- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_expressionsVector of values for the constants in constant_names (can be an FParser expression)
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of values for the constants in constant_names (can be an FParser expression)
- constant_namesVector of constants used in the parsed function (use this for kB etc.)
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of constants used in the parsed function (use this for kB etc.)
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- coupled_variablesVector of variables used in the parsed function
C++ Type:std::vector<VariableName>
Controllable:No
Description:Vector of variables used in the parsed function
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- error_on_missing_material_propertiesTrueThrow an error if any explicitly requested material property does not exist. Otherwise assume it to be zero.
Default:True
C++ Type:bool
Controllable:No
Description:Throw an error if any explicitly requested material property does not exist. Otherwise assume it to be zero.
- expressionParsed function (see FParser) expression for the parsed material
C++ Type:FunctionExpression
Controllable:No
Description:Parsed function (see FParser) expression for the parsed material
- material_property_namesVector of material properties used in the parsed function
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of material properties used in the parsed function
- postprocessor_namesVector of postprocessor names used in the parsed function
C++ Type:std::vector<PostprocessorName>
Controllable:No
Description:Vector of postprocessor names used in the parsed function
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- property_nameFName of the parsed material property
Default:F
C++ Type:std::string
Controllable:No
Description:Name of the parsed material property
- tol_namesVector of variable names to be protected from being 0 or 1 within a tolerance (needed for log(c) and log(1-c) terms)
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of variable names to be protected from being 0 or 1 within a tolerance (needed for log(c) and log(1-c) terms)
- tol_valuesVector of tolerance values for the variables in tol_names
C++ Type:std::vector<double>
Controllable:No
Description:Vector of tolerance values for the variables in tol_names
ParsedMaterial
Parsed expression Material.
Sets up a single material property that is computed using a parsed function expression.
A ParsedMaterial
object takes the function expression as an input parameter in the form of a Function Parser expression. Parsed materials (unlike ParsedFunctions
) can couple to nonlinear variables and material properties. In its configuration block all nonlinear variables the function depends on ("coupled_variables"), as well as constants ("constant_names" and "constant_expressions"), other material properties ("material_property_names"), and postprocessors ("postprocessor_names") are declared. Constants can be declared as parsed expressions (which can depend on previously defined constants). One application would be the definition of a temperature , the Boltzmann constant , a defect formation energy , and then an equilibrium defect concentration defined using a Boltzmann factor .
Example
The following material object creates a single property for visualization purposes. It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
(modules/combined/examples/phase_field-mechanics/Pattern1.i)Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- disable_fpoptimizerFalseDisable the function parser algebraic optimizer
Default:False
C++ Type:bool
Controllable:No
Description:Disable the function parser algebraic optimizer
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- enable_ad_cacheTrueEnable cacheing of function derivatives for faster startup time
Default:True
C++ Type:bool
Controllable:No
Description:Enable cacheing of function derivatives for faster startup time
- enable_auto_optimizeTrueEnable automatic immediate optimization of derivatives
Default:True
C++ Type:bool
Controllable:No
Description:Enable automatic immediate optimization of derivatives
- enable_jitTrueEnable just-in-time compilation of function expressions for faster evaluation
Default:True
C++ Type:bool
Controllable:No
Description:Enable just-in-time compilation of function expressions for faster evaluation
- evalerror_behaviornanWhat to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception
Default:nan
C++ Type:MooseEnum
Options:nan, nan_warning, error, exception
Controllable:No
Description:What to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/heat_conduction/test/tests/convective_heat_flux/coupled.i)
- (test/tests/materials/derivative_material_interface/material_chaining.i)
- (modules/optimization/test/tests/optimizationreporter/nonlinear_material/forward_and_adjoint.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no2.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no3.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_no_split.i)
- (test/tests/materials/derivative_material_interface/ad_construction_order.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i)
- (modules/combined/examples/publications/rapid_dev/fig7a.i)
- (modules/combined/examples/phase_field-mechanics/Pattern1.i)
- (modules/combined/examples/effective_properties/effective_th_cond.i)
- (modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
- (modules/combined/examples/publications/rapid_dev/fig8.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringParabolic.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringBase.i)
- (modules/electromagnetics/test/tests/benchmarks/waveguide2D/waveguide2D_test.i)
- (test/tests/materials/derivative_material_interface/parsed_material.i)
- (modules/optimization/test/tests/optimizationreporter/constant_heat_source/forward_nonLinear.i)
- (modules/phase_field/test/tests/MultiPhase/acmultiinterface.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no3.i)
- (test/tests/materials/derivative_material_interface/postprocessors.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i)
- (modules/phase_field/examples/nucleation/cahn_hilliard.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no2.i)
- (modules/combined/test/tests/invOpt_nonlinear/simulation.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no2.i)
- (modules/electromagnetics/test/tests/kernels/scalar_complex_helmholtz/scalar_complex_helmholtz.i)
- (modules/combined/test/tests/invOpt_nonlinear/adjoint.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialSintering_test.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringIdeal.i)
- (modules/phase_field/test/tests/slkks/weighted_average.i)
- (modules/fsi/test/tests/2d-finite-strain-steady/thermal-me.i)
- (test/tests/materials/derivative_material_interface/ad_material_chaining.i)
- (modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/negative_porosity.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso_with_pressure.i)
- (test/tests/bcs/mat_neumann_bc/ad_mat_neumann.i)
- (modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
- (modules/combined/examples/publications/rapid_dev/fig7b.i)
- (tutorials/tutorial02_multiapps/step03_coupling/02_parent_picard.i)
- (modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_single_split.i)
- (test/tests/materials/derivative_material_interface/ad_derivative_parsed_material.i)
- (modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialStrictMassConservation.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i)
- (modules/phase_field/examples/nucleation/refine.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i)
- (tutorials/tutorial02_multiapps/step03_coupling/03_parent_subcycling_picard.i)
- (modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i)
- (modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_vi_solver.i)
- (tutorials/tutorial02_multiapps/step03_coupling/01_parent.i)
- (modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_dual.i)
- (modules/phase_field/test/tests/ad_coupled_gradient_dot/diffusion_rate.i)
- (modules/combined/test/tests/invOpt_nonlinear/forward.i)
- (modules/phase_field/test/tests/actions/gpm_kernel.i)
- (modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i)
- (test/tests/materials/derivative_material_interface/ad_parsed_material.i)
- (modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/gtn_single.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
- (modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_single.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i)
- (test/tests/materials/derivative_material_interface/construction_order.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
- (modules/phase_field/test/tests/SoretDiffusion/split_temp.i)
- (test/tests/bcs/mat_neumann_bc/mat_neumann.i)
- (modules/phase_field/examples/multiphase/GrandPotential3Phase.i)
- (modules/optimization/test/tests/executioners/steady_and_adjoint/nonlinear_diffusion.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no3.i)
- (modules/combined/test/tests/invOpt_nonlinear/homogeneous_forward.i)
- (modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
- (test/tests/kernels/ad_mat_reaction/ad_mat_reaction.i)
- (test/tests/materials/ad_material/conversion/1d_dirichlet.i)
- (modules/optimization/examples/simpleTransient/nonlinear_forward_and_adjoint.i)
- (modules/optimization/test/tests/executioners/transient_and_adjoint/nonlinear_diffusivity.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i)
- (modules/optimization/test/tests/optimizationreporter/constant_heat_source/adjoint_nonLinear.i)
- (modules/electromagnetics/test/tests/bcs/reflectionBC_helmholtz/ReflectionTest.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i)
- (modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
- (modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringDilute.i)
- (modules/phase_field/test/tests/MultiPhase/penalty.i)
- (modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
coupled_variables
C++ Type:std::vector<VariableName>
Controllable:No
Description:Vector of variables used in the parsed function
constant_names
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of constants used in the parsed function (use this for kB etc.)
constant_expressions
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of values for the constants in constant_names (can be an FParser expression)
material_property_names
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of material properties used in the parsed function
postprocessor_names
C++ Type:std::vector<PostprocessorName>
Controllable:No
Description:Vector of postprocessor names used in the parsed function
(modules/combined/examples/phase_field-mechanics/Pattern1.i)
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = '4*c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(c-0.9)^2-0.4'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
property_name = Fc3
expression = '(c-0.9)^2-0.5'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
property_name = F3
sum_materials = 'Fc3 Fe3'
coupled_variables = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(modules/heat_conduction/test/tests/convective_heat_flux/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat]
type = BodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = T_inf
heat_transfer_coefficient = htc
heat_transfer_coefficient_dT = dhtc_dT
[../]
[]
[Materials]
[./T_inf]
type = ParsedMaterial
property_name = T_inf
coupled_variables = temp
expression = 'temp + 1'
[../]
[./htc]
type = ParsedMaterial
property_name = htc
coupled_variables = temp
expression = 'temp / 100 + 1'
[../]
[./dhtc_dT]
type = ParsedMaterial
property_name = dhtc_dT
coupled_variables = temp
expression = '1 / 100'
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
interval = 10
[../]
[]
(test/tests/materials/derivative_material_interface/material_chaining.i)
#
# This test validates the correct application of the chain rule to coupled
# material properties within DerivativeParsedMaterials
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./eta1]
[../]
[./eta2]
[../]
[]
[BCs]
[./left]
variable = eta1
boundary = left
type = DirichletBC
value = 0
[../]
[./right]
variable = eta1
boundary = right
type = DirichletBC
value = 1
[../]
[./top]
variable = eta2
boundary = top
type = DirichletBC
value = 0
[../]
[./bottom]
variable = eta2
boundary = bottom
type = DirichletBC
value = 1
[../]
[]
[Materials]
# T1 := (eta1+1)^4
[./term]
type = DerivativeParsedMaterial
property_name= T1
coupled_variables = 'eta1'
expression = '(eta1+1)^4'
derivative_order = 4
[../]
# in this material we substitute T1 explicitly
[./full]
type = DerivativeParsedMaterial
coupled_variables = 'eta1 eta2'
property_name = F1
expression = '(1-eta2)^4+(eta1+1)^4'
[../]
# in this material we utilize the T1 derivative material property
[./subs]
type = DerivativeParsedMaterial
coupled_variables = 'eta1 eta2'
property_name = F2
expression = '(1-eta2)^4+T1'
material_property_names = 'T1(eta1)'
[../]
# calculate differences between the explicit and indirect substitution version
# the use if the T1 property should include dT1/deta1 contributions!
# This also demonstrated the explicit use of material property derivatives using
# the D[...] syntax.
[./diff0]
type = ParsedMaterial
property_name = D0
expression = '(F1-F2)^2'
material_property_names = 'F1 F2'
[../]
[./diff1]
type = ParsedMaterial
property_name = D1
expression = '(dF1-dF2)^2'
material_property_names = 'dF1:=D[F1,eta1] dF2:=D[F2,eta1]'
[../]
[./diff2]
type = ParsedMaterial
property_name = D2
expression = '(d2F1-d2F2)^2'
material_property_names = 'd2F1:=D[F1,eta1,eta1] d2F2:=D[F2,eta1,eta1]'
[../]
# check that explicitly pulling a derivative yields the correct result by
# taking the difference of the manually calculated 1st derivative of T1 and the
# automatic derivative dT1 pulled in through dT1:=D[T1,eta1]
[./diff3]
type = ParsedMaterial
property_name = E0
expression = '(dTd1-(4*(eta1+1)^3))^2'
coupled_variables = eta1
material_property_names = 'dTd1:=D[T1,eta1]'
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Postprocessors]
[./D0]
type = ElementIntegralMaterialProperty
mat_prop = D0
[../]
[./D1]
type = ElementIntegralMaterialProperty
mat_prop = D1
[../]
[./D2]
type = ElementIntegralMaterialProperty
mat_prop = D2
[../]
[./E0]
type = ElementIntegralMaterialProperty
mat_prop = E0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_tol = 1e-03
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
print_linear_residuals = false
[]
(modules/optimization/test/tests/optimizationreporter/nonlinear_material/forward_and_adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = false
[]
[Variables]
[forwardT]
[]
[adjointT]
nl_sys = adjoint
[]
[]
[Kernels]
[heat_conduction]
type = ADMatDiffusion
variable = forwardT
diffusivity = 'conductivity'
[]
[heat_source]
type = ADBodyForce
function = volumetric_heat_func
variable = forwardT
[]
[]
[DiracKernels]
[pt]
type = ReporterPointSource
variable = adjointT
x_coord_name = measurement_locations/measurement_xcoord
y_coord_name = measurement_locations/measurement_ycoord
z_coord_name = measurement_locations/measurement_zcoord
value_name = measurement_locations/misfit_values
[]
[]
[Materials]
[NonlinearConductivity]
type = ADParsedMaterial
property_name = conductivity
expression = '10+500*forwardT'
coupled_variables = 'forwardT'
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/heat_source'
[]
[]
[BCs]
[left]
type = NeumannBC
variable = forwardT
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = forwardT
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = forwardT
boundary = bottom
value = 2
[]
[top]
type = DirichletBC
variable = forwardT
boundary = top
value = 1
[]
[]
[Reporters]
[measurement_locations]
type = OptimizationData
variable = forwardT
[]
[params]
type = ConstantReporter
real_vector_names = 'heat_source'
real_vector_values = '0' # Dummy
[]
[]
[VectorPostprocessors]
[gradient_vpp]
type = ElementOptimizationSourceFunctionInnerProduct
function = volumetric_heat_func
variable = adjointT
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Executioner]
type = SteadyAndAdjoint
forward_system = nl0
adjoint_system = adjoint
line_search = none
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
l_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
console = false
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no2.i)
# Problem I.2
#
# An infinite plate with a thermal conductivity that varies linearly with
# temperature. Each boundary is exposed to a constant temperature.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'L beta ki ko ui uo'
symbol_values = '1 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( (1 + L*beta*(ki+ko)*(ui-uo)*((L-x)/(ko*L)^2) )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no3.i)
# Problem II.3
#
# The thermal conductivity of an infinitely long hollow cylinder varies
# linearly with temperature: k = k0(1+beta*u). The tube inside radius is ri and
# outside radius is ro. It has a constant internal heat generation q and
# is exposed to the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q k0 ri ro beta u0'
symbol_values = '1200 1 0.2 1.0 1e-3 0'
expression = 'u0+(1/beta)*( ( 1 + 0.5*beta*((ro^2-x^2)-(ro^2-ri^2) * log(ro/x)/log(ro/ri))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_no_split.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = none
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/materials/derivative_material_interface/ad_construction_order.i)
#
# Test the the getDefaultMaterialProperty in DerivativeMaterialInterface.
# This test should only pass, if the construction order of the Materials
# using this interface does not influence the outcome.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
elem_type = QUAD4
[]
[GlobalParams]
derivative_order = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./dummy1]
type = ADDiffusion
variable = c
[../]
[./dummy2]
type = ADTimeDerivative
variable = c
[../]
[]
[Materials]
# derivatives used both before and after being declared
[./sum_a_1]
type = ADDerivativeSumMaterial
property_name = Fa1
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_a]
type = ADDerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_a_2]
type = ADDerivativeSumMaterial
property_name = Fa2
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
# derivatives declared after being used
[./sum_b_1]
type = ADDerivativeSumMaterial
property_name = Fb1
sum_materials = 'Fb'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_b]
type = ADDerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = 'c^4'
[../]
# derivatives declared before being used
[./free_energy_c]
type = ADDerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_c_2]
type = ADDerivativeSumMaterial
property_name = Fc2
sum_materials = 'Fc'
coupled_variables = 'c'
outputs = exodus
[../]
# non-existing derivatives
[./free_energy_d]
type = ADParsedMaterial
property_name = Fd
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_d_1]
type = ADDerivativeSumMaterial
property_name = Fd1
sum_materials = 'Fd'
coupled_variables = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
num_steps = 1
dt = 1e-5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
use_current_history_variable = true
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/publications/rapid_dev/fig7a.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Solid gray curve (1)
# Eigenstrain and elastic energies ar computed per phase and then interpolated.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
# Mesh displacement
[./disp_r]
order = SECOND
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor_1]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase1
fill_method = symmetric_isotropic
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase2
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeRSphericalSmallStrain
base_name = phase1
[../]
[./strain_2]
type = ComputeRSphericalSmallStrain
base_name = phase2
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
# eigenstrain per phase
[./eigenstrain2]
type = ComputeEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
base_name = phase2
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
f_name = Fe1
args = ''
base_name = phase1
derivative_order = 2
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
f_name = Fe2
args = ''
base_name = phase2
derivative_order = 2
[../]
# per phase free energies
[./free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./global_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = F1
fb_name = F2
eta = eta
args = 'c'
W = 4
[../]
# global stress
[./global_stress]
type = TwoPhaseStressMaterial
base_A = phase1
base_B = phase2
[../]
[./elastic_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fe
fa_name = Fe1
fb_name = Fe2
eta = eta
args = 'c'
W = 0
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/energy_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/energy_vpp
[../]
[]
(modules/combined/examples/phase_field-mechanics/Pattern1.i)
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = '4*c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(c-0.9)^2-0.4'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
property_name = Fc3
expression = '(c-0.9)^2-0.5'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
property_name = F3
sum_materials = 'Fc3 Fe3'
coupled_variables = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(modules/combined/examples/effective_properties/effective_th_cond.i)
# This example calculates the effective thermal conductivity across a microstructure
# with circular second phase precipitates. Two methods are used to calculate the effective thermal conductivity,
# the direct method that applies a temperature to one side and a heat flux to the other,
# and the AEH method.
[Mesh] #Sets mesh size to 10 microns by 10 microns
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmax = 10
ymax = 10
[]
[new_nodeset]
input = gen
type = ExtraNodesetGenerator
coord = '5 5'
new_boundary = 100
[]
[]
[Variables] #Adds variables needed for two ways of calculating effective thermal cond.
[T] #Temperature used for the direct calculation
initial_condition = 800
[]
[Tx_AEH] #Temperature used for the x-component of the AEH solve
initial_condition = 800
scaling = 1.0e4 #Scales residual to improve convergence
[]
[Ty_AEH] #Temperature used for the y-component of the AEH solve
initial_condition = 800
scaling = 1.0e4 #Scales residual to improve convergence
[]
[]
[AuxVariables] #Creates second constant phase
[phase2]
[]
[]
[ICs] #Sets the IC for the second constant phase
[phase2_IC] #Creates circles with smooth interfaces at random locations
variable = phase2
type = MultiSmoothCircleIC
int_width = 0.3
numbub = 20
bubspac = 1.5
radius = 0.5
outvalue = 0
invalue = 1
block = 0
[]
[]
[Kernels]
[HtCond] #Kernel for direct calculation of thermal cond
type = HeatConduction
variable = T
[]
[heat_x] #All other kernels are for AEH approach to calculate thermal cond.
type = HeatConduction
variable = Tx_AEH
[]
[heat_rhs_x]
type = HomogenizedHeatConduction
variable = Tx_AEH
component = 0
[]
[heat_y]
type = HeatConduction
variable = Ty_AEH
[]
[heat_rhs_y]
type = HomogenizedHeatConduction
variable = Ty_AEH
component = 1
[]
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
variable = 'Tx_AEH Ty_AEH'
[]
[]
[left_T] #Fix temperature on the left side
type = DirichletBC
variable = T
boundary = left
value = 800
[]
[right_flux] #Set heat flux on the right side
type = NeumannBC
variable = T
boundary = right
value = 5e-6
[]
[fix_x] #Fix Tx_AEH at a single point
type = DirichletBC
variable = Tx_AEH
value = 800
boundary = 100
[]
[fix_y] #Fix Ty_AEH at a single point
type = DirichletBC
variable = Ty_AEH
value = 800
boundary = 100
[]
[]
[Materials]
[thcond] #The equation defining the thermal conductivity is defined here, using two ifs
# The k in the bulk is k_b, in the precipitate k_p2, and across the interaface k_int
type = ParsedMaterial
block = 0
constant_names = 'length_scale k_b k_p2 k_int'
constant_expressions = '1e-6 5 1 0.1'
expression = 'sk_b:= length_scale*k_b; sk_p2:= length_scale*k_p2; sk_int:= k_int*length_scale; if(phase2>0.1,if(phase2>0.95,sk_p2,sk_int),sk_b)'
outputs = exodus
f_name = thermal_conductivity
coupled_variables = phase2
[]
[]
[Postprocessors]
[right_T]
type = SideAverageValue
variable = T
boundary = right
[]
[k_x_direct] #Effective thermal conductivity from direct method
# This value is lower than the AEH value because it is impacted by second phase
# on the right boundary
type = ThermalConductivity
variable = T
flux = 5e-6
length_scale = 1e-06
T_hot = 800
dx = 10
boundary = right
[]
[k_x_AEH] #Effective thermal conductivity in x-direction from AEH
type = HomogenizedThermalConductivity
chi = 'Tx_AEH Ty_AEH'
row = 0
col = 0
scale_factor = 1e6 #Scale due to length scale of problem
[]
[k_y_AEH] #Effective thermal conductivity in x-direction from AEH
type = HomogenizedThermalConductivity
chi = 'Tx_AEH Ty_AEH'
row = 1
col = 1
scale_factor = 1e6 #Scale due to length scale of problem
[]
[]
[Preconditioning]
[SMP]
type = SMP
off_diag_row = 'Tx_AEH Ty_AEH'
off_diag_column = 'Ty_AEH Tx_AEH'
[]
[]
[Executioner]
type = Steady
l_max_its = 15
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1e-04
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 800
xmin = 0
xmax = 80
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 4
[]
[Variables]
[wvy]
[]
[wvo]
[]
[phi]
[]
[PolycrystalVariables]
[]
[V]
[]
[]
[AuxVariables]
[bnds]
[]
[negative_V]
[]
[E_x]
order = CONSTANT
family = MONOMIAL
[]
[E_y]
order = CONSTANT
family = MONOMIAL
[]
[ns_cat_aux]
order = CONSTANT
family = MONOMIAL
[]
[ns_an_aux]
order = CONSTANT
family = MONOMIAL
[]
[T]
[]
[]
[Functions]
[ic_func_gr0]
type = ParsedFunction
expression = '0.5*(1.0-tanh((x)/sqrt(2.0*2.0)))'
[]
[ic_func_gr1]
type = ParsedFunction
expression = '0.5*(1.0+tanh((x)/sqrt(2.0*2.0)))'
[]
[]
[ICs]
[gr0_IC]
type = FunctionIC
variable = gr0
function = ic_func_gr0
[]
[gr1_IC]
type = FunctionIC
variable = gr1
function = ic_func_gr1
[]
[wvy_IC]
type = ConstantIC
variable = wvy
value = 2.7827
[]
[wvo_IC]
type = ConstantIC
variable = wvo
value = 2.7827
[]
[T_IC]
type = ConstantIC
variable = T
value = 1600
[]
[]
[BCs]
[v_left]
type = DirichletBC
preset = true
variable = V
boundary = left
value = 1e-2
[]
[v_right]
type = DirichletBC
preset = true
variable = V
boundary = right
value = 0
[]
[gr0_left]
type = DirichletBC
preset = true
variable = gr0
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[gr1_left]
type = DirichletBC
preset = true
variable = gr1
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[wvo_right]
type = DirichletBC
preset = true
variable = wvo
boundary = right
value = 2.7827
[]
[wvy_right]
type = DirichletBC
preset = true
variable = wvy
boundary = right
value = 2.7827
[]
[]
[Materials]
# Free energy coefficients for parabolic curves
[ks_cat]
type = ParsedMaterial
property_name = ks_cat
coupled_variables = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
expression = '(a*T + b) * Va^2'
[]
[ks_an]
type = ParsedMaterial
property_name = ks_an
coupled_variables = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
expression = '(a*T + b) * Va^2'
[]
[kv_cat]
type = ParsedMaterial
property_name = kv_cat
material_property_names = 'ks_cat'
expression = '10*ks_cat'
[]
[kv_an]
type = ParsedMaterial
property_name = kv_an
material_property_names = 'ks_cat'
expression = '10*ks_cat'
[]
# Diffusivity and mobilities
[chiDy]
type = GrandPotentialTensorMaterial
f_name = chiDy
diffusivity_name = Dvy
solid_mobility = L
void_mobility = Lv
chi = chi_cat
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
[chiDo]
type = GrandPotentialTensorMaterial
f_name = chiDo
diffusivity_name = Dvo
solid_mobility = Lo
void_mobility = Lvo
chi = chi_an
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
# Everything else
[ns_y_min]
type = DerivativeParsedMaterial
property_name = ns_y_min
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_Y'
constant_expressions = '4.37 4.37 8.617343e-5 0.03726'
derivative_order = 2
expression = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_Y'
[]
[ns_o_min]
type = DerivativeParsedMaterial
property_name = ns_o_min
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_O'
constant_expressions = '4.37 4.37 8.617343e-5 0.02484'
derivative_order = 2
expression = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_O'
[]
[sintering]
type = ElectrochemicalSinteringMaterial
chemical_potentials = 'wvy wvo'
electric_potential = V
void_op = phi
Temperature = T
surface_energy = 6.24
grainboundary_energy = 5.18
solid_energy_coefficients = 'kv_cat kv_cat'
void_energy_coefficients = 'kv_cat kv_an'
min_vacancy_concentrations_solid = 'ns_y_min ns_o_min'
min_vacancy_concentrations_void = '26.837 40.256'
defect_charges = '-3 2'
solid_relative_permittivity = 30
solid_energy_model = DILUTE
[]
[density_chi_y]
type = ElectrochemicalDefectMaterial
chemical_potential = wvy
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_cat
solid_density_name = ns_cat
chi_name = chi_cat
void_energy_coefficient = kv_cat
min_vacancy_concentration_solid = ns_y_min
min_vacancy_concentration_void = 26.837
solid_energy_model = DILUTE
defect_charge = -3
solid_relative_permittivity = 30
[]
[density_chi_o]
type = ElectrochemicalDefectMaterial
chemical_potential = wvo
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_an
solid_density_name = ns_an
chi_name = chi_an
void_energy_coefficient = kv_an
min_vacancy_concentration_solid = ns_o_min
min_vacancy_concentration_void = 40.256
solid_energy_model = DILUTE
defect_charge = 2
solid_relative_permittivity = 30
[]
[permittivity]
type = DerivativeParsedMaterial
property_name = permittivity
coupled_variables = 'phi'
material_property_names = 'hs hv'
constant_names = 'eps_rel_solid eps_void_over_e'
constant_expressions = '30 5.52e-2' #eps_void_over_e in 1/V/nm
derivative_order = 2
expression = '-hs * eps_rel_solid * eps_void_over_e - hv * eps_void_over_e'
[]
[void_pre]
type = DerivativeParsedMaterial
property_name = void_pre
material_property_names = 'hv'
constant_names = 'Z_cat Z_an nv_y_min nv_o_min'
constant_expressions = '-3 2 26.837 40.256'
derivative_order = 2
expression = '-hv * (Z_cat * nv_y_min + Z_an * nv_o_min)'
[]
[cat_mu_pre]
type = DerivativeParsedMaterial
property_name = cat_mu_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat'
constant_expressions = '-3'
derivative_order = 2
expression = '-hv * Z_cat / kv_cat'
[]
[an_mu_pre]
type = DerivativeParsedMaterial
property_name = an_mu_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an'
constant_expressions = '2'
derivative_order = 2
expression = '-hv * Z_an / kv_an'
[]
[cat_V_pre]
type = DerivativeParsedMaterial
property_name = cat_V_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat v_scale e '
constant_expressions = '-3 1 1'
derivative_order = 2
expression = 'hv * Z_cat^2 * e * v_scale / kv_cat'
[]
[an_V_pre]
type = DerivativeParsedMaterial
property_name = an_V_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an v_scale e '
constant_expressions = '2 1 1'
derivative_order = 2
expression = 'hv * Z_an^2 * e * v_scale / kv_an'
[]
[]
#This action adds most kernels needed for grand potential model
[Modules]
[PhaseField]
[GrandPotential]
switching_function_names = 'hv hs'
anisotropic = 'true true'
chemical_potentials = 'wvy wvo'
mobilities = 'chiDy chiDo'
susceptibilities = 'chi_cat chi_an'
free_energies_w = 'nv_cat ns_cat nv_an ns_an'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegav omegas'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = Lv
kappa_op = kappa
free_energies_op = 'omegav omegas'
[]
[]
[]
[Kernels]
[barrier_phi]
type = ACBarrierFunction
variable = phi
v = 'gr0 gr1'
gamma = gamma
mob_name = Lv
[]
[kappa_phi]
type = ACKappaFunction
variable = phi
mob_name = Lv
kappa_name = kappa
[]
[Laplace]
type = MatDiffusion
variable = V
diffusivity = permittivity
args = 'phi'
[]
[potential_void_constants]
type = MaskedBodyForce
variable = V
coupled_variables = 'phi'
mask = void_pre
[]
[potential_cat_mu]
type = MatReaction
variable = V
v = wvy
mob_name = cat_mu_pre
[]
[potential_an_mu]
type = MatReaction
variable = V
v = wvo
mob_name = an_mu_pre
[]
[potential_cat_V]
type = MatReaction
variable = V
mob_name = cat_V_pre
[]
[potential_an_V]
type = MatReaction
variable = V
mob_name = an_V_pre
[]
[potential_solid_cat]
type = MaskedExponential
variable = V
w = wvy
T = T
coupled_variables = 'phi gr0 gr1'
mask = hs
species_charge = -3
n_eq = ns_y_min
[]
[potential_solid_an]
type = MaskedExponential
variable = V
w = wvo
T = T
coupled_variables = 'phi gr0 gr1'
mask = hs
species_charge = 2
n_eq = ns_o_min
[]
[]
[AuxKernels]
[bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[negative_V]
type = ParsedAux
variable = negative_V
coupled_variables = V
expression = '-V'
[]
[E_x]
type = VariableGradientComponent
variable = E_x
gradient_variable = negative_V
component = x
[]
[E_y]
type = VariableGradientComponent
variable = E_y
gradient_variable = negative_V
component = y
[]
[ns_cat_aux]
type = MaterialRealAux
variable = ns_cat_aux
property = ns_cat
[]
[ns_an_aux]
type = MaterialRealAux
variable = ns_an_aux
property = ns_an
[]
[]
[Postprocessors]
[ns_cat_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_cat
[]
[ns_an_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_an
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 40
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-8
nl_abs_tol = 1e-13
start_time = 0
num_steps = 2
automatic_scaling = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/publications/rapid_dev/fig8.i)
#
# Fig. 8 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Two growing particles with differnet anisotropic Eigenstrains
#
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 2
nx = 80
ny = 40
xmin = -20
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[../]
[./cnode]
type = ExtraNodesetGenerator
input = gen
coord = '0.0 0.0'
new_boundary = 100
tolerance = 0.1
[../]
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
int_width = 1
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
# particle x positions and radius
P1X=8
P2X=-4
PR=2
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 0.5
invalue = 0.9
[../]
[../]
[./w]
[../]
# Order parameter for the Matrix
[./eta1]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 1.0
invalue = 0.0
[../]
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P2X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
[./eta3]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P1X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
# Lagrange-multiplier
[./lambda]
initial_condition = 1.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta1 eta2 eta3'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.5 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '400 400'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain
[./eigenstrain_2]
type = GenericConstantRankTwoTensor
tensor_name = s2
tensor_values = '0 -0.05 0 0 0 0'
[../]
[./eigenstrain_3]
type = GenericConstantRankTwoTensor
tensor_name = s3
tensor_values = '-0.05 0 0 0 0 0'
[../]
[./eigenstrain]
type = CompositeEigenstrain
weights = 'h2 h3'
tensors = 's2 s3'
args = 'eta2 eta3'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = '4*c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(c-0.9)^2-0.4'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
property_name = Fc3
expression = '(c-0.9)^2-0.5'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeMultiPhaseMaterial
f_name = Fc
fi_names = 'Fc1 Fc2 Fc3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 3
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta2 eta3'
outputs = exodus
output_properties = Fe
derivative_order = 2
[../]
# Penalize phase 2 and 3 coexistence
[./multi_phase_penalty]
type = DerivativeParsedMaterial
property_name = Fp
expression = '50*(eta2*eta3)^2'
coupled_variables = 'eta2 eta3'
derivative_order = 2
outputs = exodus
output_properties = Fp
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe Fp'
coupled_variables = 'c eta1 eta2 eta3'
derivative_order = 2
[../]
[]
[BCs]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 12.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 0.01
[../]
[]
[Outputs]
print_linear_residuals = false
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringParabolic.i)
#input file to test the GrandPotentialSinteringMaterial using the parabolic energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10 * ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringBase.i)
#input file to test the materials GrandPotentialTensorMaterial and GrandPotentialSinteringMaterial
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 17
xmin = 0
xmax = 680
ymin = 0
ymax = 680
[]
[GlobalParams]
op_num = 4
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 490 190 490'
y_positions = '190 190 490 490'
z_positions = ' 0 0 0 0'
radii = '150 150 150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 490
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 190
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 490
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[]
[Materials]
# Free energy coefficients for parabolic curves
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10*ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
outputs = exodus
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 gr2 gr3 T'
constant_names = 'Ef c_GB kB'
constant_expressions = '2.69 0.189 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2 + gr2^2 + gr3^2; exp(-Ef/kB/T) + 4.0 * c_GB * (1 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
solid_energy_coefficient = ks
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/electromagnetics/test/tests/benchmarks/waveguide2D/waveguide2D_test.i)
# Test for EMRobinBC in port and absorbing modes with simple electric plane wave
# 2D, vacuum-filled waveguide with conducting walls
# u^2 + k^2*u = 0, 0 < x < 80, 0 < y < 10, u: R -> C
# k = 2*pi*freq/c, freq = 20e6 Hz, c = 3e8 m/s
[Mesh]
[fmg]
type = FileMeshGenerator
file = waveguide.msh
[]
[]
[Variables]
[E_real]
order = FIRST
family = LAGRANGE
[]
[E_imag]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[inc_y]
type = ParsedFunction
expression = 'sin(pi * y / 10)'
[]
[]
[Kernels]
[diffusion_real]
type = Diffusion
variable = E_real
[]
[coeffField_real]
type = ADMatReaction
reaction_rate = kSquared
variable = E_real
[]
[diffusion_imaginary]
type = Diffusion
variable = E_imag
[]
[coeffField_imaginary]
type = ADMatReaction
reaction_rate = kSquared
variable = E_imag
[]
[]
[BCs]
[top_real]
type = DirichletBC
value = 0
variable = E_real
boundary = top
[]
[bottom_real]
type = DirichletBC
value = 0
variable = E_real
boundary = bottom
[]
[port_real]
type = EMRobinBC
coeff_real = -0.27706242940220277 # -sqrt(k^2 - (pi/10)^2)
sign = positive
profile_func_real = inc_y
profile_func_imag = 0
field_real = E_real
field_imaginary = E_imag
variable = E_real
component = real
mode = port
boundary = port
[]
[exit_real]
type = EMRobinBC
coeff_real = 0.27706242940220277
sign = negative
field_real = E_real
field_imaginary = E_imag
variable = E_real
component = real
mode = absorbing
boundary = exit
[]
[top_imaginary]
type = DirichletBC
value = 0
variable = E_imag
boundary = top
[]
[bottom_imaginary]
type = DirichletBC
value = 0
variable = E_imag
boundary = bottom
[]
[port_imaginary]
type = EMRobinBC
coeff_real = -0.27706242940220277
sign = positive
profile_func_real = inc_y
profile_func_imag = 0
field_real = E_real
field_imaginary = E_imag
variable = E_imag
component = imaginary
mode = port
boundary = port
[]
[exit_imaginary]
type = EMRobinBC
coeff_real = 0.27706242940220277
sign = negative
field_real = E_real
field_imaginary = E_imag
variable = E_imag
component = imaginary
mode = absorbing
boundary = exit
[]
[]
[Materials]
[kSquared]
type = ADParsedMaterial
property_name = kSquared
expression = '0.4188790204786391^2'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
(test/tests/materials/derivative_material_interface/parsed_material.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[AuxVariables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Materials]
[./consts]
type = ParsedMaterial
coupled_variables = 'eta'
expression ='(eta-0.5)^2'
outputs = exodus
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/optimization/test/tests/optimizationreporter/constant_heat_source/forward_nonLinear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[Variables]
[T]
initial_condition = 100
[]
[]
[Kernels]
[heat_conduction]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[]
[heat_source]
type = BodyForce
function = volumetric_heat_func
variable = T
[]
[]
[BCs]
[left]
type = NeumannBC
variable = T
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = T
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = T
boundary = bottom
value = 200
[]
[top]
type = DirichletBC
variable = T
boundary = top
value = 100
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/q'
[]
[]
[Materials]
[steel]
type = ParsedMaterial
f_name = 'thermal_conductivity'
function = '.01*T'
args = 'T'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'preonly lu superlu_dist'
[]
[Reporters]
[measure_data]
type = OptimizationData
variable = T
[]
[params]
type = ConstantReporter
real_vector_names = 'q'
real_vector_values = '0' # Dummy value
[]
[]
[Outputs]
console = false
file_base = 'forward_nl'
[]
(modules/phase_field/test/tests/MultiPhase/acmultiinterface.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
nz = 0
xmin = -10
xmax = 10
ymin = -5
ymax = 5
elem_type = QUAD4
[]
[Variables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '-4.0 4.0'
y_positions = ' 0.0 0.0'
z_positions = ' 0.0 0.0'
radii = '4.0 4.0'
invalue = 0.1
outvalue = 0.9
int_width = 2.0
[../]
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'eta2 eta3'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'eta1 eta3'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
coupled_variables = 'eta1 eta2'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 0
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'Fx L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 1 1 1 1 1 1 1 1 1 1 1 1 '
[../]
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'Fx Fx Fx'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
# the free energy is given by the MultiBarrierFunctionMaterial only
W = 1
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.2
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no3.i)
# Problem I.3
#
# The thermal conductivity of an infinite plate varies linearly with
# temperature: k = ko(1+beta*u). It has a constant internal heat generation q,
# and has the boundary conditions du/dx = 0 at x= L and u(L) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q L beta uo ko'
symbol_values = '1200 1 1e-3 0 1'
expression = 'uo+(1/beta)*( ( 1 + (1-(x/L)^2) * (beta*q*L^2) / ko )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 0
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/materials/derivative_material_interface/postprocessors.i)
#
# Test use of postprocessor values in parsed materials
#
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Materials]
[pp]
type = ParsedMaterial
expression = 'time^2'
postprocessor_names = time
outputs = exodus
[]
[]
[Problem]
solve = false
[]
[Postprocessors]
[time]
type = TimePostprocessor
# make sure the PostProcessor is executed early and often enough
# when used in the ParsedMaterial (this might have to be on every NONLINEAR
# or even LINEAR iteration!)
execute_on = TIMESTEP_BEGIN
[]
[]
[Executioner]
type = Transient
num_steps = 3
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i)
# this input file test the implementation of the grand-potential phase-field model based on M.Plapp PRE 84,031601(2011)
# in this simple example, the liquid and solid free energies are parabola with the same curvature and the material properties are constant
# Note that this example also test The SusceptibilityTimeDerivative kernels
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 32
ymax = 32
[]
[GlobalParams]
radius = 20.0
int_width = 4.0
x1 = 0
y1 = 0
[]
[Variables]
[./w]
[../]
[./eta]
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -0.2
invalue = 0.2
[../]
[./eta]
type = SmoothCircleIC
variable = eta
outvalue = 0.0
invalue = 1.0
[../]
[]
[Kernels]
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = D
args = ''
[../]
[./coupled_etadot]
type = CoupledSusceptibilityTimeDerivative
variable = w
v = eta
f_name = ft
coupled_variables = 'eta'
[../]
[./AC_bulk]
type = AllenCahn
variable = eta
f_name = F
coupled_variables = 'w'
[../]
[./AC_int]
type = ACInterface
variable = eta
[../]
[./e_dot]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_op D L chi cseq cleq A'
prop_values = '4.0 1.0 1.0 1.0 0.0 1.0 1.0'
[../]
[./liquid_GrandPotential]
type = DerivativeParsedMaterial
expression = '-0.5 * w^2/A - cleq * w'
coupled_variables = 'w'
property_name = f1
material_property_names = 'cleq A'
[../]
[./solid_GrandPotential]
type = DerivativeParsedMaterial
expression = '-0.5 * w^2/A - cseq * w'
coupled_variables = 'w'
property_name = f2
material_property_names = 'cseq A'
[../]
[./switching_function]
type = SwitchingFunctionMaterial
eta = eta
h_order = HIGH
[../]
[./barrier_function]
type = BarrierFunctionMaterial
eta = eta
[../]
[./cs]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = cs
material_property_names = 'A cseq'
expression = 'w/A + cseq' # since w = A*(c-cseq)
derivative_order = 2
[../]
[./cl]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = cl
material_property_names = 'A cleq'
expression = 'w/A + cleq' # since w = A*(c-cleq)
derivative_order = 2
[../]
[./total_GrandPotential]
type = DerivativeTwoPhaseMaterial
coupled_variables = 'w'
eta = eta
fa_name = f1
fb_name = f2
derivative_order = 2
W = 1.0
[../]
[./coupled_eta_function]
type = DerivativeParsedMaterial
expression = '(cs - cl) * dh'
coupled_variables = 'eta w'
property_name = ft
material_property_names = 'cs cl dh:=D[h,eta]'
derivative_order = 1
outputs = exodus
[../]
[./concentration]
type = ParsedMaterial
property_name = c
material_property_names = 'dF:=D[F,w]'
expression = '-dF'
outputs = exodus
[../]
[]
[Postprocessors]
[./C]
type = ElementIntegralMaterialProperty
mat_prop = c
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
l_max_its = 15
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
num_steps = 5
dt = 10.0
[]
[Outputs]
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
derivative_order = 2
enable_jit = false
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa dkappadgrad_etaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab dkappadgrad_etab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1.0e-5
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-12
num_steps = 2
dt = 0.001
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/nucleation/cahn_hilliard.i)
#
# Test the DiscreteNucleation material in a toy system. The global
# concentration is above the solubility limit, but below the spinodal.
# Without further intervention no nucleation will occur in a phase
# field model. The DiscreteNucleation material will locally modify the
# free energy to coerce nuclei to grow.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 120
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = RandomIC
variable = c
min = 0.2
max = 0.21
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
expression = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
property_name = P
coupled_variables = c
expression = c*1e-7
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
property_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
coupled_variables = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happend during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 100
probability = P
radius = 10
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1200
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 5
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no2.i)
# Problem II.2
#
# The thermal conductivity of an infinitely long hollow tube varies
# linearly with temperature. It is exposed on the inner
# and outer surfaces to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro beta ki ko ui uo'
symbol_values = '0.2 1.0 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( log(x/ro) / log(ri/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/invOpt_nonlinear/simulation.i)
[Executioner]
type = Steady
solve_type = NEWTON
line_search = none
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[Variables]
[forwardT]
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
thermal_conductivity = 'conductivity'
variable = forwardT
[]
[heat_source]
type = ADMatHeatSource
material_property = 'volumetric_heat'
variable = forwardT
[]
[]
[Materials]
[NonlinearConductivity]
type = ADParsedMaterial
f_name = 'conductivity'
function = '10+500*forwardT'
args = 'forwardT'
[]
[volumetric_heat]
type = ADGenericFunctionMaterial
prop_names = 'volumetric_heat'
prop_values = 'volumetric_heat_func'
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedFunction
value = q
vars = 'q'
vals = 'heat_source_pp'
[]
[]
[Postprocessors]
[heat_source_pp]
type = ConstantValuePostprocessor
value = 333
execute_on = 'LINEAR'
[]
[]
[BCs]
[left]
type = NeumannBC
variable = forwardT
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = forwardT
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = forwardT
boundary = bottom
value = 2
[]
[top]
type = DirichletBC
variable = forwardT
boundary = top
value = 1
[]
[]
[Reporters]
[measurement_locations]
type = OptimizationData
[]
[]
[Controls]
[parameterReceiver]
type = ControlsReceiver
[]
[]
[VectorPostprocessors]
[data_pt]
type = PointValueSampler
variable = forwardT
points = '0.2 0.2 0
0.8 0.6 0
0.2 1.4 0
0.8 1.8 0'
sort_by = id
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_vol_dev
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no2.i)
# Problem III.2
#
# A spherical shell has a thermal conductivity that varies linearly
# with temperature. The inside and outside surfaces of the shell are
# exposed to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro beta ki ko ui uo'
symbol_values = '0.2 1.0 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( (1/x-1/ro) / (1/ri-1/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/electromagnetics/test/tests/kernels/scalar_complex_helmholtz/scalar_complex_helmholtz.i)
# problem: -(cu')' - k^2 * u = -F , 0 < x < L, u: R -> C
# u(x=0) = g0 , u(x=L) = gL
# k = a + jb
# a = a(x) = 2 * (1 + x/L)
# b = b(x) = (1 + x/L)
# c = d + jh
# d = d(x) = 12 * (1 + x/L)^2
# h = h(x) = 4 * (1 + x/L)^2
# L = 10
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 10
nx = 100
[]
[]
[Variables]
[u_real]
order = FIRST
family = LAGRANGE
[]
[u_imag]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[k_real]
type = ParsedFunction
expression = '2*(1 + x/10)'
[]
[k_imag]
type = ParsedFunction
expression = '(1 + x/10)'
[]
[d_func]
type = ParsedFunction
expression = '12 * (1 + x/10)^2'
[]
[h_func]
type = ParsedFunction
expression = '4 * (1 + x/10)^2'
[]
[negative_h_func]
type = ParsedFunction
expression = '-4 * (1 + x/10)^2'
[]
[RHS_real]
type = MMSTestFunc
L = 10
g0_real = 1
g0_imag = -1
gL_real = 0
gL_imag = 0
component = real
[]
[RHS_imag]
type = MMSTestFunc
L = 10
g0_real = 1
g0_imag = -1
gL_real = 0
gL_imag = 0
component = imaginary
[]
[]
[Materials]
[k_real_mat]
type = ADGenericFunctionMaterial
prop_names = k_real_mat
prop_values = k_real
[]
[k_imag_mat]
type = ADGenericFunctionMaterial
prop_names = k_imag_mat
prop_values = k_imag
[]
[wave_equation_coefficient]
type = WaveEquationCoefficient
k_real = k_real_mat
k_imag = k_imag_mat
eps_rel_real = 1
eps_rel_imag = 0
mu_rel_real = 1
mu_rel_imag = 0
[]
[negative_wave_equation_coefficient_imaginary]
type = ADParsedMaterial
property_name = negative_wave_equation_coefficient_imaginary
material_property_names = wave_equation_coefficient_imaginary
expression = '-1 * wave_equation_coefficient_imaginary'
[]
[]
[Kernels]
[laplacian_real]
type = FunctionDiffusion
function = d_func
variable = u_real
[]
[coupledLaplacian_real]
type = FunctionDiffusion
function = negative_h_func
v = u_imag
variable = u_real
[]
[coeffField_real]
type = ADMatReaction
reaction_rate = wave_equation_coefficient_real
variable = u_real
[]
[coupledField_real]
type = ADMatCoupledForce
v = u_imag
mat_prop_coef = negative_wave_equation_coefficient_imaginary
variable = u_real
[]
[bodyForce_real]
type = BodyForce
function = RHS_real
variable = u_real
[]
[laplacian_imag]
type = FunctionDiffusion
function = d_func
variable = u_imag
[]
[coupledLaplacian_imag]
type = FunctionDiffusion
function = h_func
v = u_real
variable = u_imag
[]
[coeffField_imag]
type = ADMatReaction
reaction_rate = wave_equation_coefficient_real
variable = u_imag
[]
[coupledField_imag]
type = ADMatCoupledForce
v = u_real
mat_prop_coef = wave_equation_coefficient_imaginary
variable = u_imag
[]
[bodyForce_imag]
type = BodyForce
function = RHS_imag
variable = u_imag
[]
[]
[BCs]
[left_real]
type = DirichletBC
value = 1
boundary = left
variable = u_real
[]
[left_imag]
type = DirichletBC
value = -1
boundary = left
variable = u_imag
[]
[right_real]
type = DirichletBC
value = 0
boundary = right
variable = u_real
[]
[right_imag]
type = DirichletBC
value = 0
boundary = right
variable = u_imag
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/invOpt_nonlinear/adjoint.i)
[Executioner]
type = Steady
solve_type = NEWTON
line_search = none
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
nl_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Mesh]
[]
[Variables]
[adjointT]
[]
[]
[AuxVariables]
[forwardT]
[]
[dDdTgradT]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
thermal_conductivity = 'linearized_conductivity'
variable = adjointT
[]
[advection]
type = LevelSetAdvection
velocity = dDdTgradT
variable = adjointT
[]
[]
[AuxKernels]
[dDdTgradT]
type = ADFunctorElementalGradientAux
functor = forwardT
variable = dDdTgradT
factor_matprop = 'dDdT'
[]
[]
[Materials]
[LinearizedConductivity]
type = ADParsedMaterial
f_name = 'linearized_conductivity'
function = '10+500*forwardT'
args = 'forwardT'
[]
[dDdT]
type = ADParsedMaterial
f_name = 'dDdT'
function = '500'
args = 'forwardT'
[]
[]
[DiracKernels]
[pt]
type = ReporterPointSource
variable = adjointT
x_coord_name = misfit/measurement_xcoord
y_coord_name = misfit/measurement_ycoord
z_coord_name = misfit/measurement_zcoord
value_name = misfit/misfit_values
[]
[]
[Reporters]
[misfit]
type = OptimizationData
[]
[params]
type = ConstantReporter
real_vector_names = 'heat_source'
real_vector_values = '0' # Dummy
[]
[]
[BCs]
[left]
type = NeumannBC
variable = adjointT
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = adjointT
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = adjointT
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = adjointT
boundary = top
value = 0
[]
[]
[VectorPostprocessors]
[gradient_vpp]
type = ElementOptimizationSourceFunctionInnerProduct
function = volumetric_heat_func
variable = adjointT
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/heat_source'
[]
[]
[Outputs]
console = false
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialSintering_test.i)
#input file to test the materials GrandPotentialTensorMaterial
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 17
xmin = 0
xmax = 680
ymin = 0
ymax = 680
uniform_refine = 1
[]
[GlobalParams]
op_num = 4
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./T]
order = CONSTANT
family = MONOMIAL
[../]
[./F_loc]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 490 190 490'
y_positions = '190 190 490 490'
z_positions = ' 0 0 0 0'
radii = '150 150 150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 490
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 190
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 490
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[]
[Materials]
# Free energy coefficients for parabolic curves
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10*ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
outputs = exodus
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 gr2 gr3 T'
constant_names = 'Ef c_GB kB'
constant_expressions = '2.69 0.189 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2 + gr2^2 + gr3^2; exp(-Ef/kB/T) + 4.0 * c_GB * (1 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
solid_energy_coefficient = ks
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[./f_bulk]
type = ParsedMaterial
property_name = f_bulk
coupled_variables = 'phi gr0 gr1 gr2 gr3'
material_property_names = 'mu gamma'
expression = 'mu*(phi^4/4-phi^2/2 + gr0^4/4-gr0^2/2 + gr1^4/4-gr1^2/2
+ gr2^4/4-gr2^2/2 + gr3^4/4-gr3^2/2
+ gamma*(phi^2*(gr0^2+gr1^2+gr2^2+gr3^2) + gr0^2*(gr1^2+gr2^2+gr3^2)
+ gr1^2*(gr2^2 + gr3^2) + gr2^2*gr3^2) + 0.25)'
outputs = exodus
[../]
[./f_switch]
type = ParsedMaterial
property_name = f_switch
coupled_variables = 'w'
material_property_names = 'chi'
expression = '0.5*w^2*chi'
outputs = exodus
[../]
[./f0]
type = ParsedMaterial
property_name = f0
material_property_names = 'f_bulk f_switch'
expression = 'f_bulk + f_switch'
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[./F_aux]
type = TotalFreeEnergy
variable = F_loc
f_name = f0
interfacial_vars = 'phi gr0 gr1 gr2 gr3'
kappa_names = 'kappa kappa kappa kappa kappa'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringIdeal.i)
#input file to test the GrandPotentialSinteringMaterial using the ideal energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./kv]
type = ParsedMaterial
property_name = kv
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.025 1571.6'
expression = 'a*T + b'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = IDEAL
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/slkks/weighted_average.i)
#
# This tests the WeightedVariableAverage postprocessor, which averages a variable field
# with weights applied from a material property. This can be used to obtain average
# concentrations in different phases (based on the total physical concentration variable).
#
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables]
[c]
[./InitialCondition]
type = FunctionIC
function = x*0.5
[]
[]
[eta]
[./InitialCondition]
type = FunctionIC
function = x
[]
[]
[]
[Materials]
[h]
type = ParsedMaterial
coupled_variables = eta
property_name = h
expression = 'if(eta>0.5,1,0)'
[]
[]
[Postprocessors]
[c1]
type = WeightedVariableAverage
v = c
weight = h
execute_on = INITIAL
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/fsi/test/tests/2d-finite-strain-steady/thermal-me.i)
# Units: specific_heat_capacity--cp--J/(kg.K); density--rho--kg/(cm^3);
# dynamic_viscosity--mu--kg/(cm.s); thermal_conductivity--k--W/(cm.K);
# pressure--kg/(cm.s^2); force--kg.cm/s^2
outlet_pressure = 0
inlet_velocity = 150 # cm/s
ini_temp = 593 # K
heat_transfer_coefficient = 9 # W/(cm2.K)
g = -981 # cm/s2
alpha_fluid = 2e-4 # thermal expansion coefficient of fluid used in INSADBoussinesqBodyForce
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = '2layers_2d_midline.msh'
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
order = FIRST
block = 'fluid'
[]
[p]
family = LAGRANGE
order = FIRST
block = 'fluid'
[]
[Tf]
family = LAGRANGE
order = FIRST
block = 'fluid'
[]
[Ts]
family = LAGRANGE
order = FIRST
block = 'solid'
[]
[disp_x]
family = LAGRANGE
order = FIRST
block = 'solid fluid'
[]
[disp_y]
family = LAGRANGE
order = FIRST
block = 'solid fluid'
[]
[]
[AuxVariables]
[heat_source]
family = MONOMIAL
order = FIRST
block = 'solid'
[]
[]
[ICs]
[initial_velocity]
type = VectorConstantIC
variable = velocity
x_value = 0
y_value = ${inlet_velocity}
z_value = 0
[]
[initial_p]
type = FunctionIC
variable = p
function = ini_p
[]
[initial_Tf]
type = ConstantIC
variable = Tf
value = ${ini_temp}
[]
[initial_Ts]
type = ConstantIC
variable = Ts
value = ${ini_temp}
[]
[]
[Kernels]
[fluid_mass]
type = INSADMass
variable = p
use_displaced_mesh = true
[]
[fluid_mass_pspg]
type = INSADMassPSPG
variable = p
use_displaced_mesh = true
[]
[fluid_momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
use_displaced_mesh = true
[]
[fluid_momentum_convection]
type = INSADMomentumAdvection
variable = velocity
use_displaced_mesh = true
[]
[fluid_momentum_viscous]
type = INSADMomentumViscous
variable = velocity
use_displaced_mesh = true
[]
[fluid_momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
use_displaced_mesh = true
[]
[fluid_momentum_gravity]
type = INSADGravityForce
variable = velocity
gravity = '0 ${g} 0'
use_displaced_mesh = true
[]
[fluid_momentum_buoyancy]
type = INSADBoussinesqBodyForce
variable = velocity
gravity = '0 ${g} 0'
alpha_name = 'alpha_fluid'
ref_temp = 'T_ref'
temperature = Tf
use_displaced_mesh = true
[]
[fluid_momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
use_displaced_mesh = true
[]
[fluid_temperature_time]
type = INSADHeatConductionTimeDerivative
variable = Tf
use_displaced_mesh = true
[]
[fluid_temperature_conduction]
type = ADHeatConduction
variable = Tf
thermal_conductivity = 'k'
use_displaced_mesh = true
[]
[fluid_temperature_advection]
type = INSADEnergyAdvection
variable = Tf
use_displaced_mesh = true
[]
[fluid_temperature_supg]
type = INSADEnergySUPG
variable = Tf
velocity = velocity
use_displaced_mesh = true
[]
[solid_temperature_time]
type = ADHeatConductionTimeDerivative
variable = Ts
density_name = 'rho'
specific_heat = 'cp'
block = 'solid'
use_displaced_mesh = true
[]
[solid_temperature_conduction]
type = ADHeatConduction
variable = Ts
thermal_conductivity = 'k'
block = 'solid'
use_displaced_mesh = true
[]
[heat_source]
type = ADCoupledForce
variable = Ts
v = heat_source
block = 'solid'
use_displaced_mesh = true
[]
[disp_x_smooth]
type = Diffusion
variable = disp_x
block = fluid
[]
[disp_y_smooth]
type = Diffusion
variable = disp_y
block = fluid
[]
[]
[Modules/TensorMechanics/Master]
strain = FINITE
material_output_order = FIRST
generate_output = 'vonmises_stress stress_xx stress_yy stress_zz strain_xx strain_yy strain_zz'
[solid]
block = 'solid'
temperature = Ts
automatic_eigenstrain_names = true
[]
[]
[InterfaceKernels]
[convection_heat_transfer]
type = ConjugateHeatTransfer
variable = Tf
T_fluid = Tf
neighbor_var = 'Ts'
boundary = 'solid_wall'
htc = 'htc'
use_displaced_mesh = true
[]
[]
[AuxKernels]
[heat_source_distribution_auxk]
type = FunctionAux
variable = heat_source
function = heat_source_distribution_function
block = 'solid'
use_displaced_mesh = true
[]
[]
[BCs]
[no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'solid_wall'
use_displaced_mesh = true
[]
[inlet_velocity]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'fluid_bottom'
function_y = ${inlet_velocity}
use_displaced_mesh = true
[]
[symmetry]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'fluid_wall'
function_x = 0
set_x_comp = true
set_y_comp = false
set_z_comp = false
use_displaced_mesh = true
[]
[outlet_p]
type = DirichletBC
variable = p
boundary = 'fluid_top'
value = ${outlet_pressure}
use_displaced_mesh = true
[]
[inlet_T]
type = DirichletBC
variable = Tf
boundary = 'fluid_bottom'
value = ${ini_temp}
use_displaced_mesh = true
[]
[pin1_y]
type = DirichletBC
variable = disp_y
boundary = 'pin1'
value = 0
use_displaced_mesh = true
[]
[pin1_x]
type = DirichletBC
variable = disp_x
boundary = 'pin1'
value = 0
use_displaced_mesh = true
[]
[top_and_bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'solid_bottom solid_top fluid_top fluid_bottom'
value = 0
use_displaced_mesh = true
[]
[left_and_right_x]
type = DirichletBC
variable = disp_x
boundary = 'fluid_wall fluid_bottom'
value = 0
use_displaced_mesh = true
[]
[]
[Materials]
[rho_solid]
type = ADParsedMaterial
property_name = rho
expression = '0.0110876 * pow(9.9672e-1 + 1.179e-5 * Ts - 2.429e-9 * pow(Ts,2) + 1.219e-12 * pow(Ts,3),-3)'
coupled_variables = 'Ts'
block = 'solid'
use_displaced_mesh = true
[]
[cp_solid]
type = ADParsedMaterial
property_name = cp
expression = '0.76 * ((302.27 * pow((548.68 / Ts),2) * exp(548.68 / Ts)) / pow((exp(548.68 / Ts) - 1),2) + 2 * 8.463e-3 * Ts + 8.741e7 * 18531.7 * exp(-18531.7 / Ts) / pow(Ts,2)) + 0.24 * ((322.49 * pow((587.41/Ts),2) * exp(587.41 / Ts)) / pow((exp(587.41 / Ts) - 1),2) + 2 * 1.4679e-2 * Ts)'
coupled_variables = 'Ts'
block = 'solid'
use_displaced_mesh = true
[]
[k_solid]
type = ADParsedMaterial
property_name = k
expression = '1.158/(7.5408 + 17.692 * (Ts / 1000) + 3.6142 * pow((Ts/1000),2)) + 74.105 * pow((Ts / 1000),-2.5) * exp(-16.35 / (Ts / 1000))'
coupled_variables = 'Ts'
block = 'solid'
use_displaced_mesh = true
[]
[rho_fluid]
type = ADParsedMaterial
property_name = rho
expression = '(11096 - 1.3236 * Tf) * 1e-6'
coupled_variables = 'Tf'
block = 'fluid'
use_displaced_mesh = true
[]
[cp_fluid]
type = ADParsedMaterial
property_name = cp
expression = '159 - 2.72e-2 * Tf + 7.12e-6 * pow(Tf,2)'
coupled_variables = 'Tf'
block = 'fluid'
use_displaced_mesh = true
[]
[k_fluid]
type = ADParsedMaterial
property_name = k
expression = '(3.61 + 1.517e-2 * Tf - 1.741e-6 * pow(Tf,2)) * 1e-2'
coupled_variables = 'Tf'
block = 'fluid'
use_displaced_mesh = true
[]
[mu_fluid]
type = ADParsedMaterial
property_name = mu
expression = '4.94e-6 * exp(754.1/Tf)'
coupled_variables = 'Tf'
block = 'fluid'
use_displaced_mesh = true
[]
[buoyancy_thermal_expansion_coefficient_fluid]
type = ADGenericConstantMaterial
prop_names = 'alpha_fluid'
prop_values = '${alpha_fluid}'
block = 'fluid'
use_displaced_mesh = true
[]
[buoyancy_reference_temperature_fluid]
type = GenericConstantMaterial
prop_names = 'T_ref'
prop_values = '${ini_temp}'
block = 'fluid'
use_displaced_mesh = true
[]
[ins_mat_fluid]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = Tf
block = 'fluid'
use_displaced_mesh = true
[]
[htc]
type = ADGenericFunctionMaterial
prop_names = htc
prop_values = htc_function
use_displaced_mesh = true
[]
[elasticity_solid]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e7
poissons_ratio = 0.32
block = 'solid'
use_displaced_mesh = true
[]
[thermal_expansion_solid]
type = ComputeThermalExpansionEigenstrain
temperature = Ts
thermal_expansion_coeff = 2e-4
stress_free_temperature = 593
eigenstrain_name = thermal_expansion
block = 'solid'
use_displaced_mesh = true
[]
[stress_solid]
type = ComputeFiniteStrainElasticStress
block = 'solid'
[]
[]
[Functions]
[htc_function]
type = ParsedFunction
expression = ${heat_transfer_coefficient}
[]
[ini_p]
type = ParsedFunction
expression = '0.010302 * 981 * (10 - y)'
[]
[heat_source_distribution_function]
type = ParsedFunction
expression = '300 * sin(pi * y / 10)'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
solve_type = 'PJFNK'
[]
[]
[Executioner]
type = Transient
end_time = 1e4
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_max_its = 30
l_max_its = 100
automatic_scaling = true
compute_scaling_once = true
off_diagonals_in_auto_scaling = true
dtmin = 1
nl_abs_tol = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.5
dt = 1
[]
[]
[Outputs]
[csv]
type = CSV
file_base = 'thermal-me'
execute_on = 'final'
[]
[]
[Postprocessors]
[average_solid_Ts]
type = ElementAverageValue
variable = Ts
block = 'solid'
use_displaced_mesh = true
[]
[average_fluid_Tf]
type = ElementAverageValue
variable = Tf
block = 'fluid'
use_displaced_mesh = true
[]
[max_solid_Ts]
type = ElementExtremeValue
variable = Ts
value_type = max
block = 'solid'
use_displaced_mesh = true
[]
[max_fluid_Tf]
type = ElementExtremeValue
variable = Tf
value_type = max
block = 'fluid'
use_displaced_mesh = true
[]
[min_solid_Ts]
type = ElementExtremeValue
variable = Ts
value_type = min
block = 'solid'
use_displaced_mesh = true
[]
[min_fluid_Tf]
type = ElementExtremeValue
variable = Tf
value_type = min
block = 'fluid'
use_displaced_mesh = true
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/materials/derivative_material_interface/ad_material_chaining.i)
#
# This test validates the correct application of the chain rule to coupled
# material properties within DerivativeParsedMaterials
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./eta1]
[../]
[./eta2]
[../]
[]
[BCs]
[./left]
variable = eta1
boundary = left
type = DirichletBC
value = 0
[../]
[./right]
variable = eta1
boundary = right
type = DirichletBC
value = 1
[../]
[./top]
variable = eta2
boundary = top
type = DirichletBC
value = 0
[../]
[./bottom]
variable = eta2
boundary = bottom
type = DirichletBC
value = 1
[../]
[]
[Materials]
# T1 := (eta1+1)^4
[./term]
type = ADDerivativeParsedMaterial
property_name= T1
coupled_variables = 'eta1'
expression = '(eta1+1)^4'
derivative_order = 4
[../]
# in this material we substitute T1 explicitly
[./full]
type = ADDerivativeParsedMaterial
coupled_variables = 'eta1 eta2'
property_name = F1
expression = '(1-eta2)^4+(eta1+1)^4'
[../]
# in this material we utilize the T1 derivative material property
[./subs]
type = ADDerivativeParsedMaterial
coupled_variables = 'eta1 eta2'
property_name = F2
expression = '(1-eta2)^4+T1'
material_property_names = 'T1(eta1)'
[../]
# calculate differences between the explicit and indirect substitution version
# the use if the T1 property should include dT1/deta1 contributions!
# This also demonstrated the explicit use of material property derivatives using
# the D[...] syntax.
[./diff0]
type = ADParsedMaterial
property_name = D0
expression = '(F1-F2)^2'
material_property_names = 'F1 F2'
[../]
[./diff1]
type = ADParsedMaterial
property_name = D1
expression = '(dF1-dF2)^2'
material_property_names = 'dF1:=D[F1,eta1] dF2:=D[F2,eta1]'
[../]
[./diff2]
type = ADParsedMaterial
property_name = D2
expression = '(d2F1-d2F2)^2'
material_property_names = 'd2F1:=D[F1,eta1,eta1] d2F2:=D[F2,eta1,eta1]'
[../]
# check that explicitly pulling a derivative yields the correct result by
# taking the difference of the manually calculated 1st derivative of T1 and the
# automatic derivative dT1 pulled in through dT1:=D[T1,eta1]
[./diff3]
type = ADParsedMaterial
property_name = E0
expression = '(dTd1-(4*(eta1+1)^3))^2'
coupled_variables = eta1
material_property_names = 'dTd1:=D[T1,eta1]'
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Postprocessors]
[./D0]
type = ADElementIntegralMaterialProperty
mat_prop = D0
[../]
[./D1]
type = ADElementIntegralMaterialProperty
mat_prop = D1
[../]
[./D2]
type = ADElementIntegralMaterialProperty
mat_prop = D2
[../]
[./E0]
type = ADElementIntegralMaterialProperty
mat_prop = E0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_tol = 1e-03
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
print_linear_residuals = false
[]
(modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/negative_porosity.i)
# This test provides an example of an individual LPS viscoplasticity model
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmax = 0.002
ymax = 0.002
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = lps
outputs = all
[../]
[./porosity]
type = ADGenericConstantMaterial
prop_names = 'porosity'
prop_values = '-0.1'
outputs = 'all'
[../]
[./lps]
type = ADViscoplasticityStressUpdate
coefficient = 'coef'
power = 3
outputs = all
relative_tolerance = 1e-11
initial_porosity = 0.1
negative_behavior = ZERO
[../]
[./coef]
type = ADParsedMaterial
property_name = coef
# Example of creep power law
expression = '1e-18 * exp(-4e4 / 1.987 / 1200)'
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = effective_viscoplasticity
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso_with_pressure.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco fracture_pressure'
prop_values = '1e-3 0.04 1e-4 1e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
I_name = 'indicator_function'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./indicator_function]
type = DerivativeParsedMaterial
property_name = indicator_function
coupled_variables = 'c'
expression = 'c'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/mat_neumann_bc/ad_mat_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 10
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
[../]
[]
[ICs]
[./phi_IC]
type = FunctionIC
variable = phi
function = ic_func_phi
[../]
[]
[Functions]
[./ic_func_phi]
type = ParsedFunction
expression = '0.5 * (1 - tanh((x - 5) / 0.8))'
[../]
[]
[BCs]
[./top]
type = ADMatNeumannBC
variable = u
boundary = top
value = 2
boundary_material = hm
[../]
[]
[Kernels]
[./dudt]
type = ADTimeDerivative
variable = u
[../]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[Materials]
[./hm]
type = ADParsedMaterial
property_name = hm
coupled_variables = 'phi'
expression = '3*phi^2 - 2*phi^3'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 10
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
expression = t
[../]
[./void_prop_func]
type = ParsedFunction
expression = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
expression = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
property_name = fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/publications/rapid_dev/fig7b.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Dashed black curve (2)
# Eigenstrain is globally applied. Single global elastic free energies.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Modules/TensorMechanics/Master/all]
add_variables = true
eigenstrain_names = eigenstrain
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain as a function of phase
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
prefactor = h
args = eta
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fc
fa_name = Fc1
fb_name = Fc2
eta = eta
args = 'c'
W = 4
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
output_properties = Fe
derivative_order = 2
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe'
coupled_variables = 'c eta'
derivative_order = 2
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/eigenstrain_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/eigenstrain_vpp
[../]
[]
(tutorials/tutorial02_multiapps/step03_coupling/02_parent_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
picard_max_its = 10
nl_abs_tol = 1e-10
picard_rel_tol = 1e-6
picard_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '02_sub_picard.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_single_split.i)
# This test provides an example of combining two LPS viscoplasticity model.
# The answer should be close, but not exactly the same, as lps_single.i
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmax = 0.002
ymax = 0.002
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[./tot_effective_viscoplasticity]
type = ParsedFunction
symbol_values = 'lps_1_eff_creep_strain lps_2_eff_creep_strain'
symbol_names = 'lps_1_eff_creep_strain lps_2_eff_creep_strain'
expression = 'lps_1_eff_creep_strain+lps_2_eff_creep_strain'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'one two'
outputs = all
[../]
[./porosity]
type = ADPorosityFromStrain
initial_porosity = 0.1
inelastic_strain = 'combined_inelastic_strain'
outputs = 'all'
[../]
[./one]
type = ADViscoplasticityStressUpdate
coefficient = 'coef'
power = 3
base_name = 'lps_first'
outputs = all
relative_tolerance = 1e-11
[../]
[./two]
type = ADViscoplasticityStressUpdate
coefficient = 'coef'
power = 3
base_name = 'lps_second'
outputs = all
relative_tolerance = 1e-11
[../]
[./coef]
type = ADParsedMaterial
property_name = coef
# Example of creep power law
expression = '0.5e-18 * exp(-4e4 / 1.987 / 1200)'
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./lps_1_eff_creep_strain]
type = ElementAverageValue
variable = lps_first_effective_viscoplasticity
outputs = none
[../]
[./lps_2_eff_creep_strain]
type = ElementAverageValue
variable = lps_second_effective_viscoplasticity
outputs = none
[../]
[./eff_creep_strain_tot]
type = FunctionValuePostprocessor
function = tot_effective_viscoplasticity
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
(test/tests/materials/derivative_material_interface/ad_derivative_parsed_material.i)
#
# Test the AD version of derivative parsed material
#
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = eta
diffusivity = F
[]
[./dt]
type = TimeDerivative
variable = eta
[]
[]
[Materials]
[./Fbar]
type = ADDerivativeParsedMaterial
coupled_variables = 'eta'
property_name = Fbar
expression ='1/3*(eta-0.5)^3'
[]
[./F]
type = ADParsedMaterial
coupled_variables = 'eta'
material_property_names = 'F:=D[Fbar,eta]'
expression ='F'
outputs = exodus
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialStrictMassConservation.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 34
ny = 34
xmin = 0
xmax = 340
ymin = 0
ymax = 340
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 20
[]
[Variables]
[w]
[]
[c]
[]
[phi]
[]
[PolycrystalVariables]
[]
[]
[AuxVariables]
[bnds]
[]
[T]
order = CONSTANT
family = MONOMIAL
initial_condition = 1600
[]
[]
[ICs]
[phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '170 170'
y_positions = ' 70 270'
z_positions = ' 0 0'
radii = '100 100'
invalue = 0
outvalue = 1
[]
[c_IC]
type = SpecifiedSmoothCircleIC
variable = c
x_positions = '170 170'
y_positions = ' 70 270'
z_positions = ' 0 0'
radii = '100 100'
invalue = 0
outvalue = 1
[]
[gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 170
y1 = 70
z1 = 0
radius = 100
invalue = 1
outvalue = 0
[]
[gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 170
y1 = 270
z1 = 0
radius = 100
invalue = 1
outvalue = 0
[]
[]
[Materials]
# Free energy coefficients for parabolic curves
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0017 140.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10*ks'
[../]
# Diffusivity and mobilities
[chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 6.24
c = phi
T = T
D0 = 0.4366e9
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1e6
surfindex = 1e9
[]
# Everything else
[cv_eq]
type = DerivativeParsedMaterial
property_name = cv_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef c_GB kB'
constant_expressions = '4.37 0.1 8.617343e-5'
derivative_order = 2
expression = 'c_B:=exp(-Ef/kB/T); bnds:=gr0^2 + gr1^2;
c_B + 4.0 * c_GB * (1.0 - bnds)^2'
[]
[sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 6.24
grainboundary_energy = 5.18
void_energy_coefficient = kv
solid_energy_coefficient = ks
solid_energy_model = PARABOLIC
equilibrium_vacancy_concentration = cv_eq
[]
[]
[Modules]
[PhaseField]
[GrandPotential]
switching_function_names = 'hv hs'
anisotropic = 'true'
chemical_potentials = 'w'
mobilities = 'chiD'
susceptibilities = 'chi'
free_energies_w = 'rhov rhos'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegav omegas'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = Lv
kappa_op = kappa
free_energies_op = 'omegav omegas'
mass_conservation = 'true'
concentrations = 'c'
hj_c_min = 'hv_c_min hs_c_min'
hj_over_kVa = 'hv_over_kVa hs_over_kVa'
[]
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = 'gmres asm ilu 1 31 preonly'
nl_max_its = 30
l_max_its = 30
start_time = 0
dt = 1e-4
num_steps = 3
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -4
xmax = 4
ymin = -4
ymax = 4
uniform_refine = 2
[]
[GlobalParams]
radius = 0.5
int_width = 0.3
x1 = 0
y1 = 0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
(modules/phase_field/examples/nucleation/refine.i)
#
# Example derived from cahn_hilliard.i demonstrating the use of Adaptivity
# with the DiscreteNucleation system. The DiscreteNucleationMarker triggers
# mesh refinement for the nucleus geometry. It is up to the user to specify
# refinement for the physics. In this example this is done using a GradientJumpIndicator
# with a ValueThresholdMarker. The nucleation system marker and the physics marker
# must be combined using a ComboMarker to combine their effect.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = ConstantIC
variable = c
value = 0.2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
expression = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
property_name = P
coupled_variables = c
expression = 'if(c<0.21,c*1e-8,0)'
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
property_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
coupled_variables = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happened during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 50
probability = P
radius = 10
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./ndof]
type = NumDOFs
[../]
[./rate]
type = DiscreteNucleationData
value = RATE
inserter = inserter
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.0005
dt_max = 10
[../]
[./update]
type = DiscreteNucleationData
value = UPDATE
inserter = inserter
[../]
[./count]
type = DiscreteNucleationData
value = COUNT
inserter = inserter
[../]
[]
[Adaptivity]
[./Indicators]
[./jump]
type = GradientJumpIndicator
variable = c
[../]
[../]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[./grad]
type = ValueThresholdMarker
variable = jump
coarsen = 0.1
refine = 0.2
[../]
[./combo]
type = ComboMarker
markers = 'nuc grad'
[../]
[../]
marker = combo
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 120
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2e-6
num_steps = 5
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/03_parent_subcycling_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
picard_max_its = 10
nl_abs_tol = 1e-10
picard_rel_tol = 1e-6
picard_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '03_sub_subcycling_picard.i'
execute_on = timestep_end
output_in_position = true
sub_cycling = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = -12
xmax = 12
ymin = -12
ymax = 12
elem_type = QUAD4
[]
[GlobalParams]
# let's output all material properties for demonstration purposes
outputs = exodus
# prefactor on the penalty function kernels. The higher this value is, the
# more rigorously the constraint is enforced
penalty = 1e3
[]
#
# These AuxVariables hold the directly calculated free energy density in the
# simulation cell. They are provided for visualization purposes.
#
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
#
# Helper kernel to cpompute the gradient contribution from interfaces of order
# parameters evolved using the ACMultiInterface kernel
#
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
#
# The interface coefficient matrix. This should be symmetrical!
#
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#
# We set up a smooth cradial concentrtaion gradient
# The concentration will quickly change to adapt to the preset order
# parameters eta1, eta2, and eta3
#
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 5.0
invalue = 1.0
outvalue = 0.01
int_width = 10.0
[../]
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
#
# Note: this initial conditions sets up a _sharp_ interface. Ideally
# we should start with a smooth interface with a width consistent
# with the kappa parameter supplied for the given interface.
#
function = 'r:=sqrt(x^2+y^2);if(r<=4,1,0)'
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>4&r<=7,1,0)'
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>7,1,0)'
[../]
[../]
[]
[Kernels]
#
# Cahn-Hilliard kernel for the concentration variable.
# Note that we are not using an interfcae kernel on this variable, but rather
# rely on the interface width enforced on the order parameters. This allows us
# to use a direct solve using the CahnHilliard kernel _despite_ only using first
# order elements.
#
[./c_res]
type = CahnHilliard
variable = c
f_name = F
coupled_variables = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
#
# Order parameter eta1
# Each order parameter is acted on by 4 kernels:
# 1. The stock time derivative deta_i/dt kernel
# 2. The Allen-Cahn kernel that takes a Dervative Material for the free energy
# 3. A gradient interface kernel that includes cross terms
# see http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/ACMultiInterface/
# 4. A penalty contribution that forces the interface contributions h(eta)
# to sum up to unity
#
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta2
#
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta3
#
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
coupled_variables = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./penalty3]
type = SwitchingFunctionPenalty
variable = eta3
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# here we declare some of the model parameters: the mobilities and interface
# gradient prefactors. For this example we use arbitrary numbers. In an actual simulation
# physical mobilities would be used, and the interface gradient prefactors would
# be readjusted to the free energy magnitudes.
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.75 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 '
[../]
# This material sums up the individual phase contributions. It is written to the output file
# (see GlobalParams section above) and can be used to check the constraint enforcement.
[./etasummat]
type = ParsedMaterial
property_name = etasum
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3'
[../]
# The phase contribution factors for each material point are computed using the
# SwitchingFunctionMaterials. Each phase with an order parameter eta contributes h(eta)
# to the global free energy density. h is a function that switches smoothly from 0 to 1
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
# The barrier function adds a phase transformation energy barrier. It also
# Drives order parameters toward the [0:1] interval to avoid negative or larger than 1
# order parameters (these are set to 0 and 1 contribution by the switching functions
# above)
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# We use DerivativeParsedMaterials to specify three (very) simple free energy
# expressions for the three phases. All necessary derivatives are built automatically.
# In a real problem these expressions can be arbitrarily complex (or even provided
# by custom kernels).
[./phase_free_energy_1]
type = DerivativeParsedMaterial
property_name = F1
expression = '(c-1)^2'
coupled_variables = 'c'
[../]
[./phase_free_energy_2]
type = DerivativeParsedMaterial
property_name = F2
expression = '(c-0.5)^2'
coupled_variables = 'c'
[../]
[./phase_free_energy_3]
type = DerivativeParsedMaterial
property_name = F3
expression = 'c^2'
coupled_variables = 'c'
[../]
# The DerivativeMultiPhaseMaterial ties the phase free energies together into a global free energy.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 1
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provedes a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-6
start_time = 0.0
end_time = 150.0
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
[Functions]
[src_func]
type = ParsedFunction
expression = "1000*sin(f*t)"
symbol_names = 'f'
symbol_values = '20'
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 100
xmin = -0.5
xmax = 0.5
ny = 100
ymin = -0.5
ymax = 0.5
[]
[source_domain]
type = ParsedSubdomainMeshGenerator
input = msh
combinatorial_geometry = '(x<0.1 & x>-0.1) & (y<0.1 & y>-0.1)'
block_id=1
[]
[]
[Variables]
[T]
initial_condition = 300
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = diff_coeff
[]
[source]
type = BodyForce
variable = T
function = src_func
block = 1
[]
[time_deriv]
type = TimeDerivative
variable = T
[]
[]
[Materials]
[diff_coeff]
type = ParsedMaterial
property_name = diff_coeff
coupled_variables = 'T'
constant_names = 'C'
constant_expressions = 0.02
expression = 'C * pow(300/T, 2)'
[]
[]
[BCs]
[neumann_all]
type = NeumannBC
variable = T
boundary = 'left right top bottom'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 100
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-6
l_abs_tol = 1e-6
timestep_tolerance = 1e-6
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
[]
[min]
type = NodalExtremeValue
variable = T
value_type = min
[]
[time_max]
type = TimeExtremeValue
postprocessor = max
[]
[time_min]
type = TimeExtremeValue
postprocessor = min
value_type = min
[]
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_vi_solver.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 20
xmax = 1
ymax = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[ICs]
[./c_ic]
type = FunctionIC
function = ic
variable = c
[../]
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 'if(x<0.5 & y < 0.55 & y > 0.45,1, 0)'
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./bounds_dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'top bottom'
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
use_snes_vi_solver = true
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Bounds]
[./c_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = c
bound_type = upper
bound_value = 1.0
[../]
[./c_lower_bound]
type = VariableOldValueBoundsAux
variable = bounds_dummy
bounded_variable = c
bound_type = lower
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -snes_type'
petsc_options_value = 'lu vinewtonrsls'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/01_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '01_sub.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_dual.i)
# This test provides an example of combining two LPS viscoplasticity models with different stress
# exponents.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmax = 0.002
ymax = 0.002
[]
[Variables]
[./temp]
initial_condition = 1000
[../]
[]
[Kernels]
[./dt]
type = ADTimeDerivative
variable = temp
[../]
[./diff]
type = ADDiffusion
variable = temp
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[./tot_effective_viscoplasticity]
type = ParsedFunction
symbol_values = 'lps_1_eff_creep_strain lps_3_eff_creep_strain'
symbol_names = 'lps_1_eff_creep_strain lps_3_eff_creep_strain'
expression = 'lps_1_eff_creep_strain+lps_3_eff_creep_strain'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'one two'
outputs = all
[../]
[./porosity]
type = ADPorosityFromStrain
initial_porosity = 0.1
inelastic_strain = 'combined_inelastic_strain'
outputs = 'all'
[../]
[./one]
type = ADViscoplasticityStressUpdate
coefficient = 'coef_3'
power = 3
base_name = 'lps_1'
outputs = all
relative_tolerance = 1e-11
[../]
[./two]
type = ADViscoplasticityStressUpdate
coefficient = 1e-10
power = 1
base_name = 'lps_3'
outputs = all
relative_tolerance = 1e-11
[../]
[./coef]
type = ADParsedMaterial
property_name = coef_3
# Example of creep power law
coupled_variables = temp
expression = '0.5e-18 * exp(-4e4 / 1.987 / temp)'
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[./temp_ramp]
type = ADFunctionDirichletBC
boundary = right
function = '1000 + 400 * t / 0.12'
variable = temp
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./lps_1_eff_creep_strain]
type = ElementAverageValue
variable = lps_1_effective_viscoplasticity
[../]
[./lps_3_eff_creep_strain]
type = ElementAverageValue
variable = lps_3_effective_viscoplasticity
[../]
[./lps_1_gauge_stress]
type = ElementAverageValue
variable = lps_1_gauge_stress
[../]
[./lps_3_gauge_stress]
type = ElementAverageValue
variable = lps_3_gauge_stress
[../]
[./eff_creep_strain_tot]
type = FunctionValuePostprocessor
function = tot_effective_viscoplasticity
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/ad_coupled_gradient_dot/diffusion_rate.i)
# Solves the problem
# -mu * Lap(u_dot) + u_dot = alpha * Lap(u) - 2*u*(1-3*u+2*u^2)
# for mu = 1 and alpha = 0.01
# (see appendix B of A. Guevel et al. "Viscous phase-field modeling for chemo-mechanical microstructural evolution: application to geomaterials and pressure solution." In print.)
n_elem = 100
alpha = 0.01
mu = 1
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = '${n_elem}'
elem_type = EDGE2
[]
[Variables]
[u]
[InitialCondition]
type = ConstantIC
value = 0.51
[]
[]
[]
[Kernels]
[Lap]
type = ADMatDiffusion
variable = u
diffusivity = '${alpha}'
[]
[LapDot]
type = ADDiffusionRate
variable = u
mu = '${mu}'
[]
[Reac]
type = ADMatReaction
variable = u
reaction_rate = L
[]
[Visc]
type = ADTimeDerivative
variable = u
[]
[]
[Materials]
[parsed]
type = ADParsedMaterial
expression = '-2*(1-3*u+2*u*u)'
coupled_variables = 'u'
property_name = 'L'
[]
[]
[BCs]
[both]
type = ADDirichletBC
variable = u
value = 0.51
boundary = 'left right'
[]
[]
[Postprocessors]
[mid_u]
type = PointValue
variable = u
point = '0.5 0 0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 1000
dt = 0.1
nl_abs_tol = 1e-9
[]
[Outputs]
print_linear_residuals = false
[csv]
type = CSV
file_base = 'diffusion_rate'
[]
[]
(modules/combined/test/tests/invOpt_nonlinear/forward.i)
[Executioner]
type = Steady
solve_type = NEWTON
line_search = none
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Mesh]
[]
[Variables]
[forwardT]
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
thermal_conductivity = 'conductivity'
variable = forwardT
[]
[heat_source]
type = ADMatHeatSource
material_property = 'volumetric_heat'
variable = forwardT
[]
[]
[Materials]
[NonlinearConductivity]
type = ADParsedMaterial
f_name = 'conductivity'
function = '10+500*forwardT'
args = 'forwardT'
[]
[volumetric_heat]
type = ADGenericFunctionMaterial
prop_names = 'volumetric_heat'
prop_values = 'volumetric_heat_func'
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/heat_source'
[]
[]
[BCs]
[left]
type = NeumannBC
variable = forwardT
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = forwardT
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = forwardT
boundary = bottom
value = 2
[]
[top]
type = DirichletBC
variable = forwardT
boundary = top
value = 1
[]
[]
[Reporters]
[measurement_locations]
type = OptimizationData
variable = forwardT
[]
[params]
type = ConstantReporter
real_vector_names = 'heat_source'
real_vector_values = '0' # Dummy
[]
[]
[Outputs]
console = false
[]
(modules/phase_field/test/tests/actions/gpm_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 300
[]
[GlobalParams]
op_num = 1
var_name_base = eta
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./eta0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[ICs]
[./IC_w]
type = BoundingBoxIC
variable = w
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 0.1
outside = 0
[../]
[./IC_phi]
type = BoundingBoxIC
variable = phi
x1 = 0
x2 = 150
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[./IC_eta0]
type = BoundingBoxIC
variable = eta0
x1 = 150
x2 = 300
y1 = 0
y2 = 0
inside = 1
outside = 0
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
[../]
[]
[Modules]
[./PhaseField]
[./GrandPotential]
switching_function_names = 'hb hm'
chemical_potentials = 'w'
anisotropic = 'false'
mobilities = 'chiD'
susceptibilities = 'chi'
free_energies_w = 'rhob rhom'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegab omegam'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = L_phi
kappa_op = kappa
free_energies_op = 'omegab omegam'
[../]
[../]
[]
[Materials]
#REFERENCES
[./constants]
type = GenericConstantMaterial
prop_names = 'Va cb_eq cm_eq kb km mu gamma L L_phi kappa kB'
prop_values = '0.04092 1.0 1e-5 1400 140 1.5 1.5 5.3e+3 2.3e+4 295.85 8.6173324e-5'
[../]
#SWITCHING FUNCTIONS
[./switchb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'phi eta0'
phase_etas = 'phi'
[../]
[./switchm]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hm
all_etas = 'phi eta0'
phase_etas = 'eta0'
[../]
[./omegab]
type = DerivativeParsedMaterial
property_name = omegab
coupled_variables = 'w phi'
material_property_names = 'Va kb cb_eq'
expression = '-0.5*w^2/Va^2/kb - w/Va*cb_eq'
derivative_order = 2
[../]
[./omegam]
type = DerivativeParsedMaterial
property_name = omegam
coupled_variables = 'w eta0'
material_property_names = 'Va km cm_eq'
expression = '-0.5*w^2/Va^2/km - w/Va*cm_eq'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
property_name = chi
coupled_variables = 'w'
material_property_names = 'Va hb hm kb km'
expression = '(hm/km + hb/kb)/Va^2'
derivative_order = 2
[../]
#DENSITIES/CONCENTRATION
[./rhob]
type = DerivativeParsedMaterial
property_name = rhob
coupled_variables = 'w'
material_property_names = 'Va kb cb_eq'
expression = 'w/Va^2/kb + cb_eq/Va'
derivative_order = 1
[../]
[./rhom]
type = DerivativeParsedMaterial
property_name = rhom
coupled_variables = 'w eta0'
material_property_names = 'Va km cm_eq(eta0)'
expression = 'w/Va^2/km + cm_eq/Va'
derivative_order = 1
[../]
[./concentration]
type = ParsedMaterial
property_name = c
material_property_names = 'rhom hm rhob hb Va'
expression = 'Va*(hm*rhom + hb*rhob)'
outputs = exodus
[../]
[./mobility]
type = DerivativeParsedMaterial
material_property_names = 'chi kB'
constant_names = 'T Em D0'
constant_expressions = '1400 2.4 1.25e2'
property_name = chiD
expression = 'chi*D0*exp(-Em/kB/T)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-7
nl_abs_tol = 1e-7
start_time = 0
dt = 2e-5
num_steps = 3
[]
[Outputs]
exodus = true
[]
(modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i)
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
scaling = 1e+04
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./f_density] # Local energy density (eV/mol)
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[AuxKernels]
# Calculates the energy density by combining the local and gradient energies
[./f_density] # (eV/mol/nm^2)
type = TotalFreeEnergy
variable = f_density
f_name = 'f_loc'
kappa_names = 'kappa_c'
interfacial_vars = c
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
property_name = M
coupled_variables = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
expression = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
property_name = f_loc
coupled_variables = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
expression = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
property_name = prec_indic
coupled_variables = c
expression = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./total_energy] # Total free energy at each timestep
type = ElementIntegralVariablePostprocessor
variable = f_density
execute_on = 'initial timestep_end'
[../]
[./num_features] # Number of precipitates formed
type = FeatureFloodCount
variable = c
threshold = 0.6
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/materials/derivative_material_interface/ad_parsed_material.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = eta
diffusivity = F
[../]
[./dt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = ADParsedMaterial
coupled_variables = 'eta'
expression ='(eta-0.5)^2'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/gtn_single.i)
# This test provides an example of an individual GTN viscoplasticity model
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmax = 0.002
ymax = 0.002
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
base_name = 'total'
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
base_name = 'total'
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = gtn
outputs = all
base_name = 'total'
[../]
[./porosity]
type = ADPorosityFromStrain
initial_porosity = 0.1
inelastic_strain = 'total_combined_inelastic_strain'
outputs = 'all'
[../]
[./gtn]
type = ADViscoplasticityStressUpdate
total_strain_base_name = 'total'
coefficient = 'coef'
power = 3
viscoplasticity_model = GTN
outputs = all
relative_tolerance = 1e-11
[../]
[./coef]
type = ADParsedMaterial
property_name = coef
# Example of creep power law
expression = '1e-18 * exp(-4e4 / 1.987 / 1200)'
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = total_hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = total_vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = effective_viscoplasticity
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[]
[Kernels]
[./ACbulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterfaceCleavageFracture]
type = ACInterfaceCleavageFracture
variable = c
beta_penalty = 1
cleavage_plane_normal = '-0.707 0.707 0.0'
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
preset = true
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
preset = true
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
preset = true
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 5
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_viscoplasticity_stress_update/lps_single.i)
# This test provides an example of an individual LPS viscoplasticity model
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmax = 0.002
ymax = 0.002
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy hydrostatic_stress vonmises_stress'
use_automatic_differentiation = true
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 0.1'
y = '0 1e-5'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = lps
outputs = all
[../]
[./porosity]
type = ADPorosityFromStrain
initial_porosity = 0.1
inelastic_strain = 'combined_inelastic_strain'
outputs = 'all'
[../]
[./lps]
type = ADViscoplasticityStressUpdate
coefficient = 'coef'
power = 3
outputs = all
relative_tolerance = 1e-11
[../]
[./coef]
type = ADParsedMaterial
property_name = coef
# Example of creep power law
expression = '1e-18 * exp(-4e4 / 1.987 / 1200)'
[../]
[]
[BCs]
[./no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.01
end_time = 0.12
[]
[Postprocessors]
[./disp_x]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[../]
[./avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = effective_viscoplasticity
[../]
[./porosity]
type = ElementAverageValue
variable = porosity
[../]
[]
[Outputs]
csv = true
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 28
xmin = -7
xmax = 7
ymin = -7
ymax = 7
uniform_refine = 2
[]
[GlobalParams]
radius = 0.2
int_width = 0.1
x1 = 0.0
y1 = 0.0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./T]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w T'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w T'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./etaa0_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = etaa0
coef = -5.0
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w T'
property_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '33.33 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 5.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-10
end_time = 2.0
dtmax = 0.05
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 5
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -2
xmax = 2
ymin = -2
ymax = 2
uniform_refine = 2
[]
[GlobalParams]
x1 = -2
y1 = -2
x2 = 2
y2 = -1.5
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
#Temperature
[./T]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[./T]
type = FunctionAux
function = 95.0+2.0*(y-1.0*t)
variable = T
execute_on = 'initial timestep_begin'
[../]
[]
[ICs]
[./w]
type = BoundingBoxIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outside = -4.0
inside = 0.0
[../]
[./etaa0]
type = BoundingBoxIC
variable = etaa0
#Solid phase
outside = 0.0
inside = 1.0
[../]
[./etab0]
type = BoundingBoxIC
variable = etab0
#Liquid phase
outside = 1.0
inside = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w T'
property_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 100.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 3
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
interval = 10
exodus = true
[]
(test/tests/materials/derivative_material_interface/construction_order.i)
#
# Test the the getDefaultMaterialProperty in DerivativeMaterialInterface.
# This test should only pass, if the construction order of the Materials
# using this interface does not influence the outcome.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
elem_type = QUAD4
[]
[GlobalParams]
derivative_order = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./dummy1]
type = Diffusion
variable = c
[../]
[./dummy2]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
# derivatives used both before and after being declared
[./sum_a_1]
type = DerivativeSumMaterial
property_name = Fa1
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_a]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_a_2]
type = DerivativeSumMaterial
property_name = Fa2
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
# derivatives declared after being used
[./sum_b_1]
type = DerivativeSumMaterial
property_name = Fb1
sum_materials = 'Fb'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_b]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = 'c^4'
[../]
# derivatives declared before being used
[./free_energy_c]
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_c_2]
type = DerivativeSumMaterial
property_name = Fc2
sum_materials = 'Fc'
coupled_variables = 'c'
outputs = exodus
[../]
# non-existing derivatives
[./free_energy_d]
type = ParsedMaterial
property_name = Fd
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_d_1]
type = DerivativeSumMaterial
property_name = Fd1
sum_materials = 'Fd'
coupled_variables = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
num_steps = 1
dt = 1e-5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[AuxVariables]
[./c]
[../]
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0]
type = MultiSmoothCircleIC
variable = gr0
invalue = 1.0
outvalue = 0.0001
bubspac = 20.0
numbub = 2
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[./c_IC]
type = SmoothCircleIC
int_width = 12.0
x1 = 50
y1 = 50
radius = 10.0
outvalue = 0
variable = c
invalue = 1
[../]
[]
[Kernels]
[./ie_gr0]
type = TimeDerivative
variable = gr0
[../]
[./diff_gr0]
type = Diffusion
variable = gr0
[../]
[./ie_gr1]
type = TimeDerivative
variable = gr1
[../]
[./diff_gr1]
type = Diffusion
variable = gr1
[../]
[./source]
type = MaskedBodyForce
variable = gr1
function = t
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = 'c'
property_name = mask
coupled_variables = 'c'
[../]
[]
[Postprocessors]
[./grain_tracker]
type = GrainTracker
# Reserve the first "op" variable
reserve_op = 1
threshold = 0.1
connecting_threshold = 0.001
variable = 'gr0 gr1'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_steps = 6
dt = 0.25
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
(modules/phase_field/test/tests/SoretDiffusion/split_temp.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmax = 500
elem_type = EDGE
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
[../]
[./w]
scaling = 1.0e2
[../]
[./T]
initial_condition = 1000.0
scaling = 1.0e5
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 125.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 100.0
variable = c
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
kappa_name = kappa
w = w
f_name = F
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./w_res_soret]
type = SoretDiffusion
variable = w
c = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./HtCond]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[../]
[]
[BCs]
[./Left_T]
type = DirichletBC
variable = T
boundary = left
value = 1000.0
[../]
[./Right_T]
type = DirichletBC
variable = T
boundary = right
value = 1015.0
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
block = 0
c = c
T = T # K
int_width = 60.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./thcond]
type = ParsedMaterial
block = 0
coupled_variables = 'c'
expression = 'if(c>0.7,1e-8,4e-8)'
property_name = thermal_conductivity
outputs = exodus
[../]
[./free_energy]
type = PolynomialFreeEnergy
block = 0
c = c
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
num_steps = 60
dt = 20.0
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/mat_neumann_bc/mat_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 10
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
[../]
[]
[ICs]
[./phi_IC]
type = FunctionIC
variable = phi
function = ic_func_phi
[../]
[]
[Functions]
[./ic_func_phi]
type = ParsedFunction
expression = '0.5 * (1 - tanh((x - 5) / 0.8))'
[../]
[]
[BCs]
[./top]
type = MatNeumannBC
variable = u
boundary = top
value = 2
boundary_material = hm
[../]
[]
[Kernels]
[./dudt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Materials]
[./hm]
type = ParsedMaterial
property_name = hm
coupled_variables = 'phi'
expression = '3*phi^2 - 2*phi^3'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 10
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/multiphase/GrandPotential3Phase.i)
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2019). It includes 3 phases with 1 grain of each phase. This example was used
# to generate the results shown in Fig. 3 of the paper.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmin = -15
xmax = 15
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etad0]
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etad0]
type = ConstantIC
variable = etad0
value = 0.1
[../]
[./IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
expression = '0.9*0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
expression = '0.9*0.5*(1.0+tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_w]
type = ParsedFunction
expression = 0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etab0 etad0 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etad0 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_delta0
[./ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[../]
[./ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 w'
[../]
[./ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[../]
[./ed0_dot]
type = TimeDerivative
variable = etad0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./coupled_etad0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etad0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[../]
[./hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[../]
[./omegad]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegad
material_property_names = 'Vm kd cdeq'
expression = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[../]
[./rhod]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhod
material_property_names = 'Vm kd cdeq'
expression = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[../]
[./c]
type = ParsedMaterial
material_property_names = 'Vm rhoa rhob rhod ha hb hd'
expression = 'Vm * (ha * rhoa + hb * rhob + hd * rhod)'
property_name = c
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
property_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
expression = '(ha/ka + hb/kb + hd/kd) / Vm^2'
coupled_variables = 'etaa0 etab0 etad0'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./etaa0]
type = LineValueSampler
variable = etaa0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etab0]
type = LineValueSampler
variable = etab0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etad0]
type = LineValueSampler
variable = etad0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'initial timestep_end final'
interval = 1
[../]
[./csv]
type = CSV
execute_on = 'initial timestep_end final'
interval = 1
[../]
[]
(modules/optimization/test/tests/executioners/steady_and_adjoint/nonlinear_diffusion.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[u_adjoint]
nl_sys = adjoint
[]
[]
[Kernels]
[diff]
type = ADMatDiffusion
variable = u
diffusivity = D
[]
[src]
type = ADBodyForce
variable = u
value = 1
[]
[src_adjoint]
type = ADBodyForce
variable = u_adjoint
value = 1
[]
[]
[BCs]
[dirichlet]
type = ADDirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[]
[Materials]
[diffc]
type = ADParsedMaterial
property_name = D
expression = '0.1 + 5 * u'
coupled_variables = 'u'
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Executioner]
type = SteadyAndAdjoint
forward_system = nl0
adjoint_system = adjoint
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
enable_jit = true
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etaa0dot_int]
type = AntitrappingCurrent
variable = w
v = etaa0
f_name = rhodiff
[../]
[./coupled_etab0dot_int]
type = AntitrappingCurrent
variable = w
v = etab0
f_name = rhodiff
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./int]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhodiff
material_property_names = 'rhoa rhob'
constant_names = 'int_width'
constant_expressions = '0.8'
expression = 'int_width*(rhob-rhoa)'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no3.i)
# Problem III.3
#
# The thermal conductivity of a spherical shell varies linearly with
# temperature: k = k0(1+beta* u). The inside radius is ri and the outside radius
# is ro. It has a constant internal heat generation q and is exposed to
# the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
xmin = 0.2
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q k0 ri ro beta u0'
symbol_values = '1200 1 0.2 1.0 1e-3 0'
expression = 'u0+(1/beta)*( ( 1 + (1/3)*beta*((ro^2-x^2)-(ro^2-ri^2) * (1/x-1/ro)/(1/ri-1/ro))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/invOpt_nonlinear/homogeneous_forward.i)
[Executioner]
type = Steady
solve_type = NEWTON
line_search = none
#nl_forced_its = 1
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Mesh]
[]
[Variables]
[T]
[]
[]
[AuxVariables]
[forwardT]
[]
[_dDdTgradT]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
thermal_conductivity = 'linearized_conductivity'
variable = T
[]
[heat_source]
type = ADMatHeatSource
material_property = 'volumetric_heat'
variable = T
[]
[advection]
type = ConservativeAdvection
velocity = _dDdTgradT
variable = T
upwinding_type = full #Full upwinding gives somewhat better results
[]
[]
[AuxKernels]
[_dDdTgradT]
type = ADFunctorElementalGradientAux
functor = forwardT
variable = _dDdTgradT
factor_matprop = '_dDdT'
[]
[]
[Materials]
[LinearizedConductivity]
type = ADParsedMaterial
f_name = 'linearized_conductivity'
function = '10+500*forwardT'
args = 'forwardT'
[]
[_dDdT]
type = ADParsedMaterial
f_name = '_dDdT' # "_" represents negation
function = '-500'
args = 'forwardT'
[]
[volumetric_heat]
type = ADGenericFunctionMaterial
prop_names = 'volumetric_heat'
prop_values = 'volumetric_heat_func'
[]
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/heat_source'
[]
[]
[BCs]
[left]
type = NeumannBC
variable = T
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = T
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = T
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = T
boundary = top
value = 0
[]
[]
[Reporters]
[measurement_locations]
type = OptimizationData
variable = T
[]
[params]
type = ConstantReporter
real_vector_names = 'heat_source'
real_vector_values = '0' # Dummy
[]
[]
[Outputs]
console = false
[]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
symbol_names = 'delta_eta r0'
symbol_values = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
symbol_names = 'delta r0 cvbubinit cvmatrixinit'
symbol_values = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
symbol_names = 'delta r0 cgbubinit cgmatrixinit'
symbol_values = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
expression = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
property_name = f_total_matrix
sum_materials = 'fm fe_m'
coupled_variables = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
property_name = fb
coupled_variables = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
expression = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
property_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
coupled_variables = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
property_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
expression = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
property_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
expression = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
property_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
expression = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
property_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
expression = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_mat_reaction/ad_mat_reaction.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Materials]
[ad_prop]
type = ADParsedMaterial
expression = '-log(3)*log(3)'
property_name = rxn_prop
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[reaction]
type = ADMatReaction
variable = u
reaction_rate = rxn_prop
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 3
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/materials/ad_material/conversion/1d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 2
[]
[Variables]
[v]
initial_condition = 1.1
[]
[]
[Kernels]
inactive = 'ad_diff'
[diff]
type = MatDiffusion
variable = v
diffusivity = 'coef'
[]
[ad_diff]
type = ADMatDiffusion
variable = v
diffusivity = 'ad_coef_2'
[]
[sink]
type = ADBodyForce
variable = v
function = 'sink'
[]
[]
[BCs]
[bounds]
type = DirichletBC
variable = v
boundary = 'left right'
value = 0
[]
[]
[Functions]
[sink]
type = ParsedFunction
expression = '3*x^3'
[]
[]
[Materials]
[ad_coef]
type = ADParsedMaterial
property_name = 'ad_coef'
expression = '0.01 * max(v, 1)'
coupled_variables = 'v'
[]
[converter_to_regular]
type = MaterialADConverter
ad_props_in = 'ad_coef'
reg_props_out = 'coef'
[]
# at this point we should have lost the derivatives
[converter_to_ad]
type = MaterialADConverter
reg_props_in = 'coef'
ad_props_out = 'ad_coef_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/optimization/examples/simpleTransient/nonlinear_forward_and_adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[VectorPostprocessors]
[src_values]
type = CSVReader
csv_file = source_params.csv
header = true
outputs = none
[]
[]
[ICs]
[initial]
type = FunctionIC
variable = u
function = exact
[]
[]
[Kernels]
[dt]
type = ADTimeDerivative
variable = u
[]
[diff]
type = ADMatDiffusion
variable = u
diffusivity = D
[]
[src]
type = ADBodyForce
variable = u
function = source
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Materials]
[diffc]
type = ADParsedMaterial
property_name = D
expression = '1 + u'
coupled_variables = u
[]
[]
[Functions]
[exact]
type = ParsedFunction
value = '2*exp(-2.0*(x - sin(2*pi*t))^2)*exp(-2.0*(y - cos(2*pi*t))^2)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/pi'
[]
[source]
type = NearestReporterCoordinatesFunction
x_coord_name = src_values/coordx
y_coord_name = src_values/coordy
time_name = src_values/time
value_name = src_values/values
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
num_steps = 100
end_time = 1
nl_rel_tol = 1e-12
l_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
variable = u
execute_on = timestep_end
outputs = none
[]
[]
[Postprocessors]
[topRight_pp]
type = PointValue
point = '0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomRight_pp]
type = PointValue
point = '-0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomLeft_pp]
type = PointValue
point = '-0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[topLeft_pp]
type = PointValue
point = '0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[]
[Outputs]
csv = true
console = false
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = false
[]
[Variables]
[u_adjoint]
nl_sys = adjoint
outputs = none
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u_adjoint
value_name = measured_data/misfit_values
x_coord_name = measured_data/measurement_xcoord
y_coord_name = measured_data/measurement_ycoord
z_coord_name = measured_data/measurement_zcoord
time_name = measured_data/measurement_time
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationSourceFunctionInnerProduct
variable = u_adjoint
function = source
execute_on = ADJOINT_TIMESTEP_END
outputs = none
[]
[]
(modules/optimization/test/tests/executioners/transient_and_adjoint/nonlinear_diffusivity.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[u_adjoint]
nl_sys = adjoint
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = ADMatDiffusion
variable = u
diffusivity = D
[]
[src]
type = ADBodyForce
variable = u
value = 1
[]
[src_adjoint]
type = ADBodyForce
variable = u_adjoint
value = 1
[]
[]
[BCs]
[dirichlet]
type = ADDirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[]
[Materials]
[diffc]
type = ADParsedMaterial
property_name = D
expression = '0.1 + 5 * u'
coupled_variables = 'u'
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
dt = 0.2
num_steps = 5
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Outputs]
[forward]
type = CSV
[]
[adjoint]
type = CSV
execute_on = 'INITIAL ADJOINT_TIMESTEP_END'
[]
[console]
type = Console
execute_postprocessors_on = 'INITIAL TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l * 3 / 4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
barrier_energy = 'barrier'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
property_name = fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = '3 * gc_prop / (8 * l) * c'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
property_name = F
[../]
[./barrier_energy]
type = ParsedMaterial
property_name = barrier
material_property_names = 'gc_prop l'
expression = '3 * gc_prop / 16 / l'
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 20
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/optimization/test/tests/optimizationreporter/constant_heat_source/adjoint_nonLinear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[Variables]
[adjoint_T]
[]
[]
[AuxVariables]
[T]
[]
[]
[Kernels]
[heat_conduction]
type = MatDiffusion
variable = adjoint_T
diffusivity = thermal_conductivity
[]
[]
[DiracKernels]
[pt]
type = ReporterPointSource
variable = adjoint_T
x_coord_name = misfit/measurement_xcoord
y_coord_name = misfit/measurement_ycoord
z_coord_name = misfit/measurement_zcoord
value_name = misfit/misfit_values
[]
[]
[Reporters]
[misfit]
type = OptimizationData
[]
[params]
type = ConstantReporter
real_vector_names = 'q'
real_vector_values = '0' # Dummy value
[]
[]
[BCs]
[left]
type = NeumannBC
variable = adjoint_T
boundary = left
value = 0
[]
[right]
type = NeumannBC
variable = adjoint_T
boundary = right
value = 0
[]
[bottom]
type = DirichletBC
variable = adjoint_T
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = adjoint_T
boundary = top
value = 0
[]
[]
[Materials]
[steel]
type = ParsedMaterial
f_name = 'thermal_conductivity'
function = '.01*T'
args = 'T'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'preonly lu superlu_dist'
[]
[Functions]
[volumetric_heat_func]
type = ParsedOptimizationFunction
expression = q
param_symbol_names = 'q'
param_vector_name = 'params/q'
[]
[]
[VectorPostprocessors]
[gradient_vpp]
type = ElementOptimizationSourceFunctionInnerProduct
variable = adjoint_T
function = volumetric_heat_func
[]
[]
[Outputs]
console = false
file_base = 'adjoint_nl'
[]
(modules/electromagnetics/test/tests/bcs/reflectionBC_helmholtz/ReflectionTest.i)
# problem: -(ku')' - c^2 * u' = 0 , 0 < x < L, u: R -> C
# u(x=0) = g0 , u'(x = L) = 2jcf(L)*exp(jcLf(L)) - jcf(L)u(x = L)
# c = a + jb , k = d + jh
[GlobalParams]
coeff_real = 15
coeff_imag = 7
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 100
[]
[]
[Variables]
[u_real]
order = FIRST
family = LAGRANGE
[]
[u_imag]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[cos]
type = ParsedFunction
expression = 'cos(0.5)'
[]
[]
[Materials]
[ASquaredMinusBSquared]
type = ADParsedMaterial
property_name = ASquaredMinusBSquared
expression = '(15*15 - 7*7)'
[]
[2TimesAB]
type = ADParsedMaterial
property_name = 2TimesAB
expression = '2*15*7'
[]
[negative_2TimesAB]
type = ADParsedMaterial
property_name = negative_2TimesAB
expression = '-2*15*7'
[]
[]
[Kernels]
[laplacian_real]
type = Diffusion
variable = u_real
[]
[coeffField_real]
type = ADMatReaction
reaction_rate = ASquaredMinusBSquared
variable = u_real
[]
[coupledField_real]
type = ADMatCoupledForce
v = u_imag
mat_prop_coef = negative_2TimesAB
variable = u_real
[]
[laplacian_imag]
type = Diffusion
variable = u_imag
[]
[coeffField_imag]
type = ADMatReaction
reaction_rate = ASquaredMinusBSquared
variable = u_imag
[]
[coupledField_imag]
type = ADMatCoupledForce
v = u_real
mat_prop_coef = 2TimesAB
variable = u_imag
[]
[]
[BCs]
[left_real]
type = DirichletBC
value = 0
boundary = left
variable = u_real
[]
[left_imag]
type = DirichletBC
value = 1
boundary = left
variable = u_imag
[]
[right_real]
type = EMRobinBC
func_real = cos
boundary = right
component = real
variable = u_real
field_real = u_real
field_imaginary = u_imag
sign = negative
[]
[right_imag]
type = EMRobinBC
func_real = cos
boundary = right
component = imaginary
variable = u_imag
field_real = u_real
field_imaginary = u_imag
sign = negative
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i)
#This input does not add time derivative kernel for phase field equation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./ACBulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = c
kappa_name = kappa_op
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
elem_type = QUAD
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./initial]
value = 1.0
variable = u
type = ConstantIC
[../]
[./c_IC]
int_width = 0.1
x1 = 0.5
y1 = 0.5
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = MaskedBodyForce
variable = u
value = 1
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = if(c>0.5,0,1)
property_name = mask
coupled_variables = c
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i)
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
property_name = M
coupled_variables = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
expression = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
property_name = f_loc
coupled_variables = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
expression = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
property_name = prec_indic
coupled_variables = c
expression = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringDilute.i)
#input file to test the GrandPotentialSinteringMaterial using the dilute energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./kv]
type = ParsedMaterial
property_name = kv
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.025 1571.6'
expression = 'a*T + b'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = DILUTE
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/penalty.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[GlobalParams]
penalty = 5
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./hsum]
type = ParsedMaterial
expression = h1+h2
property_name = hsum
material_property_names = 'h1 h2'
coupled_variables = 'c'
outputs = exodus
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = '(c-0.1)^2'
derivative_order = 2
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = '(c-0.9)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
coupled_variables = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 0.05
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmax = 500
elem_type = EDGE
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./T]
initial_condition = 1000.0
scaling = 1.0e5
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 125.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 100.0
variable = c
[../]
[]
[Kernels]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa
mob_name = M
[../]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./c_soret]
type = SoretDiffusion
variable = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./HtCond]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[../]
[]
[BCs]
[./Left_T]
type = DirichletBC
variable = T
boundary = left
value = 1000.0
[../]
[./Right_T]
type = DirichletBC
variable = T
boundary = right
value = 1015.0
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = T # K
int_width = 60.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./thcond]
type = ParsedMaterial
coupled_variables = 'c'
expression = 'if(c>0.7,1e-8,4e-8)'
property_name = thermal_conductivity
outputs = exodus
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 3
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
num_steps = 60
dt = 8.0
[]
[Outputs]
exodus = true
[]