- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
MaskedBodyForce
Kernel that defines a body force modified by a material mask
Implements a kernel for a source term/body force limited to a certain region by a mask (material property). A function or a postprocessor can also be supplied to multiply the source term by. Contributions added by this kernel have the form where is the mask (supplied as a material property), is the constant source term/body force, is a function (optional), and is the value of a postprocessor (optional).
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- coupled_variablesVector of nonlinear variable arguments this object depends on
C++ Type:std::vector<VariableName>
Controllable:No
Description:Vector of nonlinear variable arguments this object depends on
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- function1A function that describes the body force
Default:1
C++ Type:FunctionName
Controllable:No
Description:A function that describes the body force
- maskMaterial property defining the mask
C++ Type:MaterialPropertyName
Controllable:No
Description:Material property defining the mask
- postprocessor1A postprocessor whose value is multiplied by the body force
Default:1
C++ Type:PostprocessorName
Controllable:No
Description:A postprocessor whose value is multiplied by the body force
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- value1Coefficient to multiply by the body force term
Default:1
C++ Type:double
Controllable:Yes
Description:Coefficient to multiply by the body force term
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
- (modules/combined/examples/publications/rapid_dev/fig7b.i)
- (modules/combined/examples/publications/rapid_dev/fig7a.i)
- (modules/phase_field/examples/multiphase/GrandPotential3Phase_masscons.i)
- (modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
- (modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
References
No citations exist within this document.(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[AuxVariables]
[./c]
[../]
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0]
type = MultiSmoothCircleIC
variable = gr0
invalue = 1.0
outvalue = 0.0001
bubspac = 20.0
numbub = 2
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[./c_IC]
type = SmoothCircleIC
int_width = 12.0
x1 = 50
y1 = 50
radius = 10.0
outvalue = 0
variable = c
invalue = 1
[../]
[]
[Kernels]
[./ie_gr0]
type = TimeDerivative
variable = gr0
[../]
[./diff_gr0]
type = Diffusion
variable = gr0
[../]
[./ie_gr1]
type = TimeDerivative
variable = gr1
[../]
[./diff_gr1]
type = Diffusion
variable = gr1
[../]
[./source]
type = MaskedBodyForce
variable = gr1
function = t
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = 'c'
property_name = mask
coupled_variables = 'c'
[../]
[]
[Postprocessors]
[./grain_tracker]
type = GrainTracker
# Reserve the first "op" variable
reserve_op = 1
threshold = 0.1
connecting_threshold = 0.001
variable = 'gr0 gr1'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_steps = 6
dt = 0.25
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
(modules/combined/examples/publications/rapid_dev/fig7b.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Dashed black curve (2)
# Eigenstrain is globally applied. Single global elastic free energies.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Modules/TensorMechanics/Master/all]
add_variables = true
eigenstrain_names = eigenstrain
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain as a function of phase
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
prefactor = h
args = eta
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fc
fa_name = Fc1
fb_name = Fc2
eta = eta
args = 'c'
W = 4
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
output_properties = Fe
derivative_order = 2
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe'
coupled_variables = 'c eta'
derivative_order = 2
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/eigenstrain_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/eigenstrain_vpp
[../]
[]
(modules/combined/examples/publications/rapid_dev/fig7a.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Solid gray curve (1)
# Eigenstrain and elastic energies ar computed per phase and then interpolated.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
# Mesh displacement
[./disp_r]
order = SECOND
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor_1]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase1
fill_method = symmetric_isotropic
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase2
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeRSphericalSmallStrain
base_name = phase1
[../]
[./strain_2]
type = ComputeRSphericalSmallStrain
base_name = phase2
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
# eigenstrain per phase
[./eigenstrain2]
type = ComputeEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
base_name = phase2
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
f_name = Fe1
args = ''
base_name = phase1
derivative_order = 2
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
f_name = Fe2
args = ''
base_name = phase2
derivative_order = 2
[../]
# per phase free energies
[./free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./global_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = F1
fb_name = F2
eta = eta
args = 'c'
W = 4
[../]
# global stress
[./global_stress]
type = TwoPhaseStressMaterial
base_A = phase1
base_B = phase2
[../]
[./elastic_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fe
fa_name = Fe1
fb_name = Fe2
eta = eta
args = 'c'
W = 0
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/energy_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/energy_vpp
[../]
[]
(modules/phase_field/examples/multiphase/GrandPotential3Phase_masscons.i)
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2019). It includes 3 phases with 1 grain of each phase.
# This is a revised version of the model that eliminates small variations in mass
# that have been observed with the original formulation. In this version, rather
# than evolving the chemical potential as a field variable, we evolve the composition
# field using a normal Cahn-Hilliard equation, then relate chemical potential to
# composition using Eq. (22) from the paper (this relationship is derived from the
# grand potential functional and is valid only for parabolic free energies).
[Mesh]
type = GeneratedMesh
dim = 2
nx = 60
ny = 60
xmin = -15
xmax = 15
ymin = -15
ymax = 15
[]
[Variables]
[w]
[]
[c]
[]
[etaa0]
[]
[etab0]
[]
[etad0]
[]
[]
[ICs]
[IC_etaa0]
type = BoundingBoxIC
variable = etaa0
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 1.0
outside = 0.0
[]
[IC_etad0]
type = BoundingBoxIC
variable = etad0
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 0.0
outside = 1.0
[]
[IC_c]
type = BoundingBoxIC
variable = c
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 0.1
outside = 0.5
[]
[IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[]
[]
[Functions]
[ic_func_w]
type = ConstantFunction
value = 0
[]
[]
[Kernels]
# Order parameter eta_alpha0
[ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[]
[ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etab0 etad0 w'
[]
[ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[]
[ea0_dot]
type = TimeDerivative
variable = etaa0
[]
# Order parameter eta_beta0
[ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[]
[ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etad0 w'
[]
[ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[]
[eb0_dot]
type = TimeDerivative
variable = etab0
[]
# Order parameter eta_delta0
[ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[]
[ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 w'
[]
[ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[]
[ed0_dot]
type = TimeDerivative
variable = etad0
[]
#Concentration
[c_dot]
type = TimeDerivative
variable = c
[]
[Diffusion]
type = MatDiffusion
variable = c
v = w
diffusivity = DchiVm
args = ''
[]
#The following relate chemical potential to composition using Eq. (22)
[w_rxn]
type = MatReaction
variable = w
v = c
mob_name = -1
[]
[ca_rxn]
type = MatReaction
variable = w
mob_name = 'hoverk_a'
args = 'etaa0 etab0 etad0'
[]
[ca_bodyforce]
type = MaskedBodyForce
variable = w
mask = ha
coupled_variables = 'etaa0 etab0 etad0'
value = 0.1 #caeq
[]
[cb_rxn]
type = MatReaction
variable = w
mob_name = 'hoverk_b'
args = 'etaa0 etab0 etad0'
[]
[cb_bodyforce]
type = MaskedBodyForce
variable = w
mask = hb
coupled_variables = 'etaa0 etab0 etad0'
value = 0.9 #cbeq
[]
[cd_rxn]
type = MatReaction
variable = w
mob_name = 'hoverk_d'
args = 'etaa0 etab0 etad0'
[]
[cd_bodyforce]
type = MaskedBodyForce
variable = w
mask = hd
coupled_variables = 'etaa0 etab0 etad0'
value = 0.5 #cdeq
[]
[]
[Materials]
[ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[]
[hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[]
[hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[]
[omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[]
[omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[]
[omegad]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegad
material_property_names = 'Vm kd cdeq'
expression = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[]
[rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[]
[rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[]
[rhod]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhod
material_property_names = 'Vm kd cdeq'
expression = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[]
[const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[]
[Mobility]
type = DerivativeParsedMaterial
property_name = DchiVm
material_property_names = 'D chi Vm' #Factor of Vm is needed to evolve c instead of rho
expression = 'D*chi*Vm'
derivative_order = 2
[]
[chi]
type = DerivativeParsedMaterial
property_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
expression = '(ha/ka + hb/kb + hd/kd) / Vm^2'
coupled_variables = 'etaa0 etab0 etad0'
derivative_order = 2
[]
[hoverk_a]
type = DerivativeParsedMaterial
material_property_names = 'ha(etaa0,etab0,etad0) Vm ka'
property_name = hoverk_a
expression = 'ha / Vm / ka'
[]
[hoverk_b]
type = DerivativeParsedMaterial
material_property_names = 'hb(etaa0,etab0,etad0) Vm kb'
property_name = hoverk_b
expression = 'hb / Vm / kb'
[]
[hoverk_d]
type = DerivativeParsedMaterial
material_property_names = 'hd(etaa0,etab0,etad0) Vm kd'
property_name = hoverk_d
expression = 'hd / Vm / kd'
[]
[]
[Postprocessors]
[c_total]
type = ElementIntegralVariablePostprocessor
variable = c
[]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
csv = true
exodus = true
[]
(modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 800
xmin = 0
xmax = 80
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 4
[]
[Variables]
[wvy]
[]
[wvo]
[]
[phi]
[]
[PolycrystalVariables]
[]
[V]
[]
[]
[AuxVariables]
[bnds]
[]
[negative_V]
[]
[E_x]
order = CONSTANT
family = MONOMIAL
[]
[E_y]
order = CONSTANT
family = MONOMIAL
[]
[ns_cat_aux]
order = CONSTANT
family = MONOMIAL
[]
[ns_an_aux]
order = CONSTANT
family = MONOMIAL
[]
[T]
[]
[]
[Functions]
[ic_func_gr0]
type = ParsedFunction
expression = '0.5*(1.0-tanh((x)/sqrt(2.0*2.0)))'
[]
[ic_func_gr1]
type = ParsedFunction
expression = '0.5*(1.0+tanh((x)/sqrt(2.0*2.0)))'
[]
[]
[ICs]
[gr0_IC]
type = FunctionIC
variable = gr0
function = ic_func_gr0
[]
[gr1_IC]
type = FunctionIC
variable = gr1
function = ic_func_gr1
[]
[wvy_IC]
type = ConstantIC
variable = wvy
value = 2.7827
[]
[wvo_IC]
type = ConstantIC
variable = wvo
value = 2.7827
[]
[T_IC]
type = ConstantIC
variable = T
value = 1600
[]
[]
[BCs]
[v_left]
type = DirichletBC
preset = true
variable = V
boundary = left
value = 1e-2
[]
[v_right]
type = DirichletBC
preset = true
variable = V
boundary = right
value = 0
[]
[gr0_left]
type = DirichletBC
preset = true
variable = gr0
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[gr1_left]
type = DirichletBC
preset = true
variable = gr1
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[wvo_right]
type = DirichletBC
preset = true
variable = wvo
boundary = right
value = 2.7827
[]
[wvy_right]
type = DirichletBC
preset = true
variable = wvy
boundary = right
value = 2.7827
[]
[]
[Materials]
# Free energy coefficients for parabolic curves
[ks_cat]
type = ParsedMaterial
property_name = ks_cat
coupled_variables = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
expression = '(a*T + b) * Va^2'
[]
[ks_an]
type = ParsedMaterial
property_name = ks_an
coupled_variables = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
expression = '(a*T + b) * Va^2'
[]
[kv_cat]
type = ParsedMaterial
property_name = kv_cat
material_property_names = 'ks_cat'
expression = '10*ks_cat'
[]
[kv_an]
type = ParsedMaterial
property_name = kv_an
material_property_names = 'ks_cat'
expression = '10*ks_cat'
[]
# Diffusivity and mobilities
[chiDy]
type = GrandPotentialTensorMaterial
f_name = chiDy
diffusivity_name = Dvy
solid_mobility = L
void_mobility = Lv
chi = chi_cat
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
[chiDo]
type = GrandPotentialTensorMaterial
f_name = chiDo
diffusivity_name = Dvo
solid_mobility = Lo
void_mobility = Lvo
chi = chi_an
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
# Everything else
[ns_y_min]
type = DerivativeParsedMaterial
property_name = ns_y_min
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_Y'
constant_expressions = '4.37 4.37 8.617343e-5 0.03726'
derivative_order = 2
expression = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_Y'
[]
[ns_o_min]
type = DerivativeParsedMaterial
property_name = ns_o_min
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_O'
constant_expressions = '4.37 4.37 8.617343e-5 0.02484'
derivative_order = 2
expression = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_O'
[]
[sintering]
type = ElectrochemicalSinteringMaterial
chemical_potentials = 'wvy wvo'
electric_potential = V
void_op = phi
Temperature = T
surface_energy = 6.24
grainboundary_energy = 5.18
solid_energy_coefficients = 'kv_cat kv_cat'
void_energy_coefficients = 'kv_cat kv_an'
min_vacancy_concentrations_solid = 'ns_y_min ns_o_min'
min_vacancy_concentrations_void = '26.837 40.256'
defect_charges = '-3 2'
solid_relative_permittivity = 30
solid_energy_model = DILUTE
[]
[density_chi_y]
type = ElectrochemicalDefectMaterial
chemical_potential = wvy
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_cat
solid_density_name = ns_cat
chi_name = chi_cat
void_energy_coefficient = kv_cat
min_vacancy_concentration_solid = ns_y_min
min_vacancy_concentration_void = 26.837
solid_energy_model = DILUTE
defect_charge = -3
solid_relative_permittivity = 30
[]
[density_chi_o]
type = ElectrochemicalDefectMaterial
chemical_potential = wvo
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_an
solid_density_name = ns_an
chi_name = chi_an
void_energy_coefficient = kv_an
min_vacancy_concentration_solid = ns_o_min
min_vacancy_concentration_void = 40.256
solid_energy_model = DILUTE
defect_charge = 2
solid_relative_permittivity = 30
[]
[permittivity]
type = DerivativeParsedMaterial
property_name = permittivity
coupled_variables = 'phi'
material_property_names = 'hs hv'
constant_names = 'eps_rel_solid eps_void_over_e'
constant_expressions = '30 5.52e-2' #eps_void_over_e in 1/V/nm
derivative_order = 2
expression = '-hs * eps_rel_solid * eps_void_over_e - hv * eps_void_over_e'
[]
[void_pre]
type = DerivativeParsedMaterial
property_name = void_pre
material_property_names = 'hv'
constant_names = 'Z_cat Z_an nv_y_min nv_o_min'
constant_expressions = '-3 2 26.837 40.256'
derivative_order = 2
expression = '-hv * (Z_cat * nv_y_min + Z_an * nv_o_min)'
[]
[cat_mu_pre]
type = DerivativeParsedMaterial
property_name = cat_mu_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat'
constant_expressions = '-3'
derivative_order = 2
expression = '-hv * Z_cat / kv_cat'
[]
[an_mu_pre]
type = DerivativeParsedMaterial
property_name = an_mu_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an'
constant_expressions = '2'
derivative_order = 2
expression = '-hv * Z_an / kv_an'
[]
[cat_V_pre]
type = DerivativeParsedMaterial
property_name = cat_V_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat v_scale e '
constant_expressions = '-3 1 1'
derivative_order = 2
expression = 'hv * Z_cat^2 * e * v_scale / kv_cat'
[]
[an_V_pre]
type = DerivativeParsedMaterial
property_name = an_V_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an v_scale e '
constant_expressions = '2 1 1'
derivative_order = 2
expression = 'hv * Z_an^2 * e * v_scale / kv_an'
[]
[]
#This action adds most kernels needed for grand potential model
[Modules]
[PhaseField]
[GrandPotential]
switching_function_names = 'hv hs'
anisotropic = 'true true'
chemical_potentials = 'wvy wvo'
mobilities = 'chiDy chiDo'
susceptibilities = 'chi_cat chi_an'
free_energies_w = 'nv_cat ns_cat nv_an ns_an'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegav omegas'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = Lv
kappa_op = kappa
free_energies_op = 'omegav omegas'
[]
[]
[]
[Kernels]
[barrier_phi]
type = ACBarrierFunction
variable = phi
v = 'gr0 gr1'
gamma = gamma
mob_name = Lv
[]
[kappa_phi]
type = ACKappaFunction
variable = phi
mob_name = Lv
kappa_name = kappa
[]
[Laplace]
type = MatDiffusion
variable = V
diffusivity = permittivity
args = 'phi'
[]
[potential_void_constants]
type = MaskedBodyForce
variable = V
coupled_variables = 'phi'
mask = void_pre
[]
[potential_cat_mu]
type = MatReaction
variable = V
v = wvy
mob_name = cat_mu_pre
[]
[potential_an_mu]
type = MatReaction
variable = V
v = wvo
mob_name = an_mu_pre
[]
[potential_cat_V]
type = MatReaction
variable = V
mob_name = cat_V_pre
[]
[potential_an_V]
type = MatReaction
variable = V
mob_name = an_V_pre
[]
[potential_solid_cat]
type = MaskedExponential
variable = V
w = wvy
T = T
coupled_variables = 'phi gr0 gr1'
mask = hs
species_charge = -3
n_eq = ns_y_min
[]
[potential_solid_an]
type = MaskedExponential
variable = V
w = wvo
T = T
coupled_variables = 'phi gr0 gr1'
mask = hs
species_charge = 2
n_eq = ns_o_min
[]
[]
[AuxKernels]
[bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[negative_V]
type = ParsedAux
variable = negative_V
coupled_variables = V
expression = '-V'
[]
[E_x]
type = VariableGradientComponent
variable = E_x
gradient_variable = negative_V
component = x
[]
[E_y]
type = VariableGradientComponent
variable = E_y
gradient_variable = negative_V
component = y
[]
[ns_cat_aux]
type = MaterialRealAux
variable = ns_cat_aux
property = ns_cat
[]
[ns_an_aux]
type = MaterialRealAux
variable = ns_an_aux
property = ns_an
[]
[]
[Postprocessors]
[ns_cat_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_cat
[]
[ns_an_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_an
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 40
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-8
nl_abs_tol = 1e-13
start_time = 0
num_steps = 2
automatic_scaling = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
elem_type = QUAD
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./initial]
value = 1.0
variable = u
type = ConstantIC
[../]
[./c_IC]
int_width = 0.1
x1 = 0.5
y1 = 0.5
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = MaskedBodyForce
variable = u
value = 1
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = if(c>0.5,0,1)
property_name = mask
coupled_variables = c
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]