- displacementsThe nonlinear displacement variables for the problem
C++ Type:std::vector
Description:The nonlinear displacement variables for the problem
DynamicTensorMechanics
Set up dynamic stress divergence kernels
Description
This action creates the DynamicStressDivergenceTensors kernel input blocks in all coordinate directions. More information about the usage of this action can be found at Dynamics
Input Parameters
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector
Description:If specified only the blocks named will be visited and made active
- add_variablesFalseAdd the displacement variables
Default:False
C++ Type:bool
Description:Add the displacement variables
- alpha0alpha parameter for HHT time integration
Default:0
C++ Type:double
Description:alpha parameter for HHT time integration
- base_nameMaterial property base name
C++ Type:std::string
Description:Material property base name
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation increments
Default:TaylorExpansion
C++ Type:MooseEnum
Description:Methods to calculate the finite strain and rotation increments
- eigenstrain_namesList of eigenstrains to be applied in this strain calculation
C++ Type:std::vector
Description:List of eigenstrains to be applied in this strain calculation
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved into
C++ Type:std::vector
Description:The tag names for extra vectors that residual data should be saved into
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
C++ Type:MaterialPropertyName
Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector
Description:If specified blocks matching these identifiers will be skipped.
- incrementalFalseUse incremental or total strain
Default:False
C++ Type:bool
Description:Use incremental or total strain
- static_initializationFalseSet to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
Default:False
C++ Type:bool
Description:Set to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
- strainSMALLStrain formulation
Default:SMALL
C++ Type:MooseEnum
Description:Strain formulation
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_name
C++ Type:std::string
Description:The base name used for the strain. If not provided, it will be set equal to base_name
- temperatureThe temperature
C++ Type:VariableName
Description:The temperature
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possible
Default:False
C++ Type:bool
Description:Flag to use automatic differentiation (AD) objects when possible
- use_displaced_meshFalseWhether to use displaced mesh in the kernels
Default:False
C++ Type:bool
Description:Whether to use displaced mesh in the kernels
- use_finite_deform_jacobianFalseJacobian for corrotational finite strain
Default:False
C++ Type:bool
Description:Jacobian for corrotational finite strain
- volumetric_locking_correctionFalseFlag to correct volumetric locking
Default:False
C++ Type:bool
Description:Flag to correct volumetric locking
- zeta0Name of material property or a constant real number defining the zeta parameter for the Rayleigh damping.
Default:0
C++ Type:MaterialPropertyName
Description:Name of material property or a constant real number defining the zeta parameter for the Rayleigh damping.
Optional Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
- generate_outputAdd scalar quantity output for stress and/or strain
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain
Output Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
C++ Type:std::vector
Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
- diag_save_inThe displacement diagonal preconditioner terms
C++ Type:std::vector
Description:The displacement diagonal preconditioner terms
- save_inThe displacement residuals
C++ Type:std::vector
Description:The displacement residuals
Advanced Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.
Default:z
C++ Type:MooseEnum
Description:The direction of the out-of-plane strain.
- out_of_plane_pressure0Function used to prescribe pressure in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
Default:0
C++ Type:FunctionName
Description:Function used to prescribe pressure in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
- out_of_plane_strainVariable for the out-of-plane strain for plane stress models
C++ Type:VariableName
Description:Variable for the out-of-plane strain for plane stress models
- planar_formulationNONEOut-of-plane stress/strain formulation
Default:NONE
C++ Type:MooseEnum
Description:Out-of-plane stress/strain formulation
- pressure_factor1Scale factor applied to prescribed pressure
Default:1
C++ Type:double
Description:Scale factor applied to prescribed pressure
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
C++ Type:VariableName
Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)