- boundaryThe primary boundary
C++ Type:BoundaryName
Controllable:No
Description:The primary boundary
- componentAn integer corresponding to the direction the variable this constraint acts on. (0 for x, 1 for y, 2 for z)
C++ Type:unsigned int
Controllable:No
Description:An integer corresponding to the direction the variable this constraint acts on. (0 for x, 1 for y, 2 for z)
- nodal_areaThe nodal area.
C++ Type:std::vector<VariableName>
Controllable:No
Description:The nodal area.
- nodal_densityThe nodal density.
C++ Type:std::vector<VariableName>
Controllable:No
Description:The nodal density.
- nodal_wave_speedThe nodal wave speed.
C++ Type:std::vector<VariableName>
Controllable:No
Description:The nodal wave speed.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
ExplicitDynamicsContactConstraint
Apply non-penetration constraints on the mechanical deformation in explicit dynamics using a node on face formulation by solving uncoupled momentum-balance equations.
This object implements node-face constraints for the enforcement of normal mechanical contact in explicit dynamics. Surrogate balance-momentum equations are solved at each node on the secondary surface using density and wave speed material properties and the velocities of the two surfaces in contact.
For relevant equations, see (Heinstein et al., 2000), in particular, Equations (15), (21), (26) and (29).
Input Parameters
- displacementsThe displacements appropriate for the simulation geometry and coordinate system
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements appropriate for the simulation geometry and coordinate system
- friction_coefficient0The friction coefficient
Default:0
C++ Type:double
Controllable:No
Description:The friction coefficient
- gap_rateGap rate for output.
C++ Type:std::vector<VariableName>
Controllable:No
Description:Gap rate for output.
- mapped_primary_gap_offsetoffset to the gap distance mapped from primary side
C++ Type:std::vector<VariableName>
Controllable:No
Description:offset to the gap distance mapped from primary side
- modelfrictionlessThe contact model to use
Default:frictionless
C++ Type:MooseEnum
Controllable:No
Description:The contact model to use
- normal_smoothing_distanceDistance from edge in parametric coordinates over which to smooth contact normal
C++ Type:double
Controllable:No
Description:Distance from edge in parametric coordinates over which to smooth contact normal
- normal_smoothing_methodMethod to use to smooth normals (edge_based|nodal_normal_based)
C++ Type:std::string
Controllable:No
Description:Method to use to smooth normals (edge_based|nodal_normal_based)
- orderFIRSTThe finite element order used for projections
Default:FIRST
C++ Type:MooseEnum
Controllable:No
Description:The finite element order used for projections
- overwrite_current_solutionFalseWhether to overwrite the position of contact boundaries with the velocity computed with the contact algorithm.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to overwrite the position of contact boundaries with the velocity computed with the contact algorithm.
- penalty1e+08The penalty to apply. Its optimal value can vary depending on the stiffness of the materials
Default:1e+08
C++ Type:double
Controllable:No
Description:The penalty to apply. Its optimal value can vary depending on the stiffness of the materials
- primaryThe boundary ID associated with the primary side
C++ Type:BoundaryName
Controllable:No
Description:The boundary ID associated with the primary side
- primary_variableThe variable on the primary side of the domain
C++ Type:std::vector<VariableName>
Controllable:No
Description:The variable on the primary side of the domain
- print_contact_nodesFalseWhether to print the number of nodes in contact.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to print the number of nodes in contact.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- secondaryThe secondary boundary
C++ Type:BoundaryName
Controllable:No
Description:The secondary boundary
- secondary_gap_offsetoffset to the gap distance from secondary side
C++ Type:std::vector<VariableName>
Controllable:No
Description:offset to the gap distance from secondary side
- tangential_toleranceTangential distance to extend edges of contact surfaces
C++ Type:double
Controllable:No
Description:Tangential distance to extend edges of contact surfaces
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- vel_xx-component of velocity.
C++ Type:std::vector<VariableName>
Controllable:No
Description:x-component of velocity.
- vel_yy-component of velocity.
C++ Type:std::vector<VariableName>
Controllable:No
Description:y-component of velocity.
- vel_zz-component of velocity.
C++ Type:std::vector<VariableName>
Controllable:No
Description:z-component of velocity.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
References
- Martin W Heinstein, Frank J Mello, Stephen W Attaway, and Tod A Laursen.
Contact—impact modeling in explicit transient dynamics.
Computer Methods in Applied Mechanics and Engineering, 187(3-4):621–640, 2000.[BibTeX]