- T_fluidFluid temperature. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:Fluid temperature. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- characteristic_lengthcharacteristic length for Reynolds number calculation. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:characteristic length for Reynolds number calculation. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- fpFluid properties functor userobject
C++ Type:UserObjectName
Controllable:No
Description:Fluid properties functor userobject
- porosityporosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:porosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- pressurePressure. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:Pressure. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- speedVelocity norm. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:Velocity norm. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
GeneralFunctorFluidProps
Creates functor fluid properties using a (P, T) formulation
Overview
This object uses a SinglePhaseFluidProperties
derived-object to compute the following properties:
specific heat at constant volume,
specific heat at constant pressure,
dynamic viscosity,
thermal conductivity,
Prandtl number,
pore/particle Reynolds number
hydraulic Reynolds number
interstitial Reynolds number
the time derivatives of the:
specific heat at constant pressure,
density
and the pressure and temperature derivatives of the:
specific heat at constant pressure,
density
dynamic viscosity,
thermal conductivity,
Prandtl number,
pore Reynolds number
In order to use this with some fluid properties that do not compute the AD version of the density derivatives, such as the Spline Base Table Lookup fluid properties, you can use the "neglect_derivatives_of_density_time_derivative" to neglect the derivatives with regards to the nonlinear variables (usually pressure, temperature) of the time derivative of the density.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- execute_onALWAYSThe list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
Default:ALWAYS
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
- force_define_densityFalseWhether to force the definition of a density functor from the fluid properties
Default:False
C++ Type:bool
Controllable:No
Description:Whether to force the definition of a density functor from the fluid properties
- mu_rampdown1A function describing a ramp down of viscosity over time
Default:1
C++ Type:FunctionName
Controllable:No
Description:A function describing a ramp down of viscosity over time
- neglect_derivatives_of_density_time_derivativeFalseWhether to neglect the derivatives with regards to nonlinear variables of the density time derivatives
Default:False
C++ Type:bool
Controllable:No
Description:Whether to neglect the derivatives with regards to nonlinear variables of the density time derivatives
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- rhoDensity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Controllable:No
Description:Density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/functorfluidprops.i)
- (modules/navier_stokes/test/tests/finite_volume/materials/ergun/ergun.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-action.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/natural_convection/natural_circulation_pipe.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)