- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
- rhoDensity functor
C++ Type:MooseFunctorName
Controllable:No
Description:Density functor
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
PINSFVMassAdvection
This object computes the residual and Jacobian contribution of the incompressible version of the mass continuity equation, e.g. . We apply the divergence theorem and compute the advective flux of mass across cell/element faces.
Input Parameters
- advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
Default:upwind
C++ Type:MooseEnum
Options:average, upwind, sou, min_mod, vanLeer, quick, skewness-corrected
Controllable:No
Description:The interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- velocity_interp_methodrcThe interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Default:rc
C++ Type:MooseEnum
Options:average, rc
Controllable:No
Description:The interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- boundaries_to_avoidThe set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
- boundaries_to_forceThe set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
Boundary Execution Modification Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/1d-rc-continuous.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc-no-diffusion.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc-no-diffusion-strong-bc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/2d-rc-epsjump.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/1d-rc-epsjump.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-2d.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/2d-rc-continuous.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/materials/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d-parsed-function.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d-functor-material.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d.i)
rho = 1.1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '3 3'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = BernoulliPressureVariable
u = u
porosity = porosity
rho = ${rho}
[]
[]
[AuxVariables]
[porosity]
type = PiecewiseConstantVariable
[]
[has_porosity_jump_face]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[has_porosity_jump_face]
type = HasPorosityJumpFace
porosity = porosity
execute_on = 'initial timestep_end'
variable = has_porosity_jump_face
[]
[]
[ICs]
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 10
[]
[]
[Problem]
coord_type = 'RZ'
rz_coord_axis = 'X'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'v_pressure_volumetric'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PINSFVMomentumFriction
variable = u
momentum_component = 'x'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure_volumetric]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_pressure_by_parts_flux]
type = PINSFVMomentumPressureFlux
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_pressure_by_parts_volume_term]
type = PNSFVMomentumPressureFluxRZ
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_friction]
type = PINSFVMomentumFriction
variable = v
momentum_component = 'y'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[]
[FVBCs]
inactive = 'free-slip-u free-slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = v
momentum_component = 'y'
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Materials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/1d-rc-continuous.i)
mu=1.5
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '15 15'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
porosity = porosity
pressure = pressure
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[porosity_continuous]
type = FunctionIC
variable = porosity
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
expression = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
# Generated by compute-functions-1d.py
[exact_u]
type = ParsedFunction
expression = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '-mu*(1 - 0.5/(exp(30 - 30*x) + 1))*(-1/4*pi^2*cos((1/2)*x*pi)/(1 - 0.5/(exp(30 - 30*x) + 1)) - 15.0*pi*exp(30 - 30*x)*sin((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) - 450.0*exp(30 - 30*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) + 900.0*exp(60 - 60*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^3) + 450.0*exp(60 - 60*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^3*(exp(30 - 30*x) + 1)^4)) + 15.0*mu*(-1/2*pi*sin((1/2)*x*pi)/(1 - 0.5/(exp(30 - 30*x) + 1)) + 15.0*exp(30 - 30*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2))*exp(30 - 30*x)/(exp(30 - 30*x) + 1)^2 - pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi)/(1 - 0.5/(exp(30 - 30*x) + 1)) + 15.0*rho*exp(30 - 30*x)*cos((1/2)*x*pi)^2/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) + (1 - 0.5/(exp(30 - 30*x) + 1))*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
# ksp_gmres_restart bumped to 200 for linear convergence
nl_max_its = 100
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc-no-diffusion.i)
mu=1e-15
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 0.5
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = .1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '-1.25*pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi) + 0.8*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'bt'
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
darcy=1.1
forch=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
porosity = porosity
pressure = pressure
smoothing_layers = 2
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[eps_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[eps_out]
type = ADFunctorElementalAux
variable = eps_out
functor = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_drag]
type = PINSFVMomentumFriction
variable = u
momentum_component = 'x'
porosity = porosity
rho = ${rho}
[]
[u_correction]
type = PINSFVMomentumFrictionCorrection
variable = u
momentum_component = 'x'
porosity = porosity
rho = ${rho}
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_drag]
type = PINSFVMomentumFriction
variable = v
momentum_component = 'y'
porosity = porosity
rho = ${rho}
[]
[v_correction]
type = PINSFVMomentumFrictionCorrection
variable = v
momentum_component = 'y'
porosity = porosity
rho = ${rho}
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '${darcy} ${darcy} ${darcy} ${forch} ${forch} ${forch}'
[]
[]
[Functions]
[porosity]
type = ParsedFunction
expression = '.5 + .1 * sin(pi * x / 4) * cos(pi * y / 4)'
[]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '-mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.025*pi^2*sin((1/4)*x*pi)*sin((1/4)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00625*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00125*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^3) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.00625*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.025*pi^2*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00125*pi^2*sin((1/2)*y*pi)*cos((1/4)*x*pi)^2*cos((1/2)*x*pi)*cos((1/4)*y*pi)^2/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^3) - 0.025*pi*mu*(-1/2*pi*sin((1/2)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 0.025*pi*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2)*cos((1/4)*x*pi)*cos((1/4)*y*pi) + 0.025*pi*mu*((1/2)*pi*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.025*pi*sin((1/4)*x*pi)*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2)*sin((1/4)*x*pi)*sin((1/4)*y*pi) + rho*(darcy + forch)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.025*pi*rho*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 - 0.025*pi*rho*sin((1/2)*y*pi)^2*cos((1/4)*x*pi)*cos((1/2)*x*pi)^2*cos((1/4)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 - 1/4*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho darcy forch'
symbol_values = '${mu} ${rho} ${darcy} ${forch}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = '-mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-1/4*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 0.025*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00625*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00125*pi^2*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^3) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-1/16*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.00625*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 - 0.0125*pi^2*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + 0.00125*pi^2*sin((1/4)*x*pi)*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^3) + 0.025*pi*mu*(-1/2*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.025*pi*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2)*sin((1/4)*x*pi)*sin((1/4)*y*pi) - 0.025*pi*mu*((1/4)*pi*cos((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 0.025*pi*sin((1/4)*x*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2)*cos((1/4)*x*pi)*cos((1/4)*y*pi) + rho*(darcy + forch)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + 0.025*pi*rho*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)*cos((1/2)*y*pi)^2/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 - 0.025*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)^2 + (3/2)*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho darcy forch'
symbol_values = '${mu} ${rho} ${darcy} ${forch}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2FunctorError
approximate = pressure
exact = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
rho='rho'
advected_interp_method='upwind'
velocity_interp_method='rc'
gamma=1.4
R=8.3145
molar_mass=29.0e-3
R_specific=${fparse R/molar_mass}
cp=${fparse gamma*R_specific/(gamma-1)}
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = sup_vel_x
pressure = pressure
porosity = porosity
[]
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = INSFVPressureVariable
[]
[sup_vel_x]
type = PINSFVSuperficialVelocityVariable
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[eps]
type = FunctionIC
variable = porosity
function = 'eps'
[]
[]
[FVKernels]
[mass_advection]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = sup_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = sup_vel_x
pressure = pressure
porosity = porosity
momentum_component = 'x'
force_boundary_execution = false
[]
[momentum_fn]
type = INSFVBodyForce
variable = sup_vel_x
functor = 'forcing_rho_ud'
momentum_component = 'x'
[]
[]
[FVBCs]
[mass]
variable = pressure
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = sup_vel_x
pressure = pressure
eqn = 'mass'
porosity = porosity
[]
[momentum]
variable = sup_vel_x
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = sup_vel_x
pressure = pressure
eqn = 'momentum'
momentum_component = 'x'
porosity = porosity
[]
# help gradient reconstruction *and* create Dirichlet values for use in PINSFVFunctorBC
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = T_fluid
rho = ${rho}
[]
[]
[Functions]
[forcing_rho]
type = ParsedFunction
expression = '-3.45300378856215*sin(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2FunctorError
approximate = pressure
exact = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
approximate = sup_vel_x
exact = exact_sup_vel_x
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = ${rho}
[]
[porosity]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
block_id = 0
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
boundaries_old = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
block_id = 0
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
boundaries_old = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
block_id = '2'
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
boundaries_old = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
[]
[lambda]
family = SCALAR
order = FIRST
block = 'spacer_block porous_block'
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
# No mass time derivative because imcompressible (derivative = 0)
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 'spacer_block porous_block'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[Materials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = none
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc-no-diffusion-strong-bc.i)
mu=1e-15
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 0.5
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = .1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '-1.25*pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi) + 0.8*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
force_boundary_execution = false
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[]
[FVBCs]
[mass]
variable = pressure
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = u
pressure = pressure
eqn = 'mass'
porosity = porosity
[]
[momentum]
variable = u
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = u
pressure = pressure
eqn = 'momentum'
momentum_component = 'x'
porosity = porosity
[]
[inlet-u]
type = FVFunctionDirichletBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = FVFunctionDirichletBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'rho'
prop_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'bt'
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
v_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 10
nx = 20
ny = 100
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${v_inlet}
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.4
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
rho = ${rho}
gravity = '0 -9.81 0'
momentum_component = 'x'
porosity = porosity
[]
[u_boussinesq]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = 'T_fluid'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'x'
alpha_name = 'alpha_b'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
rho = ${rho}
gravity = '-0 -9.81 0'
momentum_component = 'y'
porosity = porosity
[]
[v_boussinesq]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = 'T_fluid'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'y'
alpha_name = 'alpha_b'
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
function = ${v_inlet}
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse v_inlet * rho * cp * T_inlet}'
boundary = 'bottom'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv alpha_b'
prop_values = '1e-3 8e-4'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[outlet-v]
type = SideAverageValue
variable = superficial_vel_y
boundary = 'top'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'top'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
cp = 'cp'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 20
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[velocity_norm]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[mass_time]
type = PWCNSFVMassTimeDerivative
variable = pressure
porosity = 'porosity'
drho_dt = 'drho_dt'
[]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
drho_dt = 'drho_dt'
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
value = ${T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[Materials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T_fluid'
speed = 'velocity_norm'
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 'porosity'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[AuxKernels]
[speed]
type = ParsedAux
variable = 'velocity_norm'
coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / '
'porosity'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/2d-rc-epsjump.i)
mu=1.1
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '0.5'
ix = '30 30'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
porosity = porosity
pressure = pressure
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
[]
[]
[ICs]
inactive = 'porosity_continuous'
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[porosity_continuous]
type = FunctionIC
variable = porosity
block = '1 2'
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
expression = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = u
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = v
momentum_component = 'y'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[Materials]
inactive = 'smooth'
[jump]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'porosity'
subdomain_to_prop_value = '1 1
2 0.5'
[]
[smooth]
type = ADGenericFunctionFunctorMaterial
prop_names = 'porosity'
prop_values = 'smooth_jump'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/1d-rc-epsjump.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '30 30'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
inactive = 'porosity_continuous'
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[porosity_continuous]
type = FunctionIC
variable = porosity
block = '1 2'
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
expression = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '5 5'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '0.25*pi^2*mu*cos((1/2)*x*pi) - 1.25*pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi) + 0.8*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 8
ny = 8
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[GlobalParams]
porosity = porosity
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '0.5*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - '
'0.625*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + '
'0.625*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - '
'1.25*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - '
'0.2*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = '0.3125*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - '
'1.25*pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
'0.625*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
'0.3125*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
'1.2*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - '
'1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2FunctorError
approximate = pressure
exact = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '2.5 2.5'
dy = '1.0'
ix = '20 20'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'lambda'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'x'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[mean-pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
inactive = 'free-slip-u free-slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Materials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '50 50'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'T_solid'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'solid_energy_diffusion solid_energy_convection'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'heated-side'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 150
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '1'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-2d.i)
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '0.5'
ix = '3 3'
iy = '2'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
porosity = porosity
pressure = pressure
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = BernoulliPressureVariable
u = u
v = v
porosity = porosity
rho = ${rho}
[]
[]
[AuxVariables]
[porosity]
type = PiecewiseConstantVariable
[]
[]
[ICs]
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = u
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = v
momentum_component = 'y'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/2d-rc-continuous.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 8
ny = 8
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
porosity = porosity
pressure = pressure
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[porosity_continuous]
type = FunctionIC
variable = porosity
function = smooth_jump
[]
[]
[GlobalParams]
porosity = porosity
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
expression = '1 - 0.5 * 1 / (1 + exp(-30*(x-1))) - 0.01 * y'
[]
# Output from compute-functions-2d.py
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '15.0*mu*(-1/2*pi*sin((1/2)*x*pi)*sin((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 15.0*exp(30 - 30*x)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2))*exp(30 - 30*x)/(exp(30 - 30*x) + 1)^2 + 0.01*mu*((1/2)*pi*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - mu*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*(-1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*pi*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 0.0002*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^3) - mu*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*(-1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 15.0*pi*exp(30 - 30*x)*sin((1/2)*x*pi)*sin((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - 450.0*exp(30 - 30*x)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 900.0*exp(60 - 60*x)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/((exp(30 - 30*x) + 1)^3*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 450.0*exp(60 - 60*x)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/((exp(30 - 30*x) + 1)^4*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^3)) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 15.0*rho*exp(30 - 30*x)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - 1/4*pi*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = '0.01*mu*(-1/2*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 15.0*mu*((1/4)*pi*cos((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 15.0*exp(30 - 30*x)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2))*exp(30 - 30*x)/(exp(30 - 30*x) + 1)^2 - mu*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*(-1/4*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 0.01*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 0.0002*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^3) - mu*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*(-1/16*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 450.0*exp(30 - 30*x)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 7.5*pi*exp(30 - 30*x)*cos((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 900.0*exp(60 - 60*x)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^3*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + 450.0*exp(60 - 60*x)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^4*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^3)) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*rho*sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 15.0*rho*exp(30 - 30*x)*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + (3/2)*pi*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2FunctorError
approximate = pressure
exact = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/materials/2d-rc.i)
mu = 0.01
rho = 2000
u_inlet = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 10
ny = 6
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[speed_output]
type = MooseVariableFVReal
[]
[vel_x_output]
type = MooseVariableFVReal
[]
[vel_y_output]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[speed]
type = ADFunctorElementalAux
variable = 'speed_output'
functor = 'speed'
[]
[vel_x]
type = ADFunctorVectorElementalAux
variable = 'vel_x_output'
functor = 'velocity'
component = 0
[]
[vel_y]
type = ADFunctorVectorElementalAux
variable = 'vel_y_output'
functor = 'velocity'
component = 1
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
# Testing this object
[var_mat]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = 'superficial_vel_x'
superficial_vel_y = 'superficial_vel_y'
porosity = porosity
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-11
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d-parsed-function.i)
rho = 1.1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '3 3'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = BernoulliPressureVariable
u = u
porosity = porosity
rho = ${rho}
[]
[]
[Functions]
[porosity]
type = ParsedFunction
expression = 'if(x > 1, 0.5, 1)'
[]
[]
[AuxVariables]
[has_porosity_jump_face]
type = MooseVariableFVReal
[]
[porosity_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[has_porosity_jump_face]
type = HasPorosityJumpFace
porosity = porosity
execute_on = 'initial timestep_end'
variable = has_porosity_jump_face
[]
[porosity_out]
type = ADFunctorElementalAux
variable = porosity_out
functor = porosity
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
mu = 1.1
rho = 1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'lambda'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[mean-pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
# Select desired boundary conditions
active = 'inlet-u inlet-v outlet-p free-slip-u free-slip-v'
# Possible inlet boundary conditions
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-p]
type = INSFVOutletPressureBC
boundary = 'left'
variable = pressure
function = 1
[]
# Possible wall boundary conditions
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_y
momentum_component = 'y'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
# Possible outlet boundary conditions
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[outlet-p-novalue]
type = INSFVMassAdvectionOutflowBC
boundary = 'right'
variable = pressure
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
[]
[outlet-u]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
porosity = porosity
momentum_component = 'x'
rho = ${rho}
[]
[outlet-v]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
porosity = porosity
momentum_component = 'y'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideIntegralVariablePostprocessor
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/bernoulli-1d-functor-material.i)
rho = 1.1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '3 3'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = BernoulliPressureVariable
u = u
porosity = porosity
rho = ${rho}
[]
[]
[AuxVariables]
[has_porosity_jump_face]
type = MooseVariableFVReal
[]
[porosity_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[has_porosity_jump_face]
type = HasPorosityJumpFace
porosity = porosity
execute_on = 'initial timestep_end'
variable = has_porosity_jump_face
[]
[porosity_out]
type = ADFunctorElementalAux
variable = porosity_out
functor = porosity
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Materials]
[porosity]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'porosity'
subdomain_to_prop_value = '1 1 2 0.5'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
mu = 1
rho = 1
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[left]
type = ParsedSubdomainMeshGenerator
input = gen
combinatorial_geometry = 'x > 3 & x < 6'
block_id = 1
[]
[right]
type = ParsedSubdomainMeshGenerator
input = left
combinatorial_geometry = 'x < 3'
block_id = 2
[]
[more-right]
type = ParsedSubdomainMeshGenerator
input = right
combinatorial_geometry = 'x > 6'
block_id = 3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion_1]
type = PINSFVEnergyAnisotropicDiffusion
kappa = 'kappa'
variable = T_fluid
porosity = porosity
block = '1 2'
[]
[energy_diffusion_2]
type = PINSFVEnergyAnisotropicDiffusion
kappa = 'kappa'
variable = T_fluid
porosity = porosity
block = '3'
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'inlet-T-dirichlet'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[inlet-T-dirichlet]
type = FVDirichletBC
variable = T_fluid
value = '${T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '1'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[kappa]
type = ADGenericVectorFunctorMaterial
prop_names = 'kappa'
prop_values = '1e-3 1e-2 1e-1'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]