- inputName of the input
C++ Type:BoundaryName
Controllable:No
Description:Name of the input
- rhoPrescribed density [kg/m^3]
C++ Type:double
Controllable:Yes
Description:Prescribed density [kg/m^3]
- velPrescribed velocity [m/s]
C++ Type:double
Controllable:Yes
Description:Prescribed velocity [m/s]
InletDensityVelocity1Phase
This is a single-phase 1-D flow boundary component in which the density and velocity are specified.
Usage
This component must be connected to a FlowChannel1Phase. See how to connect a flow boundary component.
The user specifies the following parameters:
The formulation of this boundary condition assumes flow entering the flow channel at this boundary.
Reversible flow: If exit conditions are encountered, then the boundary condition is automatically changed to an outlet formulation. This behavior can be disabled by setting the "reversible" parameter to false
.
Input Parameters
- reversibleTrueTrue for reversible, false for pure inlet
Default:True
C++ Type:bool
Controllable:No
Description:True for reversible, false for pure inlet
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
Formulation
This boundary condition uses a ghost cell formulation, where the ghost cell solution is computed from the following quantities:
, the provided exterior density,
, the provided exterior velocity, and
, the interior pressure.
If the boundary is specified to be reversible ("reversible" set to true
) and the flow is exiting, the ghost cell is instead computed with the following quantities:
, the provided exterior velocity,
, the interior density, and
, the interior specific total energy.
rho
C++ Type:double
Controllable:Yes
Description:Prescribed density [kg/m^3]
vel
C++ Type:double
Controllable:Yes
Description:Prescribed velocity [m/s]
reversible
Default:True
C++ Type:bool
Controllable:No
Description:True for reversible, false for pure inlet
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
initial_vel = 0.5
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
# Tests the form loss kernel for 1-phase flow.
#
# This test uses the following parameters and boundary data:
# Inlet: (rho = 996.5563397 kg/m^3, vel = 0.5 m/s)
# Outlet: p_out = 100 kPa
# Length: L = 2 m
# Form loss coefficient: K = 0.5, => K_prime = 0.25 m^-1 (uniform along length)
#
# The inlet pressure is
#
# p_in = p_out + dp ,
#
# where dp is given by the definition of the form loss coefficient:
#
# dp = K * 0.5 * rho * u^2
# = 0.5 * 0.5 * 996.5563397 * 0.5^2
# = 62.28477123125 Pa
#
# This value is output to CSV.
p_out = 100e3
[GlobalParams]
initial_p = ${p_out}
initial_vel = 0.5
initial_T = 300.0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 2
A = 1
n_elems = 5
f = 0
[]
[form_loss]
type = FormLossFromFunction1Phase
flow_channel = pipe
K_prime = 0.25
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.5563397
vel = 0.5
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_out}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 5e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 20
start_time = 0.0
num_steps = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# this is not the right value, should be the value from the inlet ghost cell
[p_in]
type = SideAverageValue
boundary = inlet
variable = p
execute_on = TIMESTEP_END
[]
[p_out]
type = FunctionValuePostprocessor
function = ${p_out}
execute_on = TIMESTEP_END
[]
[dp]
type = DifferencePostprocessor
value1 = p_in
value2 = p_out
execute_on = TIMESTEP_END
[]
[]
[Outputs]
[out]
type = CSV
show = 'dp'
execute_postprocessors_on = final
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 50
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 300
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[T_wall_fn]
type = PiecewiseLinear
x = '0 1'
y = '310 320'
[]
[]
[ControlLogic]
[pipe_T_wall_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = T_wall
function = T_wall_fn
[]
[]
[Postprocessors]
[T_wall]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = T_wall
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 250
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.37931034483
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1e-8
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-10
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0
end_time = 3
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the outlet side of the junction,
# which has half the area of the inlet side, has twice the momentum density
# that the inlet side does.
[rhouA_pipe1]
type = SideAverageValue
variable = rhouA
boundary = pipe1:out
[]
[rhouA_pipe2]
type = SideAverageValue
variable = rhouA
boundary = pipe2:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = rhouA_pipe1
value2 = rhouA_pipe2
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 2
scaling_factor_1phase = '1. 1. 1'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 805
vel = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1. 1. 1.'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1.907720E-04
f = 0.0
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.556340388366266
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.1e6
[]
[]
[Functions]
[inlet_rho_fn]
type = PiecewiseLinear
x = '0 1 '
y = '996 997'
[]
[inlet_vel_fn]
type = PiecewiseLinear
x = '1 2'
y = '1 2'
[]
[]
[ControlLogic]
[inlet_rho_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = rho
function = inlet_rho_fn
[]
[inlet_vel_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = vel
function = inlet_vel_fn
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 20
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Postprocessors]
[rho_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = rho
[]
[vel_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = vel
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
# Junction between 3 pipes, 1 of which goes to a dead-end. In the steady-state,
# no flow should go into the dead-end pipe.
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
initial_T = 250
initial_p = 1e5
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
closures = simple_closures
[]
[AuxVariables]
[p0]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[p0_kernel]
type = StagnationPressureAux
variable = p0
fp = eos
e = e
v = v
vel = vel
[]
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = ParsedFunction
expression = 'if (x < 1, 300 + 50 * sin(2*pi*x + 1.5*pi), 250)'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'inlet_pipe:in'
rho = 1.37931034483
vel = 1
[]
[inlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = T0
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[junction1]
type = VolumeJunction1Phase
connections = 'inlet_pipe:out deadend_pipe:in outlet_pipe:in'
position = '1 0 0'
volume = 1e-8
[]
[outlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'outlet_pipe:out'
p = 1e5
[]
[deadend_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '0 1 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 0
n_elems = 20
[]
[deadend]
type = SolidWall1Phase
input = 'deadend_pipe:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0
end_time = 5
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used for testing that the stagnation pressure in
# the dead-end pipe is equal to the inlet stagnation pressure.
[p0_inlet]
type = SideAverageValue
variable = p0
boundary = inlet_pipe:in
[]
[p0_deadend]
type = SideAverageValue
variable = p0
boundary = deadend_pipe:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = p0_deadend
value2 = p0_inlet
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '1 2 3 4 5'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
# abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
initial_vel = initial_vel_fn
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[A_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.5'
[]
[initial_vel_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 2'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 100
A = A_fn
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
# Tests that friction factor can be provided for 1-phase flow
f = 5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 558
initial_p = 7.0e6
initial_vel = 0
scaling_factor_1phase = '1e0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[f_func]
type = ConstantFunction
value = ${f}
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.907720E-04
D_h = 1.698566E-02
f = f_func
fp = eos
[]
[ht_pipe]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
T_wall = 559
P_hf = 0.0489623493599167
Hw = 50000
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 741.707129779398883
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7.0e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-2
l_max_its = 30
[]
[Postprocessors]
[f]
type = ADElementIntegralMaterialProperty
mat_prop = f_D
block = pipe
[]
[]
[Outputs]
csv = true
show = 'f'
execute_on = 'timestep_end'
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet. In this version of the test, the area discontinuity
# is achieved by connecting two flow channels with a junction.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1
initial_vel = 1
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
initial_vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 310
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[Hw_fn]
type = PiecewiseLinear
x = '0 1'
y = '10 110'
[]
[]
[ControlLogic]
[pipe_Hw_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = Hw
function = Hw_fn
[]
[]
[Postprocessors]
[Hw]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = Hw
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 510
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 3.1415926536e-06
D_h = 2.0000000000e-03
f = 0.1
length = 1
n_elems = 10
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 805
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-1
start_time = 0.0
num_steps = 50
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 5
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'final'
velocity_as_vector = false
show = 'rho vel'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 20
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.561962436227759
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Outputs]
exodus = true
show = 'rhoA rhouA rhoEA'
[console]
type = Console
print_mesh_changed_info = true
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 1e-5
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[Adaptivity]
initial_adaptivity = 0 # There seems to be a bug with non-zero initial adaptivity
refine_fraction = 0.60
coarsen_fraction = 0.30
max_h_level = 4
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
# This test is used to test the JunctionOneToOne1Phase1Phase component with unequal areas
# at the junction. The downstream flow channel has an area half that of the
# upstream pipe, so there should be a pressure increase just upstream of the
# junction due to the partial wall. The velocity should increase through the
# junction (approximately by a factor of 2, but there are compressibility effects).
[GlobalParams]
gravity_vector = '0 0 0'
fp = fp
closures = simple_closures
f = 0
initial_T = 300
initial_p = 1e5
initial_vel = 1
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = InletDensityVelocity1Phase
input = 'left_channel:in'
rho = 466.6666667
vel = 1
[]
[left_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
[]
[right_boundary]
type = Outlet1Phase
input = 'right_channel:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.01
num_steps = 10
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
execute_on = 'initial timestep_end'
velocity_as_vector = false
[]
reversible
Default:True
C++ Type:bool
Controllable:No
Description:True for reversible, false for pure inlet