- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- execute_onALWAYSThe list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
Default:ALWAYS
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
FunctorKappaFluid
Zero-thermal dispersion conductivity
Description
Most macroscale models neglect thermal dispersion Suikkanen et al. (2014) and Li and Ji (2016), in which case is given as
(1)
Neglecting thermal dispersion is expected to be a reasonable approximation for high Reynolds numbers Gunn (1978) and Littman et al. (1968), but for low Reynolds numbers more sophisticated models should be used Becker and Laurien (2002). Because thermal dispersion acts to increase the diffusive effects, neglecting thermal dispersion is (thermally) conservative in the sense that peak temperatures are usually higher Becker and Laurien (2002).
Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
References
- S. Becker and E. Laurien.
Three-Dimensional Numerical Simulation of Flow and Heat Transport in High-Temperature Nuclear Reactors.
In High Performance Computing in Science and Engineering. 2002.
doi:10.1016/S0029-5493(03)00011-6.[BibTeX]
- D.J. Gunn.
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds.
International Journal of Heat and Mass Transfer, 21:467–476, 1978.
doi:10.1016/0017-9310(78)90080-7.[BibTeX]
- Y. Li and W. Ji.
Thermal Analysis of Pebble-Bed Reactors Based on a Tightly Coupled Mechanical-Thermal Model.
In Proceedings of NURETH. 2016.[BibTeX]
- H. Littman, R.G. Barile, and A.H. Pulsifer.
Gas-Particle Heat Transfer Coefficients in Packed Beds at Low Reynolds Numbers.
I & EC Technology, 7:554–561, 1968.
doi:10.1021/i160028a005.[BibTeX]
- H. Suikkanen, V. Rintala, and R. Kyrki-Rajamaki.
Development of a Coupled Multi-Physics Code System for Pebble Bed Reactor Core Modeling.
In Proceedings of the HTR 2014. 2014.[BibTeX]