- lambdaLagrange multiplier variable
C++ Type:std::vector<VariableName>
Controllable:No
Description:Lagrange multiplier variable
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
FVIntegralValueConstraint
This object implements the residuals that enforce the constraint
using a Lagrange multiplier approach. E.g. this object enforces the constraint that the average value of match .
The detailed description of the derivation for the corresponding finite element constraint can be found at scalar_constraint_kernel. The finite volume version can be obtained by simply substituting for . Note that .
The contribution to the diagonal of the system of this kernel is null, which introduces a saddle point. Make sure to use a NONZERO
shift in your preconditioner.
Example input syntax
In this example, the average value of the variable v
is set using a FVIntegralValueConstraint
. In combination with a single Dirichlet boundary condition, this makes the numerical problem accept a single numerical solution, and be well-posed.
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = 13
lambda = lambda
[]
[]
(test/tests/fvkernels/constraints/integral.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- phi00What we want the average value of the primal variable to be.
Default:0
C++ Type:PostprocessorName
Controllable:No
Description:What we want the average value of the primal variable to be.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/jeffery-hamel/wedge_dirichlet_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-ro.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex.i)
- (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
- (modules/navier_stokes/examples/solidification/galium_melting.i)
- (test/tests/scaling/resid-and-jac-together/test.i)
- (modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fv.i)
- (test/tests/fvkernels/constraints/integral_transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-extrapolated-outlet-pressure.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
- (test/tests/fvkernels/constraints/integral.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
- (test/tests/restart/scalar-var/part1.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pull_nonlocal_a_data/test.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/advection-schemes/test.i)
(test/tests/fvkernels/constraints/integral.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = 13
lambda = lambda
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/jeffery-hamel/wedge_dirichlet_fv.i)
mu=1
rho=1
# This input file tests whether we can converge to the semi-analytical
# solution for flow in a 2D wedge.
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
[file]
type = FileMeshGenerator
file = wedge_8x12.e
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = mu
momentum_component = y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = y
pressure = pressure
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top_wall bottom_wall'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top_wall bottom_wall'
function = 0
[]
[inlet_x]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'inlet outlet'
function = vel_x_exact
[]
[inlet_y]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'inlet outlet'
function = vel_y_exact
[]
[]
[Functions]
[f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15 deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# functions below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[]
[vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[]
[vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[SMP_NEWTON]
type = SMP
solve_type = NEWTON
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-ro.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_bad_ro]
type = FVBodyForce
variable = u
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex.i)
mu = 1.0
rho = 1.0
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
coord_type = 'XYZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
face_interp_method = 'skewness-corrected'
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
face_interp_method = 'skewness-corrected'
[]
[pressure]
type = INSFVPressureVariable
face_interp_method = 'skewness-corrected'
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = vel_x
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = vel_y
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_x
function = '0'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = '0'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
expression = 'x*(1-x)-2/12'
[]
[forcing_u]
type = ParsedFunction
expression = '-4*mu/rho*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+4*x^3'
'*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '4*mu/rho*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+4*y^3*x^2*(2'
'*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
hide = lambda
[]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = vel_x
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2FunctorError
approximate = vel_y
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
mu = 1
rho = 1
k = 1
cp = 1
[GlobalParams]
velocity_interp_method = 'rc'
# Maximum cell Peclet number is ~.1 so energy transport is stable without upwinding
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[Pe]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[Pe]
type = PecletNumberFunctorAux
variable = Pe
speed = speed
thermal_diffusivity = 'thermal_diffusivity'
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = speed
[]
[thermal_diffusivity]
type = ThermalDiffusivityFunctorMaterial
k = ${k}
rho = ${rho}
cp = ${cp}
[]
[enthalpy]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = T
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = 1
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'interface left'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'interface left'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'bottom_to_0'
function = 0
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'bottom_to_0'
function = 1
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'bottom_to_0'
value = 0.5
[]
[outlet]
type = INSFVMassAdvectionOutflowBC
variable = pressure
boundary = 'top_to_0'
u = u
v = v
rho = ${rho}
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'y'
rho = ${rho}
[]
[heater]
type = FVDirichletBC
variable = 'Ts'
boundary = 'right'
value = 10
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[max_T]
type = ADElementExtremeFunctorValue
functor = T
block = 0
[]
[max_Ts]
type = ADElementExtremeFunctorValue
functor = Ts
block = 1
[]
[mdot_out]
type = VolumetricFlowRate
boundary = 'top_to_0'
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
mu = .01
rho = 1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '2.5 2.5'
dy = '1.0'
ix = '20 20'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'lambda'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'x'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[mean-pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
inactive = 'free-slip-u free-slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Materials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[secondary_interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'interface'
primary_block = 1
paired_block = 0
new_boundary = 'secondary_interface'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
[]
[v]
type = INSFVVelocityVariable
block = 0
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
block = 0
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
block = 0
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
block = 0
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
block = 0
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
block = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
block = 0
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
block = 0
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
block = 1
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
bulk_distance = 0.3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left interface bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left interface top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = Ts
boundary = 'right'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 200
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/examples/solidification/galium_melting.i)
##########################################################
# Simulation of Galium Melting Experiment
# Ref: Gau, C., & Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall.
# Key physics: melting/solidification, convective heat transfer, natural convection
##########################################################
mu = 1.81e-3
rho_solid = 6093
rho_liquid = 6093
k_solid = 32
k_liquid = 32
cp_solid = 381.5
cp_liquid = 381.5
L = 80160
alpha_b = 1.2e-4
T_solidus = 302.93
T_liquidus = '${fparse T_solidus + 0.1}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
T_cold = 301.15
T_hot = 311.15
Nx = 100
Ny = 50
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 88.9e-3
ymin = 0
ymax = 63.5e-3
nx = ${Nx}
ny = ${Ny}
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 0.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = ADFunctorElementalAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = ADFunctorElementalAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = ADFunctorElementalAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = ADFunctorElementalAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = ADFunctorElementalAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_cold}'
scaling = 1.0
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = INSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
linear_coef_name = 'Darcy_coefficient'
quadratic_coef_name = 'Forchheimer_coefficient'
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'x'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = INSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
linear_coef_name = 'Darcy_coefficient'
quadratic_coef_name = 'Forchheimer_coefficient'
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'y'
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
cp = cp_mixture
rho = rho_mixture
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0
[]
[hot_wall]
type = FVDirichletBC
variable = T
value = '${T_hot}'
boundary = 'left'
[]
[cold_wall]
type = FVDirichletBC
variable = T
value = '${T_cold}'
boundary = 'right'
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
dendrite_spacing_scaling = 1e-1
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b'
prop_values = '${alpha_b}'
[]
[]
[Executioner]
type = Transient
# Time-stepping parameters
start_time = 0.0
end_time = 200.0
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
dt = 0.1
[]
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-2
nl_abs_tol = 1e-4
nl_max_its = 30
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/scaling/resid-and-jac-together/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 21
xmax = 2
[]
[Variables]
[v]
type = MooseVariableFVReal
# singular if we use two term boundary expansion
two_term_boundary_expansion = false
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '1 0 0'
[]
[lambda]
type = FVIntegralValueConstraint
variable = v
lambda = lambda
phi0 = 1
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
solve_type = NEWTON
automatic_scaling = true
off_diagonals_in_auto_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fv.i)
mu=1
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[Reynolds]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[Reynolds]
type = ReynoldsNumberFunctorAux
variable = Reynolds
speed = speed
rho = ${rho}
mu = ${mu}
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = speed
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/constraints/integral_transient.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = phi0_pp
lambda = lambda
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Postprocessors]
[phi0_pp]
type = FunctionValuePostprocessor
function = 't + 13'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/rc.i)
mu=1.1
rho=1.1
[GlobalParams]
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'average'
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = 'average'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = 'average'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = v
function = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(y)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(y)*cos((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = 'mu*sin(y)*cos((1/2)*x*pi) + (1/4)*pi^2*mu*sin(y)*cos((1/2)*x*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*y*pi)*cos((1/2)*x*pi) + rho*sin(x)*cos(y)*cos((1/2)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin(y)^2*sin((1/2)*x*pi)*cos((1/2)*x*pi) + sin(y)*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin(x)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*sin(x)*cos((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'mu*sin(x)*cos((1/2)*y*pi) + (1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*x*pi)*cos((1/2)*y*pi) + rho*sin(y)*cos(x)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + sin(x)*cos(y)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)*sin(y)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin(x)*sin((1/2)*y*pi) - 1/2*pi*rho*sin(y)*sin((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 30 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
approximate = v
exact = exact_v
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-extrapolated-outlet-pressure.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
u = u
v = v
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
u = u
v = v
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVMassAdvectionOutflowBC
boundary = 'right'
variable = pressure
u = u
v = v
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
mu = 1.1
rho = 1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'lambda'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[mean-pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
# Select desired boundary conditions
active = 'inlet-u inlet-v outlet-p free-slip-u free-slip-v'
# Possible inlet boundary conditions
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-p]
type = INSFVOutletPressureBC
boundary = 'left'
variable = pressure
function = 1
[]
# Possible wall boundary conditions
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_y
momentum_component = 'y'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
# Possible outlet boundary conditions
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[outlet-p-novalue]
type = INSFVMassAdvectionOutflowBC
boundary = 'right'
variable = pressure
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
[]
[outlet-u]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
porosity = porosity
momentum_component = 'x'
rho = ${rho}
[]
[outlet-v]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
porosity = porosity
momentum_component = 'y'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideIntegralVariablePostprocessor
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/constraints/integral.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = 13
lambda = lambda
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 64
ny = 64
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[rho_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
expression = 'u'
execute_on = 'initial timestep_end'
coupled_variables = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
expression = 'v'
execute_on = 'initial timestep_end'
coupled_variables = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
expression = 'T'
execute_on = 'initial timestep_end'
coupled_variables = 'T'
[]
[rho_out]
type = ADFunctorElementalAux
functor = 'rho'
variable = 'rho_out'
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 1e5
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'alpha'
prop_values = '${alpha}'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/scalar-var/part1.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 21
[]
[Variables]
[v]
type = MooseVariableFVReal
two_term_boundary_expansion = false
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '1 0 0'
[]
[lambda]
type = FVIntegralValueConstraint
variable = v
lambda = lambda
phi0 = 1
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
solve_type = NEWTON
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
mu = .01
rho = 1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 2
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
momentum_component = 'x'
rho = ${rho}
gravity = '0 -1 0'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
momentum_component = 'y'
rho = ${rho}
gravity = '0 -1 0'
[]
[]
[FVBCs]
[free_slip_x]
type = INSFVNaturalFreeSlipBC
variable = u
boundary = 'left right top bottom'
momentum_component = 'x'
[]
[free_slip_y]
type = INSFVNaturalFreeSlipBC
variable = v
boundary = 'left right top bottom'
momentum_component = 'y'
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
mu = 1.1
rho = 1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 3
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = v
function = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(y)*sin(x*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(y)*sin(x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = 'mu*sin(y)*sin(x*pi) - (-x*pi^2*mu*sin(y)*sin(x*pi) + pi*mu*sin(y)*cos(x*pi))/x + '
'(2*x*pi*rho*sin(y)^2*sin(x*pi)*cos(x*pi) + rho*sin(y)^2*sin(x*pi)^2)/x + '
'(-1/2*x*pi*rho*sin(x)*sin(y)*sin(x*pi)*sin((1/2)*y*pi) + '
'x*rho*sin(x)*sin(x*pi)*cos(y)*cos((1/2)*y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin(x)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*sin(x)*cos((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) '
'+ cos(y) - (-x*mu*sin(x)*cos((1/2)*y*pi) + mu*cos(x)*cos((1/2)*y*pi))/x + '
'(x*pi*rho*sin(x)*sin(y)*cos(x*pi)*cos((1/2)*y*pi) + '
'x*rho*sin(y)*sin(x*pi)*cos(x)*cos((1/2)*y*pi) + '
'rho*sin(x)*sin(y)*sin(x*pi)*cos((1/2)*y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(y)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin(x)*sin((1/2)*y*pi) + (x*pi*rho*sin(y)*cos(x*pi) + '
'rho*sin(y)*sin(x*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pull_nonlocal_a_data/test.i)
mu = 1
rho = 1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[test_pull]
type = GetAllTheRCVelocities
execute_on = 'timestep_end'
rc_uo = rc
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
mu = 1
rho = 1
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
scaling = 1e-4
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = right
value = 0
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k'
prop_values = '${alpha} ${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
block_id = 0
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
boundaries_old = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
block_id = 0
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
boundaries_old = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
block_id = '2'
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
boundaries_old = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
[]
[lambda]
family = SCALAR
order = FIRST
block = 'spacer_block porous_block'
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
# No mass time derivative because imcompressible (derivative = 0)
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 'spacer_block porous_block'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[Materials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = none
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[pin]
type = ExtraNodesetGenerator
input = gen
new_boundary = 'pin'
nodes = '0'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = 'u'
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
cp = 'cp'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/advection-schemes/test.i)
mu=10
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'sou'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 11
ny = 11
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]