action/two_block.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
#block = 1
use_automatic_differentiation = true
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface06.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.1E-6m in y direction and 1.0E-6 in z direction.
# trial stress_yy = 1.1 and stress_zz = 1.0
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# However, this will mean internal1 < 0, so SimpleTester1 will be deactivated and
# then the algorithm will return to
# stress_yy=0.8, stress_zz=0.7
# internal1 should be 0.0, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface06
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/rock1.i
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 10deg
# Tensile with strength = 1MPa
# WeakPlaneShear with cohesion = 1MPa, friction angle = 25deg, dilation angle = 25deg
# WeakPlaneTensile with strength = 0.01MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 1234
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 1234
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./raw_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./raw_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./raw_f2]
type = ElementExtremeValue
variable = f2
outputs = console
[../]
[./raw_f3]
type = ElementExtremeValue
variable = f3
outputs = console
[../]
[./iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./f0]
type = FunctionValuePostprocessor
function = should_be_zero0_fcn
[../]
[./f1]
type = FunctionValuePostprocessor
function = should_be_zero1_fcn
[../]
[./f2]
type = FunctionValuePostprocessor
function = should_be_zero2_fcn
[../]
[./f3]
type = FunctionValuePostprocessor
function = should_be_zero3_fcn
[../]
[]
[Functions]
[./should_be_zero0_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f0'
[../]
[./should_be_zero1_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f1'
[../]
[./should_be_zero2_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f2'
[../]
[./should_be_zero3_fcn]
type = ParsedFunction
value = 'if(a<1E-1,0,a)'
vars = 'a'
vals = 'raw_f3'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.46630766
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.46630766
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 1E5
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 0.01E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1.0E-1
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'mc tensile wps wpt'
deactivation_scheme = 'optimized_to_safe_to_dumb'
max_NR_iterations = 20
min_stepsize = 1E-4
max_stepsize_for_dumb = 1E-3
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = rock1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/jacobian/cto17.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the plane of the tensile yield surface
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 0.5GPa. Lame mu = 1GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.5E3 1E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1 0.1 0.2 0.1 15 -0.3 0.2 -0.3 0'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto17
exodus = false
csv = true
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3 and the
# Biot Modulus is not held fixed. This means that disp_z, porepressure,
# etc are not linear functions of t. Nevertheless, the ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = none
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = none
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/borehole_lowres.i
# Poroelastic response of a borehole.
#
# LOWRES VERSION: this version does not give perfect agreement with the analytical solution
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_lowres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.3
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_lowres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_lowres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_lowres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_lowres_t
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedFullySaturatedMassTimeDerivative kernels
# with multiply_by_density = false, so that this problem becomes linear
# Note the use of consistent_with_displaced_mesh = false in the calculation of volumetric strain
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
multiply_by_density = false
coupling_type = HydroMechanical
variable = porepressure
[../]
[./flux]
type = PorousFlowFullySaturatedDarcyBase
multiply_by_density = false
variable = porepressure
gravity = '0 0 0'
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated_volume
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_3/ring3_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
# petsc_options = '-mat_superlu_dist_iterrefine -mat_superlu_dist_replacetinypivot'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# but leaving wc_x and wc_y unfixed
# yields the following strains:
# strain_xz = 32*t/Gt - wc_y = 9.6*t - wc_y
# strain_zx = wc_y
# strain_yz = 24*t/Gt + wc_x = 7.2*t + wc_x
# strain_zy = - wc_x
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero (assuming
# wc is uniform over the cube).
#
# When wc=0, the nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# This has resulted in a non-symmetric stress tensor, and there is
# zero moment stress, so the system is not in equilibrium. A
# nonzero wc must therefore be generated.
#
# The obvious choice of wc is such that stress_zx = 16 and
# stress_zy = 12, because then the final returned stress will
# be symmetric. This gives
# wc_y = - 48
# wc_x = 36
# At t=1, the nonzero components of stress are
# stress_xx = stress_yy = 3.33333
# stress_xz = 32, stress_zx = 16
# stress_yz = 24, stress_zy = 12
# stress_zz = 10*t
# The moment stress is zero.
#
# The returned stress is
# stress_xx = stress_yy = 0
# stress_xz = stress_zx = 16
# stress_yz = stress_zy = 12
# stress_zz = 0
# The total strains are given above.
# Since q returned from 40 to 20, plastic_strain_xz = 9.6/2 = 4.8
# and plastic_strain_yz = 7.2/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./wc_x]
type = PointValue
point = '0 0 0'
variable = wc_x
[../]
[./wc_y]
type = PointValue
point = '0 0 0'
variable = wc_y
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat4
csv = true
[]
modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_01.i
# apply uniform stretches and observe the stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.310383
# b0110 = 0.000534
# b0101 = 0.000107
# and with
# strain_xx = 1
# strain_yy = 2
# strain_zz = 3
# then
# stress_xx = a0000*1 + a0011*2 + a0022*3 = 1.114187
# stress_yy = a0011*1 + a0000*2 + a0022*3 = 1.662197
# stress_zz = a0022*(1+2) + a2222*3 = 0.09083
# and all others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./strain_xx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right'
function = x
[../]
[./strain_yy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom top'
function = 2*y
[../]
[./strain_zz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'back front'
function = 3*z
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_01
csv = true
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
# Time integrator scheme
schem = "newmark-beta"
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
file_base = "AccelerationBC_test_out"
csv = true
exodus = true
perf_graph = true
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
use_custom_returnMap = false
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial3_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/initial_stress/gravity_with_aux.i
# Apply an initial stress, using AuxVariables, that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_equals_1]
initial_condition = 1
[../]
[./aux_equals_2]
initial_condition = 2
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./half_weight]
type = ParsedFunction
value = '0.25*z' # half of the initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 half_weight'
initial_stress_aux = 'aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_2'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity_with_aux
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the small_smoother parameter
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/ACGrGrElasticDrivingForce/bicrystal.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 3
xmax = 1000
ymax = 1000
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 2
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./PolycrystalICs]
[./BicrystalBoundingBoxIC]
x1 = 0
y1 = 0
x2 = 500
y2 = 1000
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./active_bounds_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
execute_on = 'initial timestep_begin'
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
execute_on = 'initial timestep_begin'
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./active_bounds_elemental]
type = FeatureFloodCountAux
variable = active_bounds_elemental
field_display = ACTIVE_BOUNDS
execute_on = 'initial timestep_begin'
flood_counter = grain_tracker
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
[../]
[]
[BCs]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -10.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 75 # nm
GBmob0 = 2.5e-6 #m^4/(Js) from Schoenfelder 1997
Q = 0.23 #Migration energy in eV
GBenergy = 0.708 #GB energy in J/m^2
time_scale = 1.0e-6
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[UserObjects]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = test.tex
[../]
[./grain_tracker]
type = GrainTrackerElasticity
connecting_threshold = 0.05
compute_var_to_feature_map = true
flood_entity_type = elemental
execute_on = 'initial timestep_begin'
euler_angle_provider = euler_angle_file
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
outputs = none
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./gr0_area]
type = ElementIntegralVariablePostprocessor
variable = gr0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'gr0,gr1 disp_x,disp_y'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_max_its = 30
l_tol = 1e-4
nl_max_its = 30
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 3
dt = 0.2
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface01.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 1.5
#
# Then SimpleTester0 should activate and the algorithm will return to
# stress_yy = 0, stress_zz = 1
# internal0 should be 0.5, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface01
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see Drucker-Prager parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# Weak-plane cohesion = 0.1 MPa
# Weak-plane friction angle = 20 deg
# Weak-plane dilation angle = 10 deg
# Weak-plane tensile strength = 0.1 MPa
# Weak-plane compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_wp_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_4/ring4_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/visco/gen_maxwell_relax.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./disp]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[]
[Materials]
[./maxwell]
type = GeneralizedMaxwellModel
creep_modulus = '3.333333e9 3.333333e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = maxwell
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_maxwell_relax_out
exodus = true
[]
modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x226]
type = NodalVariableValue
nodeid = 225
variable = disp_x
[../]
[./disp_y226]
type = NodalVariableValue
nodeid = 225
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 3.5
l_tol = 1e-3
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x226 disp_y226 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 2
slave = 3
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
system = Constraint
[../]
[]
modules/combined/test/tests/poro_mechanics/pp_generation.i
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = 1/second)
#
# Expect:
# porepressure = Biot-Modulus*s*t
# stress = 0 (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# s = 0.1
#
# Expect
# porepressure = t
# stress = 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[./csv]
type = CSV
[../]
[]
modules/xfem/test/tests/crack_tip_enrichment/edge_crack_2d.i
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_tip_enrichment = true
crack_front_definition = crack_tip
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y'
displacements = 'disp_x disp_y'
cut_off_boundary = all
cut_off_radius = 0.2
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 1.0 0.5 1.0'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./crack_tip]
type = CrackFrontDefinition
crack_direction_method = CrackDirectionVector
crack_front_points = '0.5 1.0 0'
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
[../]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 9
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 2.0
elem_type = QUAD4
[]
[./all_node]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
top_right = '1 2 0'
bottom_left = '0 0 0'
input = gen
[../]
[./right_bottom_node]
type = ExtraNodesetGenerator
new_boundary = 'right_bottom_node'
coord = '1.0 0.0'
input = all_node
[../]
[./right_top_node]
type = ExtraNodesetGenerator
new_boundary = 'right_top_node'
coord = '1.0 2.0'
input = right_bottom_node
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = Pressure
variable = disp_y
boundary = top
component = 1
factor = -1
[../]
[./bottom_y]
type = Pressure
variable = disp_y
boundary = bottom
component = 1
factor = -1
[../]
[./fix_y]
type = DirichletBC
boundary = right_bottom_node
variable = disp_y
value = 0.0
[../]
[./fix_x]
type = DirichletBC
boundary = right_bottom_node
variable = disp_x
value = 0.0
[../]
[./fix_x2]
type = DirichletBC
boundary = right_top_node
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeCrackTipEnrichmentSmallStrain
displacements = 'disp_x disp_y'
crack_front_definition = crack_tip
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
# Since we do not sub-triangularize the tip element,
# we need to use higher order quadrature rule to improve
# integration accuracy.
# Here second = SECOND is for regression test only.
# However, order = SIXTH is recommended.
[./Quadrature]
type = GAUSS
order = SECOND
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 10
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 100
nl_rel_tol = 1e-12 #11
nl_abs_tol = 1e-12 #12
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
dtmin = 1.0
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = edge_crack_2d_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i
# apply repeated stretches to observe cohesion hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 0
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0.577350269
rate = 4E4
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.01745506
value_residual = 0.01745506
rate = 1E8
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden3
exodus = true
[./csv]
type = CSV
[../]
[]
modules/porous_flow/examples/tutorial/11_2D.i
# Two-phase borehole injection problem in RZ coordinates
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 1.0
xmax = 10
bias_x = 1.4
ny = 3
ymin = -6
ymax = 6
[]
[./aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 -2 0'
top_right = '10 2 0'
[../]
[./injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.0001'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[../]
[./rename]
type = RenameBlockGenerator
old_block_id = '0 1'
new_block_name = 'caps aquifer'
input = 'injection_area'
[../]
[]
[Problem]
coord_type = RZ
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[../]
[]
[GlobalParams]
displacements = 'disp_r disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[./pwater]
initial_condition = 20E6
[../]
[./pgas]
initial_condition = 20.1E6
[../]
[./T]
initial_condition = 330
scaling = 1E-5
[../]
[./disp_r]
scaling = 1E-5
[../]
[]
[Kernels]
[./mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
use_displaced_mesh = false
variable = T
[../]
[./advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[../]
[./conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[../]
[./vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
use_displaced_mesh = false
variable = T
[../]
[./grad_stress_r]
type = StressDivergenceRZTensors
temperature = T
variable = disp_r
thermal_eigenstrain_name = thermal_contribution
use_displaced_mesh = false
component = 0
[../]
[./poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[../]
[]
[AuxVariables]
[./disp_z]
[../]
[./effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[../]
[./mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[../]
[./mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[../]
[./sgas]
family = MONOMIAL
order = CONSTANT
[../]
[./swater]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_rr]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_tt]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./porosity]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[../]
[./swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[../]
[./stress_rr_aux]
type = RankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[../]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[../]
[]
[BCs]
[./pinned_top_bottom_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = 'top bottom'
[../]
[./cavity_pressure_r]
type = Pressure
boundary = injection_area
variable = disp_r
component = 0
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[../]
[./cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[../]
[./constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[../]
[./outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[../]
[./outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[../]
[]
[Modules]
[./FluidProperties]
[./true_water]
type = Water97FluidProperties
[../]
[./tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
fluid_property_file = water97_tabulated_11.csv
[../]
[./true_co2]
type = CO2FluidProperties
[../]
[./tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
fluid_property_file = co2_tabulated_11.csv
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = T
[../]
[./saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[../]
[./water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[../]
[./co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[../]
[./relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[../]
[./relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[../]
[./permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[../]
[./permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[../]
[./rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[../]
[./rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[../]
[./thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[../]
[./initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./effective_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./volumetric_strain]
type = PorousFlowVolumetricStrain
[../]
[]
[Postprocessors]
[./effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[../]
[./constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[../]
[]
[Functions]
[./constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[../]
[]
[Preconditioning]
active = basic
[./basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[../]
[./preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[../]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
[]
[Mesh]
file = 2squares.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
use_displaced_mesh = true
[../]
[../]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempramp]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./x]
type = DirichletBC
boundary = '4 6'
variable = disp_x
value = 0.0
[../]
[./y]
type = DirichletBC
boundary = '4 6'
variable = disp_y
value = 0.0
[../]
[./t]
type = DirichletBC
boundary = '4'
variable = temp
value = 0.0
[../]
[./tramp]
type = FunctionDirichletBC
variable = temp
boundary = '6'
function = tempramp
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Contact]
[./mech]
master = 8
slave = 2
penalty = 1e+10
normalize_penalty = true
system = Constraint
tangential_tolerance = .1
normal_smoothing_distance = .1
model = frictionless
formulation = kinematic
[../]
[]
[ThermalContact]
[./thermal]
type = GapHeatTransfer
master = 8
slave = 2
variable = temp
tangential_tolerance = .1
normal_smoothing_distance = .1
gap_conductivity = 0.01
min_gap = 0.001
quadrature = true
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain]
type = ComputePlaneSmallStrain
eigenstrain_names = eigenstrain
block = '1 2'
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.0
eigenstrain_name = eigenstrain
block = '1 2'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./heatcond]
type = HeatConductionMaterial
thermal_conductivity = 3.0
specific_heat = 300.0
block = '1 2'
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
petsc_options_iname = '-pc_type -ps_sub_type -pc_factor_mat_solver_package'
petsc_options_value = 'asm lu superlu_dist'
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 2.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/two_surface03.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3.0E-6m in z directions and 0.5E-6 in y direction.
# trial stress_zz = 3.0 and stress_yy = 0.5
#
# Then both SimpleTesters should activate initially and return to the "corner" point
# (stress_zz = 1 = stress_yy), but then the plastic multiplier for SimpleTester2 will
# be negative, and so it will be deactivated, and the algorithm will return to
# stress_zz = 1, stress_yy = 0.5
# internal0 should be 2, and internal1 should be 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface03
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/solid_mechanics/LinearStrainHardening/lsh_pressure.i
#
# This test exercises the linear strain hardening material. The mesh is
# taken from the patch test (7 elements, 1 on the interior). There are
# symmetry bcs on three faces with a pressure load on another face.
#
# Young's modulus = 2.4e5
# Yield stress = 2.4e2
# Hardening constant = 1600
#
# The pressure reaches 2.4e2 at time 1 and 2.6e2 at time 2. Thus, at
# time 1, the stress is at the yield stress. 2.4e2/2.4e5=0.001 (the
# strain at time 1). The increase in stress from time 1 to time 2 is
# 20. 20/1600=0.0125 (the plastic strain). The elastic strain at
# time 2 is 260/2.4e5=0.00108333. The total strain at time 2 is
# 0.01358333.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = lsh_pressure.e
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_mag]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2'
y = '0 -2.4e2 -2.6e2'
[../]
[./dts]
type = PiecewiseLinear
x = '0 0.8 1 1.8'
y = '0.8 0.2 0.8 0.2'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
[../]
[./plastic_strain_mag]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_mag
[../]
[]
[BCs]
[./Pressure]
[./internal_pressure]
boundary = 11
function = top_pull
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[../]
[./x]
type = DirichletBC
variable = disp_x
boundary = 10
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 9
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 14
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 5 6 7'
youngs_modulus = 2.4e5
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = '1 2 3 4 5 6 7'
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = '1 2 3 4 5 6 7'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 2.4e2
hardening_constant = 1600
relative_tolerance = 1e-20
absolute_tolerance = 1e-09
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
start_time = 0.0
end_time = 2
dt = 1.5e-3
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/solid_mechanics/Time_integration/HHT_time_integration/HHT_test.i
# Test for HHT time integration
# The test is for an 1-D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters The
# equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force
# kernel The next two terms on the left involving alpha is evaluated
# using the StressDivergence Kernel The residual due to Pressure is
# evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure
# becomes constant. Alpha equal to zero will result in Newmark
# integration.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
use_displaced_mesh = true
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./elastic]
type = ComputeIsotropicElasticityTensor
block = '0'
youngs_modulus = 210e+09
poissons_ratio = 0
[../]
[./elastic_strain]
type= ComputeFiniteStrain
block = '0'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '0'
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dtmax = 0.1
dtmin = 0.1
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[./vel_ic]
type = PiecewiseLinear
x = '0.0 0.5 1.0'
y = '0.1 0.1 0.1'
scale_factor = 1
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
#
# Finally, note that the volumetric strain has
# consistent_with_displaced_mesh = false
# which is needed when using the FullySaturated version of the Kernels
# in order to generate the above results
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
coupling_type = HydroMechanical
biot_coefficient = 0.3
[../]
[./source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature_qp]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
consistent_with_displaced_mesh = false
[../]
[./ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[../]
[./simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[../]
[./stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[../]
[./p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[../]
[]
[Functions]
[./stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[../]
[./stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[../]
[./p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-10
nl_rel_tol = 1E-12
l_tol = 1E-2
l_max_its = 50
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial3
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./mu_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./mech_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./total_potential]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = total_potential
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./mu_prop]
type = MaterialRealAux
property = mu_prop
variable = mu_prop
[../]
[./mech_prop]
type = MaterialRealAux
property = mech_prop
variable = mech_prop
[../]
[./total_potential]
type = MaterialRealAux
property = total_potential
variable = total_potential
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./mechanical_potential]
type = StressBasedChemicalPotential
property_name = mech_prop
stress_name = stress
direction_tensor_name = aniso_tensor
prefactor_name = 1.0
[../]
[./total_potential]
type = DerivativeSumMaterial
block = 0
f_name = total_potential
sum_materials = 'mu_prop mech_prop'
args = 'c'
derivative_order = 2
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_outer_tip.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.7E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = outer_tip
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
displacements = 'disp_x disp_y'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = gen
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/combined/examples/phase_field-mechanics/Conserved.i
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
file = square.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto14.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to an edge of the tensile yield surface
# This is a very nonlinear test and a delicate test because it perturbs around
# an edge of the yield function where some derivatives are not well defined
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# NOTE: The yield function tolerances here are set at 100-times what i would usually use
# This is because otherwise the test fails on the 'pearcey' architecture.
# This is because identical stress tensors yield slightly different eigenvalues
# (and hence return-map residuals) on 'pearcey' than elsewhere, which results in
# a different number of NR iterations are needed to return to the yield surface.
# This is presumably because of compiler internals, or the BLAS routines being
# optimised differently or something similar.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[./int4]
order = CONSTANT
family = MONOMIAL
[../]
[./int5]
order = CONSTANT
family = MONOMIAL
[../]
[./int6]
order = CONSTANT
family = MONOMIAL
[../]
[./int7]
order = CONSTANT
family = MONOMIAL
[../]
[./int8]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int3
index = 3
[../]
[./int4]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int4
index = 4
[../]
[./int5]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int5
index = 5
[../]
[./int6]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int6
index = 6
[../]
[./int7]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int7
index = 7
[../]
[./int8]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int8
index = 8
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_int3]
type = ElementExtremeValue
variable = int3
outputs = console
[../]
[./max_int4]
type = ElementExtremeValue
variable = int4
outputs = console
[../]
[./max_int5]
type = ElementExtremeValue
variable = int5
outputs = console
[../]
[./max_int6]
type = ElementExtremeValue
variable = int6
outputs = console
[../]
[./max_int7]
type = ElementExtremeValue
variable = int7
outputs = console
[../]
[./max_int8]
type = ElementExtremeValue
variable = int8
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E1
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E0
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-4 # Note larger value
shift = 1.0E-4 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1.0E3 1.3E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 12 -14 12 5 20 -14 20 8'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile mc'
max_NR_iterations = 5
specialIC = 'rock'
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto14
exodus = false
csv = true
[]
modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/visco/gen_maxwell_driving.i
# Represents a unique Maxwell module with E = 10GPa and eta = 10 days with an imposed eigenstrain alpha = 0.001.
# The behavior is set up so that the creep strain is driven by both the elastic stress and the internal
# stress induced by the eigenstrain (E * alpha).
#
# In this test, the specimen is free of external stress (sigma = 0) so the creep deformation only derives from
# the eigenstrain. The total strain to be expected is:
# epsilon = alpha * (1 + t / eta)
# Both the stress and the elastic strain are 0.
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[Materials]
[./eigen]
type = ComputeEigenstrain
eigenstrain_name = eigen_true
eigen_base = '1e-3 1e-3 1e-3 0 0 0'
[../]
[./maxwell]
type = GeneralizedMaxwellModel
creep_modulus = '10e9'
creep_viscosity = '10'
poisson_ratio = 0.2
young_modulus = 10e9
driving_eigenstrain = eigen_true
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigen_true'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = maxwell
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-11
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_maxwell_driving_out
exodus = true
[]
modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD_2.i
# Test that models bending of a rotated cantilever beam using shell elements
# A cantilever beam of length 10 m (in Z direction) and cross-section
# 1 m x 0.1 m is modeled using 4 shell elements placed along the length
# (Figure 6a from Dvorkin and Bathe, 1984). All displacements and
# X rotations are fixed on the bottom boundary. E = 2100000 and v = 0.0.
# A load of 0.5 N (in the Y direction) is applied at each node on the top
# boundary resulting in a total load of 1 N.
# The analytical solution for displacement at tip using small strain/rotations # is PL^3/3EI + PL/AG = 1.90485714 m
# The FEM solution using 4 shell elements is 1.875095 m with a relative error
# of 1.5%.
# Similarly, the analytical solution for slope at tip is PL^2/2EI = 0.285714286
# The FEM solution is 0.2857143 and the relative error is 5e-6%.
# The stress_zz for the four elements at y = -0.57735 * (t/2) (first qp below mid-surface of shell) are:
# 3031.089 Pa, 2165.064 Pa, 1299.038 Pa and 433.0127 Pa.
# Note the above values are the average stresses in each element.
# Analytically, stress_zz decreases linearly from z = 0 to z = 10 m.
# The maximum value of stress_zz at z = 0 is My/I = PL * 0.57735*(t/2)/I = 3464.1 Pa
# Therefore, the analytical value of stress at y = -0.57735 * (t/2) at the mid-point
# of the four elements are:
# 3031.0875 Pa, 2165.0625 Pa, 1299.0375 Pa ,433.0125 Pa
# The relative error in stress_zz is in the order of 5e-5%.
# The stress_yz at y = -0.57735 * (t/2) at all four elements from the simulation is 10 Pa.
# The analytical solution for the shear stress is: V/2/I *((t^2)/4 - y^2), where the shear force (V)
# is 1 N at any z along the length of the beam. Therefore, the analytical shear stress at
# y = -0.57735 * (t/2) is 10 Pa at any location along the length of the beam.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[MeshModifiers]
[./rotate]
type = Transform
transform = ROTATE
vector_value = '0 90 0'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = global_stress_t_points_0
index_i = 2
index_j = 2
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 'top'
rate = 0.5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 5e-4
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 0.0 10.0'
variable = disp_y
[../]
[./rot_y_tip]
type = PointValue
point = '0.0 0.0 10.0'
variable = rot_y
[../]
[./stress_zz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_zz
[../]
[./stress_zz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_zz
[../]
[./stress_zz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_zz
[../]
[./stress_zz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_zz
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_3D_tm.i
# Scalar torque reaction
# This test computes the sum of the torques acting on a single element cube mesh.
# Equal displacements in the x and the z are applied along the cube top to
# create a shear force along the (1, 0, 1) direction. The rotation origin is
# set to the middle of the bottom face of the cube (0.5, 0, 0.5), and the axis of
# rotation direction vector used to compute the torque reaction is set to (-1, 0, 1).
# Torque is calculated for the four nodes on the top of the cube. The projection
# of the node coordinates is zero for nodes 3 and 6, +1 for node 7, and -1 for
# node 2 from the selection of the direction vector and the rotation axis origin.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[Kernels]
[./TensorMechanics]
save_in = 'saved_x saved_y saved_z'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end # for efficiency, only compute at the end of a timestep
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_shear_z]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = '0.01*t'
[../]
[./top_shear_x]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = '0.01*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./small_strain]
type = ComputeFiniteStrain
block = 0
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-14
nl_rel_tol = 1e-12
l_tol = 1e-8
start_time = 0.0
dt = 0.5
end_time = 1
num_steps = 2
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./torque]
type = TorqueReaction
boundary = top
reaction_force_variables = 'saved_x saved_y saved_z'
axis_origin = '0.5 0. 0.5'
direction_vector = '-1. 0. 1.'
[../]
[]
[Outputs]
file_base = torque_reaction_3D_tm_out
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_1/ring1_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp_linesearch.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.0001*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
block = 0
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.01 5 8 0.001 0.01 9 12 0.001 0.01'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
maximum_substep_iteration = 12
use_line_search = true
rtol = 1e-8
abs_tol = 1e-12
line_search_method = 'BISECTION'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 10
dtmin = 0.05
dtmax = 1e4
num_steps = 10
[]
[Outputs]
file_base = crysp_linesearch_out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/multi/four_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
# SimpleTester3 with a = 0 and b = 1 and strength = 1.1
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# This is similar to three_surface14.i, and a description is found there.
# The result should be stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./f3]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./f3]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 3
variable = f3
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[./int3]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 3
variable = int3
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = f3
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[./int3]
type = PointValue
point = '0 0 0'
variable = int3
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple3]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1.1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2 simple3'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = four_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Fluid bulk modulus)*log(1 - 0.01t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 1*log(1-0.01t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it just comes from conserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[../]
[]
[Postprocessors]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
[../]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform5.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
# Use 'cap' smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.9E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 50
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000.0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0
cap_start = 3
cap_rate = 0.8
mc_edge_smoother = 20
yield_function_tolerance = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 150
dt = 5
type = Transient
[]
[Outputs]
file_base = small_deform5
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard2.i
# apply uniform stretches in x, y and z directions.
# let friction_angle = 60deg, friction_angle_residual=10deg, friction_angle_rate = 0.5E4
# With cohesion = C, friction_angle = phi, the
# algorithm should return to
# sigma_m = C*Cos(phi)/Sin(phi)
# Or, when T=C,
# phi = arctan(C/sigma_m)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 1.04719755 # 60deg
value_residual = 0.17453293 # 10deg
rate = 0.5E4
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
shift = 1E-12
use_custom_returnMap = true
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.0E7 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard2
exodus = false
[./csv]
type = CSV
execute_on = timestep_end
[../]
[]
modules/tensor_mechanics/test/tests/action/two_block_new.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[AuxVariables]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./temp]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./eigenstrain_yy]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = PJFNK # cannot use NEWTON because we are using ComputeFiniteStrain, and hence the Jacobian contributions will not be correct, even though ComputeMultiPlasticityStress will compute the correct consistent tangent operator for small strains
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard_cubic.i
# apply uniform stretches in x, y and z directions.
# let cohesion = 10, cohesion_residual = 2, cohesion_limit = 0.0003
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = (C*Cos(60) - 4)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 2
internal_limit = 0.0003
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 10 3 2 3 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1E-4
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-8
[../]
[]
[Executioner]
end_time = 10
dt = 0.25
type = Transient
[]
[Outputs]
file_base = small_deform_hard_cubic
exodus = false
[./csv]
type = CSV
[../]
[]
modules/porous_flow/examples/tutorial/11.i
# Two-phase borehole injection problem
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[./make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[../]
[./shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[../]
[./aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[../]
[./injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[../]
[./rename]
type = RenameBlockGenerator
old_block_id = '0 1'
new_block_name = 'caps aquifer'
input = 'injection_area'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_x disp_y'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[./pwater]
initial_condition = 20E6
[../]
[./pgas]
initial_condition = 20.1E6
[../]
[./T]
initial_condition = 330
scaling = 1E-5
[../]
[./disp_x]
scaling = 1E-5
[../]
[./disp_y]
scaling = 1E-5
[../]
[]
[Kernels]
[./mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
use_displaced_mesh = false
variable = T
[../]
[./advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[../]
[./conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[../]
[./vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
use_displaced_mesh = false
variable = T
[../]
[./grad_stress_x]
type = StressDivergenceTensors
temperature = T
variable = disp_x
thermal_eigenstrain_name = thermal_contribution
use_displaced_mesh = false
component = 0
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
use_displaced_mesh = false
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
temperature = T
variable = disp_y
thermal_eigenstrain_name = thermal_contribution
use_displaced_mesh = false
component = 1
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
use_displaced_mesh = false
component = 1
[../]
[]
[AuxVariables]
[./disp_z]
[../]
[./effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[../]
[./mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[../]
[./mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[../]
[./sgas]
family = MONOMIAL
order = CONSTANT
[../]
[./swater]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_rr]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_tt]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./porosity]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[../]
[./swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[../]
[./stress_rr]
type = RankTwoScalarAux
variable = stress_rr
rank_two_tensor = stress
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[../]
[./stress_tt]
type = RankTwoScalarAux
variable = stress_tt
rank_two_tensor = stress
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[../]
[]
[BCs]
[./roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[../]
[./roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[../]
[./pinned_top_bottom_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'top bottom'
[../]
[./pinned_top_bottom_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[../]
[./cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[../]
[./cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[../]
[./cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[../]
[./constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[../]
[./outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[../]
[./outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[../]
[]
[Modules]
[./FluidProperties]
[./true_water]
type = Water97FluidProperties
[../]
[./tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[../]
[./true_co2]
type = CO2FluidProperties
[../]
[./tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = T
[../]
[./saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[../]
[./water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[../]
[./co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[../]
[./relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[../]
[./relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[../]
[./porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[../]
[./permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[../]
[./permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[../]
[./rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[../]
[./rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[../]
[./thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[../]
[./initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./effective_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./volumetric_strain]
type = PorousFlowVolumetricStrain
[../]
[]
[Postprocessors]
[./effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[../]
[./constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[../]
[]
[Functions]
[./constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[../]
[]
[Preconditioning]
active = basic
[./basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[../]
[./preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[../]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/examples/coal_mining/coarse.i
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '17.0 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '17.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5 # this gives min(disp_z)=-4.3, use dt=0.0625 if you want to restrict disp_z>=-3.2
end_time = 17.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.01*v'
[../]
[../]
[./mu]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./eigen_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./eigen_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./eigenstrain_xx]
type = RankTwoAux
variable = eigen_strain_xx
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./eigenstrain_yy]
type = RankTwoAux
variable = eigen_strain_yy
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./eigenstrain_prefactor]
type = DerivativeParsedMaterial
block = 0
function = 'c-0.1'
args = c
f_name = eigenstrain_prefactor
derivative_order = 1
[../]
[./eigenstrain]
type = ComputeVariableBaseEigenStrain
base_tensor_property_name = aniso_tensor
prefactor = eigenstrain_prefactor
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform2.i
# large strain with weak-plane normal rotating with mesh
# First rotate mesh 45deg about x axis
# Then apply stretch in the y=z direction.
# This should create a pure tensile load (no shear), which
# should return to the yield surface.
#
# Since cohesion=1E6 and tan(friction_angle)=1, and
# wps_smoother = 0.5E6, the apex of the weak-plane cone is
# at normal_stress = 0.5E6. So, the result should be
# s_yy = s_yz = s_zz = 0.25E6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0.70710678*y+0.70710678*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-0.70710678*y+0.70710678*z-z'
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0.70710678*y+0.70710678*z-y+if(t>0,1,0)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-0.70710678*y+0.70710678*z-z+if(t>0,1,0)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.111107723
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0.5E6
yield_function_tolerance = 1E-9
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-8
debug_fspb = crash
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface22.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.7E-6m in y direction and 1.1E-6 in z direction.
# trial stress_yy = 1.7 and stress_zz = 1.1
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester0 will be rutned off.
# The algorithm will return to
# stress_yy=1.0 and stress_zz=0.5
# internal1=0.1, internal2=0.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.7E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface22
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i
# this test checks the asixymmetric 1D generalized plane strain formulation using incremental small strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DSmallStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i
# UserObject IsotropicSD test, with power rule hardening with rate 1e2.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e2
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i
# apply a pure tension, then some shear
# the BCs are designed to map out the yield function, showing
# the affect of 'cap' smoothing
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*(t-1E-6)*(t-1E-6)*1E6)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-1E-6)*(t-1E-6)*1E6)'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,1E-6)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[./iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tip_scheme = cap
smoother = 0
cap_rate = 0.001
cap_start = -1000.0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
debug_jac_at_stress = '1E4 2E4 3E4 2E4 -4E4 5E4 3E4 5E4 6E8'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-3
debug_pm_change = 1E-5
debug_intnl_change = 1E-5
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_1/cyl1_template2.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_1/plane1_template2.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/cp_slip_rate_integ/crysp.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
gtol = 1e-2
rtol = 1e-8
abs_tol = 1e-15
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
dt = 0.2
dtmin = 0.05
dtmax = 10.0
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
end_time = 1
[]
[Outputs]
file_base = out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface14.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.1E-6m in y direction and 3E-6 in z direction.
# trial stress_yy = 2.1 and stress_zz = 3.0
#
# Then all three will be active, but there is linear-dependence.
# SimpleTester1 will turn off, since it is closest,
# and the algorithm will return to stress_zz=1, stress_yy=2, but
# then SimpleTester1 will be positive, so it will be turned back
# on, and then SimpleTester0 or SimpleTester2 will be turned off
# (a random choice will be made).
# If SimpleTester2 is turned
# off then algorithm returns to stress_zz=1=stress_yy, but then
# SimpleTester2 violates Kuhn-Tucker (f<0 and pm>0), so the algorithm
# will restart, and return to stress_zz=1=stress_yy, with internal0=2
# and internal1=1.1
# If SimpleTester0 is turned off then the algorithm will return to
# stress_zz=2, stress_yy=1, where f0>0. Once again, a random choice
# of turning off SimpleTester1 or SimpleTester2 can be made. Hence,
# oscillations can occur. If too many oscillations occur then the algorithm
# will fail
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '3.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-6
internal_constraint_tolerance = 1.0E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 4
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1'
debug_jac_at_intnl = '1 1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface14
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = ADDirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 416666
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/jacobian/cto18.i
# Jacobian check for nonlinear, multi-surface plasticity.
# Returns to the edge of the tensile yield surface
#
# Plasticity models:
# Tensile with strength = 1MPa softening to 0.5MPa in 2E-2 strain
#
# Lame lambda = 0.5GPa. Lame mu = 1GPa
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int0
index = 0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int1
index = 1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_yield_function
variable = int2
index = 2
[../]
[]
[Postprocessors]
[./max_int0]
type = ElementExtremeValue
variable = int0
outputs = console
[../]
[./max_int1]
type = ElementExtremeValue
variable = int1
outputs = console
[../]
[./max_int2]
type = ElementExtremeValue
variable = int2
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 0.5
internal_limit = 2E-2
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0E-6 # Note larger value
shift = 1.0E-6 # Note larger value
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.5E3 1E3'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1 0.1 0.2 0.1 15 -0.3 0.2 -0.3 14'
eigenstrain_name = ini_stress
[../]
[./multi]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile'
max_NR_iterations = 5
deactivation_scheme = 'safe'
min_stepsize = 1
tangent_operator = nonlinear
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
file_base = cto18
exodus = false
csv = true
[]
modules/combined/examples/periodic_strain/global_strain_pfm.i
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
modules/tensor_mechanics/test/tests/multi/two_surface05.i
# Plasticit models:
# SimpleTester with a = 0 and b = 1 and strength = 1
# SimpleTester with a = 1 and b = 1 and strength = 2
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 3E-6m in y directions and 1.0E-6 in z direction.
# trial stress_zz = 1 and stress_yy = 3
#
# Then SimpleTester2 should activate and the algorithm will return to
# stress_zz = 0, stress_yy = 2
# internal0 should be zero, and internal1 should be 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[]
[UserObjects]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 2
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = two_surface05
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = -t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = -t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = -0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = -0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = -0.0244*t.
#
# With large cohesion, but compressive strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = -0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = -0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = - (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0.024449878
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat2
csv = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
alpha = 0.11
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
alpha = 0.11
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface07.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 0.8E-6 in z direction.
# trial stress_yy = 1.5 and stress_zz = 0.8
#
# Then SimpleTester1 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=1.0, stress_zz=0.5
# internal1 should be 0.2, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.8E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface07
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/linesearch.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
maximum_substep_iteration = 200
use_line_search = true
min_line_search_step_size = 0.01
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.02
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
modules/combined/test/tests/solid_mechanics/hoop_stress/hoop_stress.i
#
# Hoop stress
#
# This test checks that hoop stress is calculated correctly for three orientations.
# 1. A hoop centered at (20,20,20) with vector (0,0,1)
# 2. A hoop centered at (-25,20,20) with vector (0,1,0)
# 3. A hoop centered at (-20,-20,20) with vector (1,0,0)
# All three have radius = 20, t = 1.
#
# Hoop stress should be P*r/t -> 1e3*20/1 = 20e3
#
# The output hoop stress is close to this value (nonlinear geometry is on) for all
# elements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = hoops.e
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e3
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop1]
order = CONSTANT
family = MONOMIAL
block = 1
[../]
[./hoop2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./hoop3]
order = CONSTANT
family = MONOMIAL
block = 3
[../]
[./radial1]
order = CONSTANT
family = MONOMIAL
block = 1
[../]
[./radial2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./radial3]
order = CONSTANT
family = MONOMIAL
block = 3
[../]
[./axial1]
order = CONSTANT
family = MONOMIAL
block = 1
[../]
[./axial2]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./axial3]
order = CONSTANT
family = MONOMIAL
block = 3
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./hoop1]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = HoopStress
variable = hoop1
block = 1
point1 = '20 20 -4'
point2 = '20 20 47'
execute_on = timestep_end
[../]
[./hoop2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = HoopStress
variable = hoop2
block = 2
point1 = '-25 12 20'
point2 = '-25 10 20'
execute_on = timestep_end
[../]
[./hoop3]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = HoopStress
variable = hoop3
block = 3
point1 = '0 -20 20'
point2 = '16 -20 20'
execute_on = timestep_end
[../]
[./radial1]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = RadialStress
variable = radial1
block = 1
point1 = '20 20 -4'
point2 = '20 20 47'
execute_on = timestep_end
[../]
[./radial2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = RadialStress
variable = radial2
block = 2
point1 = '-25 12 20'
point2 = '-25 10 20'
execute_on = timestep_end
[../]
[./radial3]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = RadialStress
variable = radial3
block = 3
point1 = '0 -20 20'
point2 = '16 -20 20'
execute_on = timestep_end
[../]
[./axial1]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = AxialStress
variable = axial1
block = 1
point1 = '20 20 -4'
point2 = '20 20 47'
execute_on = timestep_end
[../]
[./axial2]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = AxialStress
variable = axial2
block = 2
point1 = '-25 12 20'
point2 = '-25 10 20'
execute_on = timestep_end
[../]
[./axial3]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = AxialStress
variable = axial3
block = 3
point1 = '0 -20 20'
point2 = '16 -20 20'
execute_on = timestep_end
[../]
[] # AuxKernels
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = '300 11'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = '200 12'
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = '100 13'
value = 0
[../]
[./Pressure]
[./internal_pressure]
boundary = 1
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.35
block = '1 2 3'
[../]
[./small_strain]
type = ComputeIncrementalSmallStrain
block = '1 2 3'
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3'
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '201 hypre boomeramg'
line_search = 'none'
l_tol = 1e-8
nl_rel_tol = 1e-12
nl_abs_tol = 1e-14
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 1
end_time = 1.0
[] # Executioner
[Outputs]
exodus = true
file_base = hoop_stress_out
[] # Outputs
modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/large_deform2.i
# large strain with weak-plane normal rotating with mesh
# First rotate mesh 45deg about x axis
# Then apply stretch in the y=z direction.
# This should create a pure tensile load (no shear), which
# should return to the yield surface.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# rotate:
# ynew = c*y + s*z. znew = -s*y + c*z
[./bottomx]
type = FunctionDirichletBC
variable = disp_x
boundary = back
function = '0'
[../]
[./bottomy]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = '0.70710678*y+0.70710678*z-y'
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = '-0.70710678*y+0.70710678*z-z'
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '0.70710678*y+0.70710678*z-y+if(t>0,1,0)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-0.70710678*y+0.70710678*z-z+if(t>0,1,0)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1.0E6
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-9
[../]
[]
[Executioner]
start_time = -1
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = large_deform2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/orthotropic_rotation_Cijkl.i
# This test is designed to test the correct application of the Euler angle
# rotations to the elasticity tensor. The test uses values for the nine C_ijkl
# entries that correspond to the engineering notation placement:
# e.g. C11 = 11e3, c12 = 12e3, c13 = 13e3, c22 = 22e3 ..... c66 = 66e3
#
# A rotation of (0, 90, 0) is applied to the 1x1x1 cube, such that the values of
# c12 and c13 switch, c22 and c33 switch, and c55 and c66 switch. Postprocessors
# are used to verify this switch (made simple with the value convention above)
# and to verify that the unrotated components along the x-axis remain constant.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./lage_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./c11]
order = CONSTANT
family = MONOMIAL
[../]
[./c12]
order = CONSTANT
family = MONOMIAL
[../]
[./c13]
order = CONSTANT
family = MONOMIAL
[../]
[./c22]
order = CONSTANT
family = MONOMIAL
[../]
[./c23]
order = CONSTANT
family = MONOMIAL
[../]
[./c33]
order = CONSTANT
family = MONOMIAL
[../]
[./c44]
order = CONSTANT
family = MONOMIAL
[../]
[./c55]
order = CONSTANT
family = MONOMIAL
[../]
[./c66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxKernels]
[./lage_xx]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./lage_yy]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./pk2_yy]
type = RankTwoAux
variable = pk2_yy
rank_two_tensor = pk2
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./lage_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./c11]
type = RankFourAux
variable = c11
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
execute_on = timestep_end
[../]
[./c12]
type = RankFourAux
variable = c12
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c13]
type = RankFourAux
variable = c13
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c22]
type = RankFourAux
variable = c22
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c23]
type = RankFourAux
variable = c23
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c33]
type = RankFourAux
variable = c33
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c44]
type = RankFourAux
variable = c44
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
execute_on = timestep_end
[../]
[./c55]
type = RankFourAux
variable = c55
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 0
index_k = 2
index_l = 0
execute_on = timestep_end
[../]
[./c66]
type = RankFourAux
variable = c66
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '11e3 12e3 13e3 22e3 23e3 33e3 44e3 55e3 66e3'
fill_method = symmetric9
euler_angle_1 = 0.0
euler_angle_2 = 90.0
euler_angle_3 = 0.0
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8e3 60.8e3 60.8e3'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Postprocessors]
[./lage_xx]
type = ElementAverageValue
variable = lage_xx
[../]
[./pk2_yy]
type = ElementAverageValue
variable = pk2_yy
[../]
[./lage_yy]
type = ElementAverageValue
variable = lage_yy
[../]
[./lage_zz]
type = ElementAverageValue
variable = lage_zz
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./c11]
type = ElementAverageValue
variable = c11
[../]
[./c12]
type = ElementAverageValue
variable = c12
[../]
[./c13]
type = ElementAverageValue
variable = c13
[../]
[./c22]
type = ElementAverageValue
variable = c22
[../]
[./c23]
type = ElementAverageValue
variable = c23
[../]
[./c33]
type = ElementAverageValue
variable = c33
[../]
[./c44]
type = ElementAverageValue
variable = c44
[../]
[./c55]
type = ElementAverageValue
variable = c55
[../]
[./c66]
type = ElementAverageValue
variable = c66
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-3
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 1 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
dtmax = 0.1
dtmin = 1.0e-3
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/multi/special_joint1.i
# Plasticity models:
# WeakPlaneTensile with strength = 1000Pa
# WeakPlaneShear with cohesion = 0.1MPa and friction angle = 25
#
# Lame lambda = 1GPa. Lame mu = 1.3GPa
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[]
[UserObjects]
[./wpt_str]
type = TensorMechanicsHardeningConstant
value = 1000
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = wpt_str
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wps_c]
type = TensorMechanicsHardeningConstant
value = 1.0E5
[../]
[./wps_tan_phi]
type = TensorMechanicsHardeningConstant
value = 0.466
[../]
[./wps_tan_psi]
type = TensorMechanicsHardeningConstant
value = 0.087
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = wps_c
tan_friction_angle = wps_tan_phi
tan_dilation_angle = wps_tan_psi
smoother = 0
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.0E9 1.3E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'wpt wps'
max_NR_iterations = 5
specialIC = 'joint'
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = special_joint1
exodus = false
csv = true
[]
modules/combined/test/tests/eigenstrain/variable_finite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./stress11]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigenstrain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./c_IC]
int_width = 0.15
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./strain11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain11
[../]
[./stress11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = stress11
[../]
[./eigenstrain00]
type = RankTwoAux
variable = eigenstrain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.01*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
args = c
prefactor = var_dep
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 0.0005*t
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type '
petsc_options_value = lu
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-9
reset_dt = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_template2.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+7
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i
# UserObject IsotropicSD test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template3.i
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
extra_vector_tags = 'ref'
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x226]
type = NodalVariableValue
nodeid = 225
variable = disp_x
[../]
[./disp_y226]
type = NodalVariableValue
nodeid = 225
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 2.0
l_tol = 5e-4
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x226 disp_y226 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 2
slave = 3
disp_x = disp_x
disp_y = disp_y
model = coulomb
friction_coefficient = 0.0
system = constraint
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
master = '2'
slave = '3'
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i
# deformations are applied so that the trial stress is
# shear = 10, normalstress = 2
#
# Cohesion is chosen to be 1, and friction angle = 26.565, so tan(friction_angle) = 1/2
# This means that (shear, normalstress) = (0, 2) is the apex
# of the shear envelope
#
# Poisson's ratio is chosen to be zero, and Lame mu = 1E6,
# so the return must solve
# f = 0
# shear = shear_trial - (1/2)*mu*ga = 10 - 0.5E6*ga
# normalstress = normalstress - mu*tan(dilation)*ga
#
# Finally, tan(dilation) = 2/18 is chosen.
#
# Then the returned value should have
# shear = 1, normalstress = 0
#
# Here shear = sqrt(s_yz^2 + s_xz^2)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface11.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 2E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 2.0
#
# Then SimpleTester0 should activate and the algorithm will return to
# stress_zz=1
# internal0 should be 1.0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface11
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/mandel.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_compliance = 0.125
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[./csv]
interval = 3
type = CSV
[../]
[]
modules/combined/test/tests/poro_mechanics/borehole_highres.i
# Poroelastic response of a borehole.
#
# HIGHRES VERSION: this version gives good agreement with the analytical solution, but it takes a while so is a "heavy" test
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_highres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.1
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_highres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_highres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_highres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_highres_t
type = CSV
[../]
[]
modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_2.i
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = 'axial_strain axial_strain'
num_points = 21
sort_by = 'y'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_tm.i
# Scalar torque reaction
# This test computes the sum of the torques acting on a ten element 2D bar mesh
# and is intended to replicate the classical wrench problem from statics.
# A displacement in the y along the right face is applied to the bar end to create
# a shear force along the bar end. The rotation origin default (the global origin)
# and the axis of rotation direction vector used to compute the torque reaction
# is set to (0, 0, 1) out of the plane.
# Torque is calculated for the two nodes on the left of the bar. For the bottom
# node on the right, the torque/ moment lever is the x coordinate value, and for
# the top node on the right the torque lever is the hypotenuse of the x and y
# coordinates. The expected sum of the torque reaction is just over 37.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Kernels]
[./TensorMechanics]
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./right_shear_y]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '0.001*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./small_strain]
type = ComputeSmallStrain
block = 0
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-12
nl_rel_tol = 1e-10
l_tol = 1e-8
start_time = 0.0
dt = 0.5
end_time = 1
num_steps = 2
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./torque]
type = TorqueReaction
boundary = right
reaction_force_variables = 'saved_x saved_y'
direction_vector = '0. 0. 1.'
[../]
[]
[Outputs]
file_base = torque_reaction_tm_out
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_3/plane3_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i
# Wave propogation in 1D using Newmark time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.0
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface10.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 0.0E-6 in z direction.
# trial stress_yy = 1.5 and stress_zz = 0.0
#
# Then SimpleTester1 should activate and the algorithm will return to
# stress_yy=1
# internal1 should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface10
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+7
[../]
[]
modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinear.i
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'reduced_eigenstrain', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# quite different.
#
# Open the reducedOrderRZLinear_out_hydro_0001.csv file and plot the hydro variables as
# a function of x. For the reduced order case, the values are smooth across each of the
# two elements with a jump upward from the left element to the right element. However,
# when not using 'reduced_order_eigenstrain', a jump downward appears from the left
# element to the right element.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
#second_order = true
[]
[Functions]
[./tempLinear]
type = ParsedFunction
value = '715-5*x'
[../]
[./tempQuadratic]
type = ParsedFunction
value = '2.5*x*x-15*x+722.5'
[../]
[./tempCubic]
type = ParsedFunction
value = '-1.25*x*x*x+11.25*x*x-33.75*x+733.75'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[./temp2]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp2
eigenstrain_names = 'reduced_eigenstrain' #'thermal_eigenstrain'
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./temp2]
type = FunctionAux
variable = temp2
function = tempLinear
execute_on = timestep_begin
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./temp_right]
type = DirichletBC
variable = temp
boundary = right
value = 700
[../]
[./temp_left]
type = DirichletBC
variable = temp
boundary = left
value = 710
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1
temperature = temp2
stress_free_temperature = 700.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'reduced_eigenstrain'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
num_steps = 1
nl_rel_tol = 1e-8 #1e-12
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[VectorPostprocessors]
[./hydro]
type = LineValueSampler
num_points = 100
start_point = '1 0.07e-3 0'
end_point = '3 0.07e-3 0'
sort_by = x
variable = 'hydro_constant hydro_first hydro_second temp2 disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a longitudinal section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between -300<=y<=1800. The excavation sits in 0<=y<=1500. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=-300 and y=1800
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=300 and y=1800.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 140 # 15m elements
ymin = -300
ymax = 1800
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 1500 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 1500.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 1500.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 100
start_time = 0.0
dt = 0.01 # 1 element per step
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky_longitudinal
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_fileread.i
[Mesh]
type = GeneratedMesh
dim = 3
nx=1
ny=1
nz=1
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
zmin=0.0
zmax=1.0
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = 'initial timestep_end'
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = 'initial timestep_end'
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
slip_sys_res_prop_file_name = input_slip_sys_res.txt
slip_sys_flow_prop_file_name = input_slip_sys_flow_prop.txt
hprops = '1.0 541.5 60.8 109.8 2.5'
nss = 12
intvar_read_type = slip_sys_res_file
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
execute_on = 'initial timestep_end'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
execute_on = 'initial timestep_end'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
execute_on = 'initial timestep_end'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = crysp_fileread_out
exodus = true
[]
modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 250
ymax = 250
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
# This deprecated material is replaced by the materials below
#
#[./eigenstrain]
# type = SimpleEigenStrainMaterial
# block = 0
# epsilon0 = 0.05
# c = c
# disp_y = disp_y
# disp_x = disp_x
# C_ijkl = '3 1 1 3 1 3 1 1 1 '
# fill_method = symmetric9
#[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
[]
[Outputs]
exodus = true
[]
modules/porous_flow/test/tests/energy_conservation/heat03.i
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow or heat flow.
# Heat energy conservation is checked.
#
# Under these conditions (here L is the height of the sample: L=1 in this case):
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# Also, the total heat energy must be conserved: this is
# fluid_mass * fluid_heat_cap * temperature + (1 - porosity) * rock_density * rock_heat_cap * temperature * volume
# Since fluid_mass is conserved, and volume = (1 - 0.01*t), this can be solved for temperature:
# temperature = initial_heat_energy / (fluid_mass * fluid_heat_cap + (1 - porosity) * rock_density * rock_heat_cap * (1 - 0.01*t))
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
# initial temperature = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
# t0 = 11.5 / (0.159 + 0.99 * (1 - 0.01*t))
#
# Regarding the "log" - it comes from preserving fluid mass
#
# Note that the PorousFlowMassVolumetricExpansion and PorousFlowHeatVolumetricExpansion Kernels are used
# Note too that the Postprocessors have use_displaced_mesh = true
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./pp]
initial_condition = 0.1
[../]
[./temp]
initial_condition = 10
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[../]
[./temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[../]
[./poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
viscosity = 1
thermal_expansion = 0
cv = 1.3
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[../]
[./rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = pp
[../]
[./t0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = temp
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[./fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./rock_heat]
type = PorousFlowHeatEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[./fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
execute_on = 'initial timestep_end'
use_displaced_mesh = true
outputs = 'console csv'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 2
end_time = 10
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat03
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '5e9 0 0 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e00]
type = ElementL2Error
variable = e00
function = 0.07142857 #strain_xx = C1111/sigma_xx
[../]
[./l2err_e11]
type = ElementL2Error
variable = e11
function = -0.07142857*0.33 #strain_yy = -nu*strain_xx
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_sampler.i
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
elem_type = HEX
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e-6
[../]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[]
[VectorPostprocessors]
[./stress_xx]
type = LineMaterialRankTwoSampler
start = '0.1667 0.4 0.45'
end = '0.8333 0.6 0.55'
property = stress
index_i = 0
index_j = 0
sort_by = id
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[BCs]
[./front]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = rampConstant
[../]
[./back_x]
type = DirichletBC
variable = x_disp
boundary = 0
value = 0.0
[../]
[./back_y]
type = DirichletBC
variable = y_disp
boundary = 0
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[]
[Materials]
[./elast_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = .3
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
start_time = 0.0
num_steps = 99999
end_time = 1.0
dt = 0.1
[]
[Outputs]
file_base = rank_two_sampler_out
exodus = true
csv = true
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# This is an elastic simulation, but the weak-plane and Drucker-Prager
# parameters and AuxVariables may be found below. They are irrelevant
# in this simulation. The weak-plane and Drucker-Prager cohesions,
# tensile strengths and compressive strengths have been set very high
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
master_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block_id = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str
compressive_strength = wp_compressive_str
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'Linear'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = cosserat_elastic
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
modules/tensor_mechanics/test/tests/stress_recovery/patch/patch.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD9
uniform_refine = 0
[]
[Variables]
[disp_x]
order = SECOND
family = LAGRANGE
[]
[disp_y]
order = SECOND
family = LAGRANGE
[]
[]
[AuxVariables]
[stress_xx]
order = FIRST
family = MONOMIAL
[]
[stress_yy]
order = FIRST
family = MONOMIAL
[]
[stress_xx_recovered]
order = SECOND
family = LAGRANGE
[]
[stress_yy_recovered]
order = SECOND
family = LAGRANGE
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[stress_xx_recovered]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_recovered
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy_recovered]
type = RankTwoAux
patch_polynomial_order = SECOND
rank_two_tensor = stress
variable = stress_yy_recovered
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[]
[Materials]
[strain]
type = ComputeSmallStrain
[]
[Cijkl]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2.1e+5
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[BCs]
[top_xdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = 0
[]
[top_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = t
[]
[bottom_xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'bottom'
function = 0
[]
[bottom_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom'
function = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = default
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 30
dt = 0.01
dtmin = 1e-11
start_time = 0
end_time = 0.05
[]
[Outputs]
interval = 1
exodus = true
print_linear_residuals = false
[]
modules/tensor_mechanics/test/tests/ad_action/two_block_no_action.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
# [Modules/TensorMechanics/Master]
# [./block1]
# strain = FINITE
# add_variables = true
# #block = 1
# use_automatic_differentiation = true
# [../]
# [./block2]
# strain = SMALL
# add_variables = true
# block = 2
# use_automatic_differentiation = true
# [../]
# []
[Kernels]
[./disp_x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./disp_y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./block_1]
type = ADComputeFiniteStrain
block = 1
[../]
[./block_2]
type = ADComputeSmallStrain
block = 2
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_user_object.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.01
dtmax = 10.0
dtmin = 0.01
num_steps = 10
[]
[Outputs]
file_base = crysp_user_object_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
modules/tensor_mechanics/test/tests/visco/burgers_creep.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./burgers]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = burgers
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-10
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = burgers_creep_out
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform2.i
# apply uniform stretch in x, y and z directions.
# trial_stress(0, 0) = -2
# trial_stress(1, 1) = 6
# trial_stress(2, 2) = 10
# With tensile_strength = 2, the algorithm should return to trace(stress) = 2, or
# stress(0, 0) = -6
# stress(1, 1) = 2
# stress(2, 2) = 6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/test.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_1/brick1_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem
exodus = true
csv = false
[]
modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 150.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 150.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.01
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform_hard3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
#
# friction_angle = 50deg, friction_angle_residual=51deg, friction_angle_rate = 1E7 (huge)
# cohesion = 10, cohesion_residual = 9.9, cohesion_rate = 1E7 (huge)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 9.9
rate = 1E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0.8726646 # 50deg
value_residual = 0.8901179 # 51deg
rate = 1E7
[../]
[./mc_psi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.8726646 # 50deg
rate = 3000
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 1 2 1 11 -3 2 -3 8'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 30
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_hard3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i
# UserObject Orthotropic test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_xz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.2
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[../]
[./topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.55
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = NEWTON
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1_small_strain
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i
# One 3D element under ramped displacement loading.
#
# loading in z direction:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# Gravity is applied in y direction. To equilibrate the system
# under gravity, a static analysis is run in the first time step
# by turning off the inertial terms. (see controls block and
# DynamicTensorMechanics block).
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
# The y displacement would be offset by the gravity displacement.
# Also the y acceleration and velocity should be zero until the loading in
# the z direction starts (i.e, until 0.1s)
# Note: The time step used in the displacement data file should match
# the simulation time step (dt and dtmin in the Executioner block).
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 0.000025
static_initialization = true #turns off rayliegh damping for the first time step to stabilize system under gravity
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./gravity]
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./prescribed_displacement]
type = PresetDisplacement
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
boundary = front
function = displacement_front
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Controls] # turns off inertial terms for the first time step
[./period0]
type = TimePeriod
disable_objects = '*/vel_x */vel_y */vel_z */accel_x */accel_y */accel_z */inertia_x */inertia_y */inertia_z'
start_time = 0.0
end_time = 0.1 # dt used in the simulation
[../]
[../]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 'zeta_rayleigh'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[./material_zeta]
type = GenericConstantMaterial
block = 0
prop_names = 'zeta_rayleigh'
prop_values = '0.1'
[../]
[./material_eta]
type = GenericConstantMaterial
block = 0
prop_names = 'eta_rayleigh'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'rayleigh_newmark_out'
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_linesearch.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
rtol = 1e-6
abs_tol = 1e-8
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
use_line_search = true
min_line_search_step_size = 0.01
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.025
dtmax = 10.0
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = crysp_lsearch_out
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i
# Checking evolution tensile strength for cubic hardening
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[../]
[]
[AuxVariables]
[./wpt_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 4
internal_limit = 0.000003
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[../]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
file_base = small_deform_hard_cubic
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/combined/test/tests/contact_verification/patch_tests/ring_2/ring2_template2.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/ad_1D_spherical/smallStrain_1DSphere.i
# This simulation models the mechanics solution for a solid sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner center of the sphere, r = 0, is pinned to prevent
# movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{- P * (1 - 2 * v) * r}{E}
#
# where P is the applied pressure, v is Poisson's ration, E is Young's Modulus,
# and r is the radial position.
#
# The test assumes a radius of 4, zero displacement at r = 0mm, and an applied
# outer pressure of 1MPa. Under these conditions in a solid sphere, the radial
# stress is constant and has a value of -1 MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 4
nx = 4
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
save_in = residual_r
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./residual_r]
[../]
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./residual_r]
type = NodalSum
variable = residual_r
boundary = right
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_rr
execute_on = timestep_end
[../]
[]
[BCs]
[./innerDisp]
type = ADDirichletBC
boundary = left
variable = disp_r
value = 0.0
[../]
[./outerPressure]
type = ADPressure
boundary = right
variable = disp_r
component = 0
constant = 1
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[../]
[./stress]
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 1.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/j2_plasticity/hard2.i
# UserObject J2 test, with hardening, but with rate=1E6
# apply uniform compression in x direction to give
# trial stress_xx = 5, so sqrt(3*J2) = 5
# with zero Poisson's ratio, lambda_mu = 1E6, and strength=2, strength_residual=1,
# the equations that we need to solve are:
#
# stress_yy = stress_zz [because of the symmetry of the problem: to keep Lode angle constant]
# stress_xx - stress_yy = 1 + (2 - 1)*exp(-0.5*(1E6*q)^2) [yield_fcn = 0]
# stress_xx + stress_yy + stress_zz = 5 [mean stress constant]
# q = gamma
# stress_xx = 1E6*2*gamma*(stress_xx - 5/3)*sqrt(3)/2/sqrt(J2), where sqrt(J2) = (1 + (2 - 1)*exp(-0.5*(1E6*q)^2))/Sqrt(3)
# so RHS = 1E6*2*gamma*(stress_xx - 5/3)*3/2/(stress_xx - stress_yy)
#
# stress_xx = 2.672
# stress_yy = 1.164
# q = 1.164E-6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningGaussian
value_0 = 2
value_residual = 1
rate = 1E12
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = hard2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/xfem/test/tests/moving_interface/moving_bimaterial.i
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = generated_mesh
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5 + t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except1.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 45
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i
#
[Mesh]
file = necking_quad4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
# save_in_disp_x = force_x
save_in_disp_y = force_y
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_x]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./y_top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.2
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./disp_y]
type = NodalSum
variable = disp_y
boundary = top
[../]
[./force_y]
type = NodalSum
variable = force_y
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch_quadratic.i
# Patch Test for second order hex elements (HEX20)
#
# From Abaqus, Verification Manual, 1.5.2
#
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced on all exterior nodes using the functions,
#
# ux = 1e-4 * (2x + y + z) / 2
# uy = 1e-4 * (x + 2y + z) / 2
# ux = 1e-4 * (x + y + 2z) / 2
#
# giving uniform strains of
#
# exx = eyy = ezz = 2*exy = 2*eyz = 2*exz = 1e-4
#
#
# Hooke's Law provides an analytical solution for the uniform stress state.
# For example,
#
# stress xx = lambda(exx + eyy + ezz) + 2 * G * exx
# stress xy = 2 * G * exy
#
# where:
#
# lambda = (2 * G * nu) / (1 - 2 * nu)
# G = 0.5 * E / (1 + nu)
#
# For the test below, E = 1e6 and nu = 0.25, giving lambda = G = 4e5
#
# Thus
#
# stress xx = 4e5 * (3e-4) + 2 * 4e5 * 1e-4 = 200
# stress xy = 2 * 4e5 * 1e-4 / 2 = 40
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = elastic_patch_quadratic.e
[] # Mesh
[Functions]
[./xDispFunc]
type = ParsedFunction
value = 5e-5*(2*x+y+z)
[../]
[./yDispFunc]
type = ParsedFunction
value = 5e-5*(x+2*y+z)
[../]
[./zDispFunc]
type = ParsedFunction
value = 5e-5*(x+y+2*z)
[../]
[] # Functions
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[./disp_z]
order = SECOND
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./firstinv]
order = CONSTANT
family = MONOMIAL
[../]
[./secondinv]
order = CONSTANT
family = MONOMIAL
[../]
[./thirdinv]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vonmises
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = Hydrostatic
variable = hydrostatic
[../]
[./fi]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = FirstInvariant
variable = firstinv
[../]
[./si]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = SecondInvariant
variable = secondinv
[../]
[./ti]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = ThirdInvariant
variable = thirdinv
[../]
[] # AuxKernels
[BCs]
[./all_nodes_x]
type = FunctionDirichletBC
variable = disp_x
boundary = '1 2 3 4 6 7 8 9 10 12 15 17 18 19 20 21 23 24 25 26'
function = xDispFunc
[../]
[./all_nodes_y]
type = FunctionDirichletBC
variable = disp_y
boundary = '1 2 3 4 6 7 8 9 10 12 15 17 18 19 20 21 23 24 25 26'
function = yDispFunc
[../]
[./all_nodes_z]
type = FunctionDirichletBC
variable = disp_z
boundary = '1 2 3 4 6 7 8 9 10 12 15 17 18 19 20 21 23 24 25 26'
function = zDispFunc
[../]
[] # BCs
[Materials]
[./elast_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 1
end_time = 1.0
[] # Executioner
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
modules/tensor_mechanics/test/tests/cp_user_object/exception.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.1*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 0
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 10
ny = 10
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'input_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 4
read_type = grain
ngrain = 3
rand_seed = 25346
rve_type = periodic
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 1
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_grain_read_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
modules/tensor_mechanics/test/tests/interface_stress/multi.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
xmax = 1
ymax = 1
zmax = 1
xmin = -1
ymin = -1
zmin = -1
[]
[GlobalParams]
order = CONSTANT
family = MONOMIAL
rank_two_tensor = extra_stress
[]
[Functions]
[./sphere1]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2); if(r>1,0,1-3*r^2+2*r^3)'
[../]
[./sphere2]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2); 0.5-0.5*if(r>1,0,1-3*r^2+2*r^3)'
[../]
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[AuxVariables]
[./eta1]
[./InitialCondition]
type = FunctionIC
function = sphere1
[../]
order = FIRST
family = LAGRANGE
[../]
[./eta2]
[./InitialCondition]
type = FunctionIC
function = sphere2
[../]
order = FIRST
family = LAGRANGE
[../]
[./s00]
[../]
[./s01]
[../]
[./s02]
[../]
[./s10]
[../]
[./s11]
[../]
[./s12]
[../]
[./s20]
[../]
[./s21]
[../]
[./s22]
[../]
[]
[AuxKernels]
[./s00]
type = RankTwoAux
variable = s00
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
index_i = 0
index_j = 1
[../]
[./s02]
type = RankTwoAux
variable = s02
index_i = 0
index_j = 2
[../]
[./s10]
type = RankTwoAux
variable = s10
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
index_i = 1
index_j = 1
[../]
[./s12]
type = RankTwoAux
variable = s12
index_i = 1
index_j = 2
[../]
[./s20]
type = RankTwoAux
variable = s20
index_i = 2
index_j = 0
[../]
[./s21]
type = RankTwoAux
variable = s21
index_i = 2
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./interface]
type = ComputeInterfaceStress
v = 'eta1 eta2'
stress = '1.0 2.0'
op_range = '1.0 0.5'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
file_base = test_out
execute_on = timestep_end
hide = 'dummy eta1 eta2'
[]
modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_small.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
file = square.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/action/no_block.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. But
# no subblocks are present. This should trigger a warning.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# Both return to the edge (lode angle = 30deg, ie 010100) and tip are experienced.
#
# It is checked that the yield functions are less than their tolerance values
# It is checked that the cohesion hardens correctly
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.05E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if((a<1E-5)&(b<1E-5)&(c<1E-5)&(d<1E-5)&(g<1E-5)&(h<1E-5),0,abs(a)+abs(b)+abs(c)+abs(d)+abs(g)+abs(h))'
vars = 'a b c d g h'
vals = 'f0 f1 f2 f3 f4 f5'
[../]
[./coh_analytic]
type = ParsedFunction
value = '20-10*exp(-1E5*intnl)'
vars = intnl
vals = internal
[../]
[./coh_from_yieldfcns]
type = ParsedFunction
value = '(f0+f1-(sxx+syy)*sin(phi))/(-2)/cos(phi)'
vars = 'f0 f1 sxx syy phi'
vals = 'f0 f1 s_xx s_yy 0.8726646'
[../]
[./should_be_zero_coh]
type = ParsedFunction
value = 'if(abs(a-b)<1E-6,0,1E6*abs(a-b))'
vars = 'a b'
vals = 'Coh_analytic Coh_moose'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn0]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn1]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn2]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn3]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn4]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn5]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn0]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn0
[../]
[./yield_fcn1]
type = MaterialStdVectorAux
index = 1
property = plastic_yield_function
variable = yield_fcn1
[../]
[./yield_fcn2]
type = MaterialStdVectorAux
index = 2
property = plastic_yield_function
variable = yield_fcn2
[../]
[./yield_fcn3]
type = MaterialStdVectorAux
index = 3
property = plastic_yield_function
variable = yield_fcn3
[../]
[./yield_fcn4]
type = MaterialStdVectorAux
index = 4
property = plastic_yield_function
variable = yield_fcn4
[../]
[./yield_fcn5]
type = MaterialStdVectorAux
index = 5
property = plastic_yield_function
variable = yield_fcn5
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = yield_fcn2
[../]
[./f3]
type = PointValue
point = '0 0 0'
variable = yield_fcn3
[../]
[./f4]
type = PointValue
point = '0 0 0'
variable = yield_fcn4
[../]
[./f5]
type = PointValue
point = '0 0 0'
variable = yield_fcn5
[../]
[./yfcns_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[./Coh_analytic]
type = FunctionValuePostprocessor
function = coh_analytic
[../]
[./Coh_moose]
type = FunctionValuePostprocessor
function = coh_from_yieldfcns
[../]
[./cohesion_difference_should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_coh
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 20
rate = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 0.8726646
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 1 #0.8726646 # 50deg
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
use_custom_returnMap = true
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 5
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard3
exodus = false
[./csv]
type = CSV
hide = 'f0 f1 f2 f3 f4 f5 s_xy s_xz s_yz Coh_analytic Coh_moose'
execute_on = 'timestep_end'
[../]
[]
modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
file = square.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_save_euler.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = ElementPropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
block = 0
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
block = 0
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.01
dtmax = 10.0
dtmin = 0.01
num_steps = 10
[]
[Outputs]
file_base = crysp_save_euler_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_template2.i
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
tangential_tolerance = 1e-3
penalty = 1e+11
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/material_limit_time_step/creep/nafems_test5a_lim.i
[GlobalParams]
temperature = temp
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
group_variables = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
initial_condition = 1500.0
[../]
[./creep]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./invariant3]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./creep_aux]
type = MaterialRealAux
property = effective_creep_strain
variable = creep
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
[../]
[./invariant3]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = invariant3
scalar_type = ThirdInvariant
[../]
[./creep_strain_xx]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
[../]
[./creep_strain_zz]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_zz
index_i = 2
index_j = 2
[../]
[./creep_strain_xy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xy
index_i = 0
index_j = 1
[../]
[./elastic_str_xx_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
[../]
[./elastic_str_yy_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
[../]
[./elastic_str_zz_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 3
component = 1
factor = -100.0
[../]
[./side_press]
type = Pressure
variable = disp_x
boundary = 4
component = 0
factor = -200.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 200e3
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
block = 1
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
block = 1
coefficient = 3.125e-14
n_exponent = 5.0
m_exponent = 0.0
activation_energy = 0.0
max_inelastic_increment = 0.01
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
line_search = 'none'
l_max_its = 50
nl_max_its = 100
end_time = 1000.0
num_steps = 10000
l_tol = 1e-3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1e-6
time_t = '1e-6 2e-6 3e-6 5e-6 9e-6 1.7e-5 3.3e-5 6.5e-5 1.29e-4 2.57e-4 5.13e-4 1.025e-3 2.049e-3 4.097e-3 8.193e-3 1.638e-2 3.276e-2 5.734e-2 0.106 0.180 0.291 0.457 0.706 1.08 1.64 2.48 3.74 5.63 8.46 12.7 19.1 28.7 43.0 64.5 108.0 194.0 366.0 710.0 1000.0'
time_dt = '1e-6 1e-6 2e-6 4e-6 8e-6 1.6e-5 3.2e-5 6.4e-5 1.28e-4 2.56e-4 5.12e-4 1.024e-3 2.048e-3 4.096e-3 8.192e-3 1.6384e-2 2.458e-2 4.915e-2 7.40e-2 0.111 0.166 0.249 0.374 0.560 0.840 1.26 1.89 2.83 4.25 6.40 9.6 14.3 21.5 43.0 86.1 172.0 344.0 290.0 290.0'
optimal_iterations = 30
iteration_window = 9
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = matl_ts_min
[../]
[]
[Postprocessors]
[./matl_ts_min]
type = MaterialTimeStepPostprocessor
[../]
[./sigma_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./invariant3]
type = ElementAverageValue
variable = invariant3
[../]
[./eps_crp_xx]
type = ElementAverageValue
variable = creep_strain_xx
[../]
[./eps_crp_yy]
type = ElementAverageValue
variable = creep_strain_yy
[../]
[./eps_crp_zz]
type = ElementAverageValue
variable = creep_strain_zz
[../]
[./eps_crp_mag]
type = ElementAverageValue
variable = creep
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x3]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_y3]
type = NodalVariableValue
nodeid = 2
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./elas_str_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elas_str_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./elas_str_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
csv = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 25
[../]
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
base_name = uncracked
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./elastic]
type = ComputeLinearElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-6
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/inelastic_strain/creep/creep_nl1.i
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
# This is not a verification test. This is the creep analog of the same test
# in the elas_plas directory. Instead of using the IsotropicPlasticity
# material model this test uses the PowerLawCreep material model.
#
[GlobalParams]
temperature = temp
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
initial_condition = 600.0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_creep_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
decomposition_method = EigenSolution
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./creep_strain_yy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./creep_strain_zz]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
[../]
[./eff_creep_strain]
type = MaterialRealAux
property = effective_creep_strain
variable = eff_creep_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0'
y = '0.0 0.25e-4 0.50e-4'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = '1 2'
value = 600.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
block = 1
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
block = 1
coefficient = 3.125e-14
n_exponent = 5.0
m_exponent = 0.0
activation_energy = 0.0
[../]
[./thermal]
type = HeatConductionMaterial
block = 1
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
block = 1
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-6
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 2.0
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./crp_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
[../]
[./crp_strain_yy]
type = ElementAverageValue
variable = creep_strain_yy
[../]
[./crp_strain_zz]
type = ElementAverageValue
variable = creep_strain_zz
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = eff_creep_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
modules/tensor_mechanics/test/tests/recompute_radial_return/affine_plasticity.i
# Affine Plasticity Test for Transient Stress Eigenvalues with Stationary Eigenvectors
# This test is taken from K. Jamojjala, R. Brannon, A. Sadeghirad, J. Guilkey,
# "Verification tests in solid mechanics," Engineering with Computers, Vol 31.,
# p. 193-213.
# The test involves applying particular strains and expecting particular stresses.
# The material properties are:
# Yield in shear 165 MPa
# Shear modulus 79 GPa
# Poisson's ratio 1/3
# The strains are:
# Time e11 e22 e33
# 0 0 0 0
# 1 -0.003 -0.003 0.006
# 2 -0.0103923 0 0.0103923
# The expected stresses are:
# sigma11:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# (189.4+0.1704*sqrt(a)-0.003242*a)
# --------------------------------- 1 < t <= 2
# 1+0.00001712*a
# -189.4 t > 2 (paper erroneously gives a positive value)
#
# sigma22:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# -(76.87+1.443*sqrt(a)-0.001316*a)
# --------------------------------- 1 < t <= 2 (paper gives opposite sign)
# 1+0.00001712*a
# 76.87 t > 2
#
# sigma33:
# 948*t 0 < t <= 0.201
# 190.5 0.201 < t <= 1
# -(112.5-1.272*sqrt(a)-0.001926*a)
# --------------------------------- 1 < t <= 2 (paper has two sign errors here)
# 1+0.00001712*a
# 112.5 t > 2
#
# where a = exp(12.33*t).
#
# Note: If planning to run this case with strain type ComputeFiniteStrain, the
# displacement function must be adjusted. Instead of
# strain = (l - l0)/l0 = (u+l0 - l0)/l0 = u/l0
# with l0=1.0, we would have
# strain = log(l/l0) = log((u+l0)/l0)
# with l0=1.0. So, for strain = -0.003,
# -0.003 = log((u+l0)/l0) ->
# u = exp(-0.003)*l0 - l0 = -0.0029955044966269995.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '0'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./disp_x]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 -0.0103923'
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 0.'
[../]
[./disp_z]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.006 0.0103923'
[../]
[./stress_xx]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# The paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# 189.409039923814000, 0.170423791206825, -0.003242011311945, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 -95.26279441628823 12.332921390339125 189.409039923814000 0.170423791206825 -0.003242011311945 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_yy]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -76.867432297315000, -1.442488120272900, 0.001315697947301, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 -95.26279441628823 12.332921390339125 -76.867432297315000 -1.442488120272900 0.001315697947301 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_zz]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives 190.5 MPa as the stress at yield, but 190.52558883257645 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -112.541607626499000, 1.272064329066080, 0.001926313364644, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 190.52558883257645 12.332921390339125 -112.541607626499000 1.272064329066080 0.001926313364644 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, 948*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = 'timestep_end'
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[]
[BCs]
[./fixed_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixed_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./fixed_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = disp_x
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = disp_y
[../]
[./disp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 210666666666.666667
poissons_ratio = 0.3333333333333333
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 285788383.2488647 # = sqrt(3)*165e6 = sqrt(3) * yield in shear
hardening_constant = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.01 # use 0.0001 for a nearly exact match
end_time = 2.0
[]
[Postprocessors]
[./analytic_xx]
type = FunctionValuePostprocessor
function = stress_xx
[../]
[./analytic_yy]
type = FunctionValuePostprocessor
function = stress_yy
[../]
[./analytic_zz]
type = FunctionValuePostprocessor
function = stress_zz
[../]
[./stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 0
[../]
[./stress_yy]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[./stress_zz]
type = ElementalVariableValue
variable = stress_zz
elementid = 0
[../]
[./stress_xx_l2_error]
type = ElementL2Error
variable = stress_xx
function = stress_xx
[../]
[./stress_yy_l2_error]
type = ElementL2Error
variable = stress_yy
function = stress_yy
[../]
[./stress_zz_l2_error]
type = ElementL2Error
variable = stress_zz
function = stress_zz
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform1.i
# apply uniform stretch in x, y and z directions.
# trial_stress(0, 0) = -2
# trial_stress(1, 1) = 6
# trial_stress(2, 2) = 10
# With tensile_strength = 2, the algorithm should return to trace(stress) = 2, or
# stress(0, 0) = -6
# stress(1, 1) = 2
# stress(2, 2) = 6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/multiphase_mechanics/multiphasestress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./eta1]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./eta2]
[./InitialCondition]
type = FunctionIC
function = 'y/2'
[../]
[../]
[./eta3]
[./InitialCondition]
type = FunctionIC
function = '(2^0.5-(y-1)^2=(y-1)^2)/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./elasticity_tensor_C]
type = ComputeElasticityTensor
base_name = C
fill_method = symmetric9
C_ijkl = '1.1e6 1e5 0 1e6 0 1e6 .5e6 .2e6 .5e6'
[../]
[./strain_C]
type = ComputeSmallStrain
base_name = C
eigenstrain_names = 'C_eigenstrain'
[../]
[./stress_C]
type = ComputeLinearElasticStress
base_name = C
[../]
[./eigenstrain_C]
type = ComputeEigenstrain
base_name = C
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'C_eigenstrain'
[../]
[./switching_A]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
[../]
[./switching_B]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
[../]
[./switching_C]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
[../]
[./combined]
type = MultiPhaseStressMaterial
phase_base = 'A B C'
h = 'h1 h2 h3'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface13.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 2.0E-6m in y direction and 0E-6 in z direction.
# trial stress_yy = 2 and stress_zz = 0
#
# Then SimpleTester1 should activate and the algorithm will return to
# stress_yy=1
# internal1 should be 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2.0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface13
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/j2_plasticity/small_deform3.i
# UserObject J2 test
# apply uniform compression in x direction to give
# trial stress_xx = -7, so sqrt(3*J2) = 7
# with zero Poisson's ratio, this should return to
# stress_xx = -3, stress_yy = -2 = stress_zz
# (note that stress_xx - stress_yy = stress_xx - stress_zz = -1, so sqrt(3*j2) = 1,
# and that the mean stress remains = -7/3)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-3.5E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i
# apply repeated stretches to observe cohesion hardening, with cubic
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningCubic
value_0 = 1E3
value_residual = 2E3
internal_limit = 0.00007
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden4
exodus = true
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/cavity_pressure/3d.i
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform4.i
# apply nonuniform compression in x, y and z directions such that
# trial_stress(0, 0) = 2
# trial_stress(1, 1) = -8
# trial_stress(2, 2) = -10
# With compressive_strength = -1, the algorithm should return to trace(stress) = -1, or
# stress(0, 0) = 7
# stress(1, 1) = -3
# stress(2, 2) = -5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-4E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningConstant
value = 2
[../]
[./compressive_strength]
type = TensorMechanicsHardeningConstant
value = -1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_4/plane4_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculator ComputeAxisymmetricRZFiniteStrain,
# which is generated through the use of the TensorMechanics MasterAction.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_z]
type = Pressure
variable = disp_z
boundary = outer
component = 1
function = '200000*t'
[../]
[./interior_pressure_r]
type = Pressure
variable = disp_r
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_z]
type = Pressure
variable = disp_z
boundary = inner
component = 1
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface02.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0E-6m in y direction and 2.0E-6 in z direction.
# trial stress_yy = 0 and stress_zz = 2.0
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1, but this will require a negative plasticity
# multiplier for SimpleTester2, so it will be deactivated, and the algorithm will return to
# stress_yy = 0, stress_zz = 1
# internal0 should be 1.0, and others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '2.0E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface02
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/DiffuseCreep/stress.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/auxkernels/principalstress.i
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
zmin=0.0
zmax=1.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[./right]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '-0.5*t'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_max]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_mid]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_min]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./peeq]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
variable = peeq
scalar_type = EffectiveStrain
[../]
[./stress_max]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_max
scalar_type = MaxPrincipal
[../]
[./stress_mid]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_mid
scalar_type = MidPrincipal
[../]
[./stress_min]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_min
scalar_type = MinPrincipal
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_max]
type = ElementAverageValue
variable = stress_max
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_mid]
type = ElementAverageValue
variable = stress_mid
block = 'ANY_BLOCK_ID 0'
[../]
[./stress_min]
type = ElementAverageValue
variable = stress_min
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform2_outer_tip.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1.5E-6*x+2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 4
mc_interpolation_scheme = outer_tip
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2_outer_tip
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform5.i
# Using CappedMohrCoulomb with tensile failure only
# A single element is incrementally stretched in the in the z and x directions
# This causes the return direction to be along the hypersurface sigma_III = 0
# and the resulting stresses are checked to lie on the expected yield surface
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = finite
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '4*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'z*(t-0.5)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = max_principal_stress
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = mid_principal_stress
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = min_principal_stress
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 2.0'
[../]
[./tensile]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 0.1
type = Transient
[]
[Outputs]
file_base = small_deform5
csv = true
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/karthik-eg-1.i
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
nz = 10
xmax = 10
ymax = 10
zmax = 100
[]
[Variables]
[./x_disp]
block = 0
[../]
[./y_disp]
block = 0
[../]
[./z_disp]
block = 0
[../]
[]
[TensorMechanics]
[./solid]
# disp_x = x_disp
# disp_y = y_disp
# disp_z = z_disp
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
active = 'fcrysp'
[./felastic]
type = FiniteStrainElasticMaterial
block = 0
fill_method = symmetric9
disp_x = x_disp
disp_y = y_disp
disp_z = z_disp
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[./fcrysp]
type = FiniteStrainCrystalPlasticity
block = 0
disp_y = y_disp
disp_x = x_disp
disp_z = z_disp
flowprops = '1 12 0.001 0.1'
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
nss = 12
hprops = '1.0 541.5 60.8 109.8'
gprops = '1 12 60.8'
fill_method = symmetric9
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Functions]
[./topdisp]
type = ParsedFunction
value = 0.7*t
[../]
[./tpress]
type = ParsedFunction
value = -200*t
[../]
[]
[BCs]
[./zbc]
type = DirichletBC
variable = z_disp
boundary = back
value = 0
[../]
[./ybc]
type = DirichletBC
variable = y_disp
boundary = bottom
value = 0
[../]
[./xbc]
type = DirichletBC
variable = x_disp
boundary = left
value = 0
[../]
[./zmove]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = topdisp
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 3
index_j = 3
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = e_zz
index_i = 3
index_j = 3
execute_on = timestep_end
block = 0
[../]
[]
[Postprocessors]
[./szz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./ezz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
num_steps = 1000
end_time = 1
dt = 0.02
dtmax = 0.02
dtmin = 0.02
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-08
nl_rel_step_tol = 1e-08
nl_abs_step_tol = 1e-08
abort_on_solve_fail = true
n_startup_steps = 0.0
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_aug.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
tangential_tolerance = 1e-3
formulation = augmented_lagrange
system = constraint
normalize_penalty = true
penalty = 1e8
model = frictionless
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_test.i
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculator ComputeAxisymmetricRZFiniteStrain,
# which is generated through the use of the TensorMechanics MasterAction.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./_elastic_strain]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = ADDirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = ADDirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = outer
component = 0
function = '200000*t'
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 1
function = '200000*t'
[../]
[./interior_pressure_r]
type = ADPressure
variable = disp_r
boundary = inner
component = 0
function = '100000*t'
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 1
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar3.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.25E-6*y*sin(t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = TensorMechanicsHardeningConstant
value = 0.9
[../]
[./psi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = phi
dilation_angle = psi
yield_function_tolerance = 1E-8
shift = 1E-8
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
deactivation_scheme = safe
max_NR_iterations = 3
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
debug_jac_at_stress = '10 5 2 5 11 -1 2 -1 12'
debug_jac_at_pm = '1 1 1 1 1 1'
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6 1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar3
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/beam_eigenstrain_transfer/subapp2_uo_transfer.i
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(1000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = axial_strain
num_points = 11
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
modules/combined/test/tests/cavity_pressure/multiple_postprocessors.i
#
# Cavity Pressure Test (Volume input as a vector of postprocessors)
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# In this test the internal volume is calculated as the sum of two Postprocessors
# internalVolumeInterior and internalVolumeExterior. This sum equals the value
# reported by the internalVolume postprocessor.
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = 'internalVolumeInterior internalVolumeExterior'
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./internalVolumeInterior]
type = InternalVolume
boundary = '1 2 3 4 5 6'
execute_on = 'initial linear'
[../]
[./internalVolumeExterior]
type = InternalVolume
boundary = '13 14 15 16 17 18'
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_02.i
# apply shears and Cosserat rotations and observe the stresses and moment-stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.155192
# b0110 = 0.000534
# b0101 = 0.000107
# and with
# u_x = y + 2*z
# u_y = x -1.5*z
# u_z = 1.1*x - 2.2*y
# wc_x = 0.5
# wc_y = 0.8
# then
# strain_xx = 0
# strain_xy = 1
# strain_xz = 2 - 0.8 = 1.2
# strain_yx = 1
# strain_yy = 0
# strain_yz = -1.5 + 0.5 = -1
# strain_zx = 1.1 + 0.8 = 1.9
# strain_zy = -2.2 - 0.5 = -2.7
# strain_zz = 0
# so that
# stress_xy = a0101*(1+1) = 0.583333
# stress_xz = a66*1.2 + a66*1.9 = 0.058021
# stress_yx = a0101*(1+1) = 0.583333
# stress_yz = a66*(-1) + a66*(-2.7) = -0.06925
# old stress_zx = a77*1.2 + a66*1.9 = 0.221793
# old stress_zy = a77*(-1) + a66*(-2.7) = -0.205728
# stress_zx = a66*1.2 + a77*1.9 = 0.317325
# stress_zy = a66*(-1) + a77*(-2.7) = -0.437735
# and all others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./strain_xx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right'
function = 'y+2*z'
[../]
[./strain_yy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom top'
function = 'x-1.5*z'
[../]
[./strain_zz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'back front'
function = '1.1*x-2.2*y'
[../]
[./wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right'
function = 0.5
[../]
[./wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right'
function = 0.8
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_02
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface12.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 3
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.5E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = .15 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester1 should activate and the algorithm will return to
# stress_zz=1=stress_yy
# internal0 should be 0.5 and internal1 should be 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.5E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 3
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface12
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i
# Beam bending.
# One end is clamped and the other end is subjected to a stress
# and micromechanical moment that will induce bending.
# The stress that will induce bending around the y axis is
# stress_xx = EAz
# This implies a micromechanical moment-stress of
# m_yx = (1/12)EAh^2 for joint_shear_stiffness=0.
# For joint_shear_stiffness!=0, the micromechanical moment-stress
# is
# m_yx = (1/12)EAa^2 G/(ak_s + G)
# All other stresses and moment stresses are assumed to be zero.
# With joint_shear_stiffness=0, and introducing D=-poisson*A, the
# nonzero strains are
# ep_xx = Az
# ep_yy = Dz
# ep_zz = Dz
# kappa_xy = -D
# kappa_yx = A
# This means the displacements are:
# u_x = Axz
# u_y = Dzy
# u_z = -(A/2)x^2 + (D/2)(z^2-y^2)
# wc_x = -Dy
# wc_y = Ax
# wc_z = 0
# This is bending of a bar around the y axis, in plane stress
# (stress_yy=0). Displacements at the left-hand (x=0) are applied
# according to the above formulae; wc_x and wc_y are applied throughout
# the bar; and stress_xx is applied at the right-hand end (x=10).
# The displacements are measured and
# compared with the above formulae.
# The test uses: E=1.2, poisson=0.3, A=1.11E-2, h=2, ks=0.1, so
# stress_xx = 1.332E-2*z
# m_yx = 0.2379E-2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 10
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
#use_displaced_mesh = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./clamp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = left
function = '-0.3*(z*z-y*y)/2.0*1.11E-2'
[../]
[./clamp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = left
function = '-0.3*z*y*1.11E-2'
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_stress]
type = FunctionNeumannBC
boundary = right
function = z*1.2*1.11E-2
variable = disp_x
[../]
[./fix_wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left' # right top bottom front back'
function = '0.3*y*1.11E-2'
[../]
[./fix_wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left' # right top bottom front back'
function = '1.11E-2*x'
[../]
[./end_moment]
type = VectorNeumannBC
boundary = right
variable = wc_y
vector_value = '2.3785714286E-3 0 0'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
sort_by = x
variable = 'disp_x disp_y disp_z stress_xx stress_xy stress_xz stress_yx stress_yy stress_yz stress_zx stress_zy stress_zz wc_x wc_y wc_z couple_stress_xx couple_stress_xy couple_stress_xz couple_stress_yx couple_stress_yy couple_stress_yz couple_stress_zx couple_stress_zy couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 2.0
joint_normal_stiffness = 1E16
joint_shear_stiffness = 0.1
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -ksp_max_it -sub_pc_factor_shift_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'gmres asm lu 1E-11 1E-11 10 1E-15 1E-10 100 NONZERO 2 100'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_02_apply_stress
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
zeta = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
factor = 1
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalMaxValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalMaxValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalMaxValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pulled
# downwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = max(-10*t,-10)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 1E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
num_steps = 8
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_and_shear
exodus = true
csv = true
[]
modules/tensor_mechanics/test/tests/multi/three_surface20.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 1.1E-6m in y direction and 1.7E-6 in z direction.
# trial stress_yy = 1.1 and stress_zz = 1.7
#
# Then all yield functions will activate
# However, there is linear dependence. SimpleTester1 will be rutned off.
# The algorithm will return to
# stress_yy=0.5 and stress_zz=1
# internal0=0.1, internal2=0.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1.1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.7E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface20
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/planar_hard1.i
# apply uniform stretches in x, y and z directions.
# let mc_cohesion = 10, mc_cohesion_residual = 2, mc_cohesion_rate =
# With cohesion = C, friction_angle = 60deg, tip_smoother = 4, the
# algorithm should return to
# sigma_m = C*Cos(60)/Sin(60)
# This allows checking of the relationship for C
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 2
rate = 1E4
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
use_custom_returnMap = true
shift = 1E-12
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-12
plastic_models = mc
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = planar_hard1
exodus = false
[./csv]
type = CSV
execute_on = timestep_end
[../]
[]
modules/tensor_mechanics/test/tests/multi/mc_wpt_1.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./mc]
type = FiniteStrainMultiPlasticity
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
ep_plastic_tolerance = 1E-9
plastic_models = 'mc wpt'
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = mc_wpt_1
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/combined/test/tests/poro_mechanics/undrained_oedometer.i
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Biot coefficient)*(Biot modulus)*disp_z/L
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.03*t
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/static_deformations/layered_cosserat_03.i
# apply deformations and observe the moment-stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.310383
# b0101 = 0.000534
# b0110 = -0.000107
# and with
# wc_x = x + 2*y + 3*z
# wc_y = -1.1*x - 2.2*y - 3.3*z
# then
# curvature_xy = 2
# curvature_yx = -1.1
# and all others are either zero at (x,y,z)=(0,0,0) or unimportant for layered Cosserat
# so that
# m_xy = b0101*(2) + b0110*(-1.1) = 0.00118
# m_yx = b0110*2 + b0101*(-1.1) = -0.000801
# and all others zero (at (x,y,z)=(0,0,0))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right'
function = 'x+2*y+3*z'
[../]
[./wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right'
function = '-1.1*x-2.2*y-3.3*z'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_03
csv = true
[]
modules/combined/test/tests/contact_verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template1.i
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x639]
type = NodalVariableValue
nodeid = 638
variable = disp_x
[../]
[./disp_y639]
type = NodalVariableValue
nodeid = 638
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 3.5
l_tol = 1e-3
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x639 disp_y639 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
master = 2
slave = 3
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
system = Constraint
[../]
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/except2.i
# checking for exception error messages
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '1E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 1
mc_edge_smoother = 25
mc_lode_cutoff = -1.0E-6
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = except2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/visco/visco_finite_strain.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = visco_finite_strain_out
exodus = true
[]
modules/tensor_mechanics/test/tests/visco/visco_small_strain.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeLinearViscoelasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = visco_small_strain_out
exodus = true
[]
modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
constant_fluid_bulk_modulus = 8
constant_biot_modulus = 4.7058823529
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_constM
[./csv]
interval = 3
type = CSV
[../]
[]
modules/porous_flow/examples/coal_mining/coarse_with_fluid.i
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
input = file
[../]
[./xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[../]
[./ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[../]
[./ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[../]
[./zmax]
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
input = ymax
[../]
[./zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsBetweenSubdomainsGenerator
master_block = 3
paired_block = 1
input = excav
new_boundary = roof
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./porepressure]
scaling = 1E-5
[../]
[]
[ICs]
[./porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[./poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[../]
[./mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[../]
[./flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[../]
[./poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = porepressure
fluid_component = 0
[../]
[]
[AuxVariables]
[./saturation]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_x]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_y]
order = CONSTANT
family = MONOMIAL
[../]
[./darcy_z]
order = CONSTANT
family = MONOMIAL
[../]
[./porosity]
order = CONSTANT
family = MONOMIAL
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./perm_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[../]
[./darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[../]
[./darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[../]
[./darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[../]
[./porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[../]
[./total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[../]
[./total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[../]
[./perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[../]
[./perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[../]
[./roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[../]
[./roof_bcs]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[../]
[./ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[../]
[./ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[./roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[../]
[./pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[../]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Modules]
[./FluidProperties]
[./simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[./ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
[../]
[./simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[../]
[./porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[../]
[./porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[../]
[./permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[../]
[./permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[../]
[./relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[../]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[./min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[../]
[./max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = perm_zz
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
# petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
# petsc_options_value = ' lu mumps'
# best if you do not have mumps:
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
# best if you do not have mumps or superlu_dist:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.014706
end_time = 0.014706 #0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./elastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./plastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./uncracked_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy vonmises_stress'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./elastic_strain_yy]
type = RankTwoAux
variable = elastic_strain_yy
rank_two_tensor = uncracked_elastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./plastic_strain_yy]
type = RankTwoAux
variable = plastic_strain_yy
rank_two_tensor = uncracked_plastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./uncracked_stress_yy]
type = RankTwoAux
variable = uncracked_stress_yy
rank_two_tensor = uncracked_stress
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.001 0.003 0.023'
y = '0.85 1.0 1.25 1.5'
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 5e-3'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 0.85
hardening_function = hf
base_name = uncracked
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./av_uncracked_stress_yy]
type = ElementAverageValue
variable = uncracked_stress_yy
[../]
[./max_c]
type = ElementExtremeValue
variable = c
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2.0e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/multi/paper3.i
# This runs the third example models described in the 'MultiSurface' plasticity paper
# Just change the deactivation_scheme
#
# Plasticity models:
# Mohr-Coulomb with cohesion = 40MPa, friction angle = 35deg, dilation angle = 5deg
# Tensile with strength = 1MPa
# WeakPlaneTensile with strength = 1000Pa
# WeakPlaneShear with cohesion = 0.1MPa and friction angle = 25, dilation angle = 5deg
#
# Lame lambda = 1.2GPa. Lame mu = 1.2GPa (Young = 3GPa, poisson = 0.5)
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 4E7
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1.0
shift = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./mc_smooth]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4E6
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1.0
shift = 1.0
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
use_custom_cto = false
[../]
[./tensile_smooth]
type = TensorMechanicsPlasticTensile
tensile_strength = ts
tensile_tip_smoother = 1E5
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wpt_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = wpt_str
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[./wps_c]
type = TensorMechanicsHardeningConstant
value = 1.0E5
[../]
[./wps_tan_phi]
type = TensorMechanicsHardeningConstant
value = 0.466
[../]
[./wps_tan_psi]
type = TensorMechanicsHardeningConstant
value = 0.087
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = wps_c
tan_friction_angle = wps_tan_phi
tan_dilation_angle = wps_tan_psi
smoother = 1.0E4
yield_function_tolerance = 1.0
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.2E9 1.2E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-7
plastic_models = 'tensile_smooth mc_smooth wpt wps'
max_NR_iterations = 30
specialIC = 'none'
deactivation_scheme = 'optimized'
min_stepsize = 1E-6
max_stepsize_for_dumb = 1E-2
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1 1 1'
debug_jac_at_intnl = '1 1 1 1'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6 1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6 1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper3
exodus = false
csv = true
[]
modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = right
component = 0
factor = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the hardening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./x_disp]
[../]
[./y_disp]
[../]
[./z_disp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[../]
[./topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[../]
[./topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./wps_internal]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningGaussian
value_0 = 1E3
value_residual = 700
rate = 2E16
[../]
[./tanphi]
type = TensorMechanicsHardeningGaussian
value_0 = 1
value_residual = 0.577350269
rate = 2E16
[../]
[./tanpsi]
type = TensorMechanicsHardeningGaussian
value_0 = 0.0874886635
value_residual = 0.01745506
rate = 2E16
[../]
[./wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
max_NR_iterations = 100
min_stepsize = 1
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
file_base = small_deform_harden2
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/paper5.i
# This runs the J2+cap+hardening example model described in the 'MultiSurface' plasticity paper
#
# Plasticity models:
# J2 with strength = 20MPa to 10MPa in 100% strain
# Compressive cap with strength = 15MPa to 5MPa in 100% strain
#
# Lame lambda = 1.2GPa. Lame mu = 1.2GPa (Young = 3GPa, poisson = 0.25)
#
# A line of elements is perturbed randomly, and return to the yield surface at each quadpoint is checked
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1000
ny = 125
nz = 1
xmin = 0
xmax = 1000
ymin = 0
ymax = 125
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[ICs]
[./x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[../]
[./y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[../]
[./z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '0'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl0]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl1]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./linesearch]
order = CONSTANT
family = MONOMIAL
[../]
[./ld]
order = CONSTANT
family = MONOMIAL
[../]
[./constr_added]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./intnl0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl0
[../]
[./intnl1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl1
[../]
[./linesearch]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = linesearch
[../]
[./ld]
type = MaterialRealAux
property = plastic_linear_dependence_encountered
variable = ld
[../]
[./constr_added]
type = MaterialRealAux
property = plastic_constraints_added
variable = constr_added
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./max_f0]
type = ElementExtremeValue
variable = f0
outputs = console
[../]
[./max_f1]
type = ElementExtremeValue
variable = f1
outputs = console
[../]
[./max_iter]
type = ElementExtremeValue
variable = iter
outputs = console
[../]
[./av_iter]
type = ElementAverageValue
variable = iter
outputs = 'console csv'
[../]
[./av_linesearch]
type = ElementAverageValue
variable = linesearch
outputs = 'console csv'
[../]
[./av_ld]
type = ElementAverageValue
variable = ld
outputs = 'console csv'
[../]
[./av_constr_added]
type = ElementAverageValue
variable = constr_added
outputs = 'console csv'
[../]
[]
[UserObjects]
[./yield_strength]
type = TensorMechanicsHardeningCubic
value_0 = 20E6
value_residual = 10E6
internal_limit = 1
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = yield_strength
yield_function_tolerance = 1.0E2
internal_constraint_tolerance = 1.0E-7
use_custom_returnMap = false
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = 15E6
value_residual = 5E6
internal_limit = 1
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = -1
strength = compressive_strength
yield_function_tolerance = 1.0E2
internal_constraint_tolerance = 1.0E-7
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1.2E9 1.2E9'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-5
plastic_models = 'j2 cap'
max_NR_iterations = 10
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
tangent_operator = elastic # tangent operator is unimportant in this test
debug_fspb = crash
debug_jac_at_stress = '10E6 0 0 0 10E6 0 0 0 10E6'
debug_jac_at_pm = '1E-2 1E-2'
debug_jac_at_intnl = '0.05 0.05'
debug_stress_change = 1E1
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = paper5
exodus = false
csv = true
perf_graph = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_4/brick4_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_incremental.i
# this test checks the asixymmetric 1D generalized plane strain formulation using incremental small strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DIncrementalStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./elastic]
type = ComputeFiniteStrainElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-5
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 3e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/gravity/gravity_qp_select.i
# Gravity Test
#
# This test is similar to the other gravity tests, but it also tests the
# capability in MaterialTensorAux to return the stress of a single,
# specified integration point, rather than the element average.
# To get the stress at a single integration point, set the parameter
# qp_select to the integration point number (i.e. 0-9 for a quad 8)
# in the AuxKernel
#
# The mesh for this problem is a unit square.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero on each of side that faces a negative
# coordinate direction. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(x) = -b*x^2/(2*E)+b*L*x/E
#
# The displacement at x=L is b*L^2/(2*E) = 2*20*1*1/(2*1e6) = 0.00002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(x) = b*(L-x)
#
# The stress at x=0 is b*L = 2*20*1 = 40.
#
# Note: The isoparametric coordinate for a quad8 (fourth order) element
# is: +/- 0.77459667 and 0. For a 1 unit square with the edge of
# the element in the x = 0 plane, there would be an integration point
# at x_coordinate 0.5 - 0.5*0.77459667 (0.11270167), 0.5, and
# 0.50 + 0.5*0.77459667 (0.88729834).
#
# The corresponding stresses are:
#
# S(0.11270167) = 40(1-0.11270167) = 35.491933
# S(0.5) = 40(1-0.5) = 20
# S(0.88729834) = 40(1-0.88729834) = 4.5080664
#
# These stresses are a precise match to the simulation result.
#
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = gravity_2D.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx_qp_0]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_1]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_2]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_3]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_4]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_5]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_6]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_7]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_8]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
#incremental = true
add_variables = true
generate_output = 'stress_xx'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_x
value = 20
[../]
[]
[AuxKernels]
[./stress_xx_qp_0]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_0
index_i = 0
index_j = 0
selected_qp = 0
[../]
[./stress_xx_qp_1]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_1
index_i = 0
index_j = 0
selected_qp = 1
[../]
[./stress_xx_qp_2]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_2
index_i = 0
index_j = 0
selected_qp = 2
[../]
[./stress_xx_qp_3]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_3
index_i = 0
index_j = 0
selected_qp = 3
[../]
[./stress_xx_qp_4]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_4
index_i = 0
index_j = 0
selected_qp = 4
[../]
[./stress_xx_qp_5]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_5
index_i = 0
index_j = 0
selected_qp = 5
[../]
[./stress_xx_qp_6]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_6
index_i = 0
index_j = 0
selected_qp = 6
[../]
[./stress_xx_qp_7]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_7
index_i = 0
index_j = 0
selected_qp = 7
[../]
[./stress_xx_qp_8]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_8
index_i = 0
index_j = 0
selected_qp = 8
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
bulk_modulus = 0.333333333333333e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
density = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[]
[Outputs]
file_base = gravity_qp_select_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 8
var_name_base = gr
grain_num = 36
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_rand_2D.tex
[../]
[./voronoi]
type = PolycrystalVoronoi
coloring_algorithm = bt
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
fill_method = symmetric9
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x'
variable = 'gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./ngrains]
type = FeatureFloodCount
variable = bnds
threshold = 0.7
[../]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'disp_x,disp_y'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 25
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
file_base = poly36_grtracker
exodus = true
[]
modules/tensor_mechanics/test/tests/mohr_coulomb/small_deform2.i
# apply repeated stretches in x, y and z directions, so that mean_stress = 0
# This maps out the yield surface in the octahedral plane for zero mean stress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '2E-6*x*sin(t)'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '2E-6*y*sin(2*t)'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-2E-6*z*(sin(t)+sin(2*t))'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 20
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 20
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 100
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_2/brick2_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+7
al_penetration_tolerance = 1e-8
[../]
[]
modules/porous_flow/examples/thm_example/2D.i
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[./pwater]
initial_condition = 18.3e6
[../]
[./sgas]
initial_condition = 0.0
[../]
[./temp]
initial_condition = 358
[../]
[./disp_r]
[../]
[]
[AuxVariables]
[./rate]
[../]
[./disp_z]
[../]
[./massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[../]
[./massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[../]
[./pgas]
family = MONOMIAL
order = FIRST
[../]
[./swater]
family = MONOMIAL
order = FIRST
[../]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_tt]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[../]
[./mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[../]
[./flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[../]
[./energy_dot]
type = PorousFlowEnergyTimeDerivative
use_displaced_mesh = false
variable = temp
[../]
[./advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[../]
[./conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[../]
[./grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
thermal_eigenstrain_name = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[../]
[./poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[../]
[]
[AuxKernels]
[./rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[../]
[./pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[../]
[./swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[../]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[../]
[./stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[../]
[]
[Functions]
[./decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
value = 'sqrt(10056886.914/t)/11.0'
[../]
[]
[UserObjects]
[./dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[../]
[./pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[../]
[]
[Modules]
[./FluidProperties]
[./water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[../]
[./co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[../]
[../]
[]
[Materials]
[./temperature]
type = PorousFlowTemperature
temperature = temp
[../]
[./ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[../]
[./massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[../]
[./water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[../]
[./gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[../]
[./porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[../]
[./permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[../]
[./relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[../]
[./relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[../]
[./thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[../]
[./internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[../]
[./ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[../]
[./thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[../]
[./vol_strain]
type = PorousFlowVolumetricStrain
[../]
[]
[BCs]
[./outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[../]
[./outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[../]
[./outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[../]
[./fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[../]
[./co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[../]
[./cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[../]
[./cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[../]
[]
[Postprocessors]
[./p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[../]
[]
[VectorPostprocessors]
[./ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[../]
[]
[Preconditioning]
active = 'mumps'
[./smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[../]
[./mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[../]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[./csv]
type = CSV
sync_only = true
[../]
[]
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform1_cosserat.i
# Using Cosserat with large layer thickness, so this should reduce to standard
# Using CappedMohrCoulombCosserat with tensile failure only
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the minimum principal stress value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 4.0E6
poisson = 0.0
layer_thickness = 1.0
joint_normal_stiffness = 1.0E16
joint_shear_stiffness = 1.0E16
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./tensile]
type = CappedMohrCoulombCosseratStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-9
host_youngs_modulus = 4.0E6
host_poissons_ratio = 0.0
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
nl_abs_tol = 1E-10
type = Transient
[]
[Outputs]
file_base = small_deform1_cosserat
csv = true
[]
modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_cylinder.i
# This test uses the DisplacementAboutAxis boundary condition to twist the top
# of a cylinder while the bottom face of the cylinder remains fixed. The
# TorqueReaction postprocessor is used to calculate the applied torque acting
# on the cylinder at the top face. This test can be extended, with a new mesh,
# to model a crack in the center of the cylinder face under type III loading.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cylinder.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_xx] # stress aux variables are defined for output; this is a way to get integration point variables to the output file
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[Functions]
[./rampConstantAngle]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 0.1
[../]
[]
[Kernels]
[./TensorMechanics]
save_in = 'saved_x saved_y saved_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./top_x]
type = DisplacementAboutAxis
boundary = 2
function = rampConstantAngle
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = 2
function = rampConstantAngle
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 1
variable = disp_y
[../]
[./top_z]
type = DisplacementAboutAxis
boundary = 2
function = rampConstantAngle
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 2
variable = disp_z
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-12
nl_rel_tol = 1e-11
l_tol = 1e-10
start_time = 0.0
dt = 0.25
end_time = 0.5
[]
[Postprocessors]
[./torque]
type = TorqueReaction
boundary = 2
reaction_force_variables = 'saved_x saved_y saved_z'
axis_origin = '10. 10. 10.'
direction_vector = '0 -1.0 1.0'
[../]
[]
[Outputs]
file_base = torque_reaction_cylinder_out
exodus = true
[]
modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_4.i
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.1 0.0'
variable = axial_strain
num_points = 21
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
modules/tensor_mechanics/test/tests/cp_user_object/fileread.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
intvar_read_type = file_input
state_variable_file_name = input_state_variable.txt
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
exodus = true
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/mean_cap_TC/small_deform6.i
# apply nonuniform stretch in x, y and z directions using
# Lame lambda = 0.7E7, Lame mu = 1.0E7,
# trial_stress(0, 0) = 2.9
# trial_stress(1, 1) = 10.9
# trial_stress(2, 2) = 14.9
# With tensile_strength = 2, decaying to zero at internal parameter = 4E-7
# via a Cubic, the algorithm should return to:
# internal parameter = 2.26829E-7
# trace(stress) = 0.799989 = tensile_strength
# stress(0, 0) = -6.4
# stress(1, 1) = 1.6
# stress(2, 2) = 5.6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-7*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3E-7*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '5E-7*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./tensile_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 0
internal_limit = 4E-7
[../]
[./compressive_strength]
type = TensorMechanicsHardeningCubic
value_0 = -1
value_residual = 0
internal_limit = 1E-8
[../]
[./cap]
type = TensorMechanicsPlasticMeanCapTC
tensile_strength = tensile_strength
compressive_strength = compressive_strength
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = true
use_custom_cto = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0.7E7 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-11
plastic_models = cap
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pushed
# upwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
zeta = 1E-2 # higher values mean more damping via stiffness
alpha = 0 # better nonlinear convergence than for alpha>0
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[../]
[./inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[../]
[./inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = min(10*t,1)
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.5E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 0.5
dt = 0.1
type = Transient
[]
[Outputs]
file_base = push_and_shear
exodus = true
csv = true
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_3/cyl3_mu_0_2_pen.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_disps.i
# Beam bending.
# Displacements are applied to a beam and stresses and moment-stresses
# are measured. Note that since these quantities are averaged over
# elements, to get a good agreement with the analytical solution the
# number of elements (nz) should be increased. Using nx=10
# and nz=10 yields roughly 1% error.
# The displacements applied are a pure-bend around the y axis
# with an additional displacement in the y direction so that
# the result (below) will end up being plane stress (stress_yy=0):
# u_x = Axz
# u_y = Dzy
# u_z = -(A/2)x^2 + (D/2)(z^2-y^2)
# wc_x = -Dy
# wc_y = Ax
# wc_z = 0
# Here A and D are arbitrary constants.
# This results in strains being symmetric, and the only
# nonzero ones are
# ep_xx = Az
# ep_yy = Dz
# ep_zz = Dz
# kappa_xy = -D
# kappa_yx = A
# Then choosing D = -poisson*A gives, for layered Cosserat:
# stress_xx = EAz
# m_yx = (1-poisson^2)*A*B = (1/12)EAh^2 (last equality for joint_shear_stiffness=0)
# where h is the layer thickness. All other stress and moment-stress
# components are zero.
# The test uses: E=1.2, poisson=0.3, A=1.11E-2, h=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
xmax = 10
ny = 1
nz = 10
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./clamp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'left right top bottom front back'
function = '-1.11E-2*x*x/2-0.3*(z*z-y*y)/2.0*1.11E-2'
[../]
[./clamp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'left right top bottom front back'
function = '-0.3*z*y*1.11E-2'
[../]
[./clamp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right top bottom front back'
function = '1.11E-2*x*z'
[../]
[./clamp_wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right top bottom front back'
function = '0.3*y*1.11E-2'
[../]
[./clamp_wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right top bottom front back'
function = '1.11E-2*x'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 2.0
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E-15
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_02_apply_disps
exodus = true
[]
modules/porous_flow/test/tests/thm_rehbinder/fixed_outer_rz.i
# A version of fixed_outer.i that uses the RZ cylindrical coordinate system
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40 # this is the r direction
ny = 1 # this is the height direction
xmin = 0.1
xmax = 1
bias_x = 1.1
ymin = 0.0
ymax = 1.0
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[./disp_r]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[./temperature]
[../]
[]
[BCs]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[../]
[./cavity_temperature]
type = DirichletBC
variable = temperature
value = 1000
boundary = left
[../]
[./cavity_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = left
[../]
[./cavity_zero_effective_stress_x]
type = Pressure
component = 0
variable = disp_r
function = 1E6
boundary = left
use_displaced_mesh = false
[../]
[./outer_temperature]
type = DirichletBC
variable = temperature
value = 0
boundary = right
[../]
[./outer_pressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./fixed_outer_disp]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[../]
[]
[AuxVariables]
[./stress_rr]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_pp]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[../]
[./stress_pp] # hoop stress
type = RankTwoAux
rank_two_tensor = stress
variable = stress_pp
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./FluidProperties]
[./the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E12
viscosity = 1.0E-3
density0 = 1000.0
cv = 1000.0
cp = 1000.0
porepressure_coefficient = 0.0
[../]
[../]
[]
[PorousFlowBasicTHM]
coupling_type = ThermoHydroMechanical
multiply_by_density = false
add_stress_aux = true
porepressure = porepressure
temperature = temperature
thermal_eigenstrain_name = thermal_contribution
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1E10
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = thermal_contribution
[../]
[./thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1E-6
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[../]
[./biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 1E12
[../]
[./permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12' # note this is ordered: rr, zz, angle-angle
[../]
[./thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 1E-6
drained_coefficient = 1E-6
[../]
[./thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1E6 0 0 0 1E6 0 0 0 1E6' # note this is ordered: rr, zz, angle-angle
[../]
[]
[VectorPostprocessors]
[./P]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = porepressure
[../]
[./T]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = temperature
[../]
[./U]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = disp_r
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_rtol'
petsc_options_value = 'gmres asm lu 1E-8'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = fixed_outer_rz
execute_on = timestep_end
csv = true
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_4/cyl4_template2.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
modules/tensor_mechanics/test/tests/crystal_plasticity/crysp_read_slip_prop.i
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys_prop.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
tan_mod_type = exact
intvar_read_type = slip_sys_file
num_slip_sys_props = 1
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = crysp_read_slip_prop_out
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/cyl_2/cyl2_mu_0_2_pen.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i
#
[Mesh]
file = necking_quad4.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./disp_r]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./AxisymmetricRZ]
use_displaced_mesh = true
# save_in_disp_r = force_r
save_in_disp_z = force_z
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_r]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[../]
[./strain_rr]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_rr
index_i = 0
index_j = 0
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeAxisymmetricRZFiniteStrain
block = 1
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.1
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-15
l_tol = 1e-9
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./strain_rr]
type = ElementAverageValue
variable = strain_rr
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./disp_z]
type = NodalSum
variable = disp_z
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i
#This test has volumetric deformation gradient as identity
#Test the interface
#Results should match with elasticity
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./volumetric_strain]
type = ComputeVolumetricDeformGrad
pre_deform_grad_name = deformation_gradient
volumetric_deform_grad_name = volumetric_deformation_gradient
post_deform_grad_name = elastic_deformation_gradient
block = 0
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = elastic_deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = elastic_stress
jacobian_name = elastic_jacobian
block = 0
[../]
[./corrected_stress]
type = VolumeDeformGradCorrectedStress
pre_stress_name = elastic_stress
deform_grad_name = volumetric_deformation_gradient
pre_jacobian_name = elastic_jacobian
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
modules/tensor_mechanics/test/tests/mean_cap/small_deform2.i
# apply compression in x, y and z directions such that strain = diag(-1E-6, -2E-6, 3E-6).
# With lame_lambda=0 and lame_mu=1E7, this gives
# trial_Stress = diag(-20, -40, -60), so trial_mean_Stress = -40.
# with a = -1 and strength = 30, the algorithm should return to
# stress = diag(-10, -30, -50)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '-1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '-3E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = f
[../]
[]
[UserObjects]
[./strength]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./cap]
type = TensorMechanicsPlasticMeanCap
a = -1
strength = strength
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mean_cap]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = cap
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/multi/three_surface04.i
# Plasticit models:
# SimpleTester0 with a = 0 and b = 1 and strength = 1
# SimpleTester1 with a = 1 and b = 0 and strength = 1
# SimpleTester2 with a = 1 and b = 1 and strength = 1.5
#
# Lame lambda = 0 (Poisson=0). Lame mu = 0.5E6
#
# A single element is stretched by 0.8E-6m in y direction and 1.5E-6 in z direction.
# trial stress_yy = 0.8 and stress_zz = 1.5
#
# Then SimpleTester0 and SimpleTester2 should activate and the algorithm will return to
# the corner stress_yy=0.5, stress_zz=1
# internal0 should be 0.2, and internal2 should be 0.3
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.8E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1.5E-6*z'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./int0]
order = CONSTANT
family = MONOMIAL
[../]
[./int1]
order = CONSTANT
family = MONOMIAL
[../]
[./int2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./int0]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 0
variable = int0
[../]
[./int1]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 1
variable = int1
[../]
[./int2]
type = MaterialStdVectorAux
property = plastic_internal_parameter
factor = 1E6
index = 2
variable = int2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./int0]
type = PointValue
point = '0 0 0'
variable = int0
[../]
[./int1]
type = PointValue
point = '0 0 0'
variable = int1
[../]
[./int2]
type = PointValue
point = '0 0 0'
variable = int2
[../]
[]
[UserObjects]
[./simple0]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple1]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 0
strength = 1
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[./simple2]
type = TensorMechanicsPlasticSimpleTester
a = 1
b = 1
strength = 1.5
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 0.5E6'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./multi]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = 'simple0 simple1 simple2'
max_NR_iterations = 2
min_stepsize = 1
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = '1 1'
debug_jac_at_intnl = '1 1'
debug_stress_change = 1E-5
debug_pm_change = '1E-6 1E-6'
debug_intnl_change = '1E-6 1E-6'
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = three_surface04
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i
# A column of elements has its bottom pulled down, and then pushed up again.
# Hardening of the tensile strength means that the top element also
# experiences plastic deformation
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = 'if(t>1,-2.0+t,-t)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 1E8
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E8
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
perfect_guess = false
min_step_size = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 3.0
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_push_h
exodus = true
csv = true
[]
modules/combined/test/tests/reference_residual/group_variables.i
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
group_variables = 'disp_x disp_y;
scalar_strain_zz1 scalar_strain_zz2'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./saved_scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[AuxScalarKernels]
[./saved_scalar_strain_zz1_ref_resid]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_scalar_strain_zz1
generalized_plane_strain = gps1_GeneralizedPlaneStrainUserObject
[../]
[./saved_scalar_strain_zz2_ref_resid]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_scalar_strain_zz2
generalized_plane_strain = gps2_GeneralizedPlaneStrainUserObject
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = 1
eigenstrain_names = eigenstrain
[../]
[./strain2]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = 2
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/drucker_prager/small_deform3_native.i
# apply repeated stretches in x z directions, and smaller stretches along the y direction,
# so that sigma_I = sigma_II,
# which means that lode angle = 30deg.
# The allows yield surface in meridional plane to be mapped out
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '1E-6*x*t'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '-1.35E-6*y*t'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./internal]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
smoother = 8
mc_interpolation_scheme = native
yield_function_tolerance = 1E-7
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-13
plastic_models = mc
debug_fspb = crash
[../]
[]
[Executioner]
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3_native
exodus = false
[./csv]
type = CSV
[../]
[]
modules/tensor_mechanics/test/tests/ad_action/two_block_new.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
use_automatic_differentiation = true
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
modules/tensor_mechanics/test/tests/thermal_expansion/multiple_thermal_eigenstrains.i
# The primary purpose of this test is to verify that the ability to combine
# multiple eigenstrains works correctly. It should behave identically to the
# constant_expansion_coeff.i model in this directory. Instead of applying the
# thermal expansion in one eigenstrain, it splits that into two eigenstrains
# that get added together.
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_strain]
type = ComputeIncrementalSmallStrain
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.0e-5
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 0.3e-5
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 0
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
block = 0
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
block = 0
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
block = 0
[../]
[]
modules/combined/test/tests/contact_verification/patch_tests/plane_2/plane2_template1.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 -0.5 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'z'
variable = 'u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = 0.033
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
modules/combined/test/tests/contact_verification/patch_tests/brick_3/brick3_template1.i
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
component = 1
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
slave = 3
master = 4
system = constraint
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_finiteStrain_resid.i
# This tests the save_in_disp residual aux-variables for
# ComputeAxisymmetricRZFiniteStrain, which is generated through the use of the
# TensorMechanics MasterAction. The GeneratedMesh is 1x1, rotated via axisym to
# create a cylinder of height 1, radius 1.
#
# PostProcessor force_z plots the force on the top surface of the cylinder.
#
# Displacement of 0.1 is applied to top of cylinder while other surfaces are
# constrained. Plotting force_z vs stress_z will show a slope of 3.14159 (pi),
# consistent with formula for normal stress:
#
# Stress = force / area
#
# where area is A = pi * r^2 for a circle.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
save_in = 'force_r force_z'
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_r]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_r]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_z]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_z]
order = CONSTANT
family = MONOMIAL
[../]
[./force_r]
order = FIRST
family = LAGRANGE
[../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_r]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_r
execute_on = timestep_end
[../]
[./strain_r]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = strain_r
execute_on = timestep_end
[../]
[./stress_z]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_z
execute_on = timestep_end
[../]
[./strain_z]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = strain_z
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[BCs]
[./no_disp_r_left]
type = ADDirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_r_right]
type = ADDirichletBC
variable = disp_r
boundary = right
value = 0.0
[../]
[./no_disp_z_bottom]
type = ADDirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = ADFunctionDirichletBC
variable = disp_z
boundary = top
function = 't'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.1
dt = 0.01
[]
[Postprocessors]
[./strainR]
type = ElementAverageValue
variable = strain_r
[../]
[./stressR]
type = ElementAverageValue
variable = stress_r
[../]
[./strainZ]
type = ElementAverageValue
variable = strain_z
[../]
[./stressZ]
type = ElementAverageValue
variable = stress_z
[../]
[./force_r]
type = NodalSum
variable = force_r
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
modules/combined/test/tests/eigenstrain/composite.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./s11]
family = MONOMIAL
order = CONSTANT
[../]
[./s22]
family = MONOMIAL
order = CONSTANT
[../]
[./ds11]
family = MONOMIAL
order = CONSTANT
[../]
[./ds22]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./ds11]
type = RankTwoAux
variable = ds11
rank_two_tensor = delastic_strain/dc
index_i = 0
index_j = 0
[../]
[./ds22]
type = RankTwoAux
variable = ds22
rank_two_tensor = delastic_strain/dc
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = 'eigenstrain'
[../]
[./eigen1]
type = GenericConstantRankTwoTensor
tensor_values = '1 -1 0 0 0 0'
tensor_name = eigen1
[../]
[./eigen2]
type = GenericConstantRankTwoTensor
tensor_values = '-1 1 0 0 0 0'
tensor_name = eigen2
[../]
[./weight1]
type = DerivativeParsedMaterial
function = 0.02*c^2
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = 0.02*(1-c)^2
f_name = weight2
args = c
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'eigen1 eigen2'
weights = 'weight1 weight2'
args = c
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
execute_on = final
[]