- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this boundary condition applies
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this boundary condition applies to
FVNeumannBC
Neumann boundary condition for finite volume method.
Overview
A FVNeumannBC
may be used to specify a diffusive or an advective flux. For example, to specify a flux boundary condition in the following diffusion problem, a FVNeumannBC
with a constant value of may be used.
where is the domain, is its boundary, and is a point on the domain or its boundary. In this case, a FVNeumannBC
object is used to impose the condition (2) on the subset of the boundary denoted by . In this case, the value
field corresponds to the constant , and the user must define one or more sidesets corresponding to the boundary to pass to the boundary
argument. For this particular problem, an additional boundary condition, for example a FVDirichletBC
as in (3) would also be necessary to remove the nullspace.
Likewise, to specify an advective flux of constant value in a 1D advection problem with an advective velocity :
The advective flux, the value
to specify to the boundary condition (2), is .
Modeling a multi-dimensional problem will require a FVNeumannBC
per component.
When using the Navier Stokes module, FVNeumannBC
may not be available for use with velocity and pressure, as additional information is required on either the gradient or direction of these variables to model fully developed flow for example. Specific boundary conditions are provided, see for example INSFVOutletPressureBC
.
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- value0The value of the flux crossing the boundary.
Default:0
C++ Type:double
Controllable:No
Description:The value of the flux crossing the boundary.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/auxkernels/time_derivative_aux/test_fv.i)
- (test/tests/fvkernels/fv_simple_diffusion/neumann.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
- (test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
- (test/tests/variables/caching_fv_variables/fv_caching.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
- (test/tests/auxkernels/bounds/constant_bounds_fv.i)
- (test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
- (modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
- (test/tests/fvkernels/fv_anisotropic_diffusion/fv_anisotropic_diffusion.i)
- (test/tests/fvkernels/two-var-flux-and-kernel/input.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
(test/tests/auxkernels/time_derivative_aux/test_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 6
ny = 6
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 2
[]
[]
[FVKernels]
[time]
type = FVTimeKernel
variable = u
[]
[reaction]
type = FVReaction
variable = u
rate = 2.0
[]
[diffusion]
type = FVDiffusion
variable = u
coeff = 0.1
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = u
value = 5
boundary = 'left'
[]
[]
[AuxVariables]
inactive = 'variable_derivative'
[variable_derivative]
family = MONOMIAL
order = CONSTANT
[]
[variable_derivative_fv]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[AuxKernels]
# Time derivative of a FV variable using the functor system
[function_derivative_element]
type = TimeDerivativeAux
variable = variable_derivative_fv
functor = 'u'
factor = 2
[]
# this places the derivative of a FV variable in a FE one
# let's output a warning
inactive = 'function_derivative_element_fv_fe'
[function_derivative_element_fv_fe]
type = TimeDerivativeAux
variable = variable_derivative
functor = 'u'
factor = 2
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = v
boundary = left
value = 5
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = ADNeumannBC
variable = u
boundary = left
value = 5
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '50 50'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'T_solid'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'solid_energy_diffusion solid_energy_convection'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'heated-side'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 150
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '1'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
diff=1
a=1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[../]
[]
[Variables]
[./v]
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[./body]
type = FVBodyForce
variable = v
function = 'forcing'
[../]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[top]
type = FVNeumannBC
boundary = 'top'
value = 0
variable = v
[]
[bottom]
type = FVNeumannBC
boundary = 'bottom'
value = 0
variable = v
[]
[right]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = 'cos(x) - sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -snes_linesearch_minlambda'
petsc_options_value = 'hypre boomeramg 1e-9'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
# Fluid properties
mu = 1.1
rho = 1.1
cp = 1.1
k = 1e-3
# Operating conditions
u_inlet = 1
T_inlet = 200
T_solid = 190
p_outlet = 10
h_fs = 0.01
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${u_inlet}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-12
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_time]
type = INSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
variable = T_fluid
coeff = ${k}
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${p_outlet}'
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv T_solid'
prop_values = '${h_fs} ${T_solid}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 7e-13
dt = 0.4
end_time = 0.8
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/variables/caching_fv_variables/fv_caching.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1.5 2.4 0.1'
dy = '1.3 0.9'
ix = '2 1 1'
iy = '2 3'
subdomain_id = '0 1 1 2 2 2'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[adv]
type = FVMatAdvection
variable = u
vel = v_mat
[]
[body_force]
type = FVBodyForce
variable = u
value = 10
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 1
[]
[top]
type = FVNeumannBC
variable = u
value = 1
boundary = 'top'
[]
[]
[Materials]
[v_mat]
type = ADGenericVectorFunctorMaterial
prop_names = 'v_mat'
prop_values = '4 0 0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
block_id = 0
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
boundaries_old = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
block_id = 0
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
boundaries_old = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
block_id = '2'
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
boundaries_old = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
[]
[lambda]
family = SCALAR
order = FIRST
block = 'spacer_block porous_block'
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
# No mass time derivative because imcompressible (derivative = 0)
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 'spacer_block porous_block'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[Materials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = none
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = ${rho}
[]
[porosity]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/auxkernels/bounds/constant_bounds_fv.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[v]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[bounds_dummy]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 4
[]
[reaction_u]
type = FVReaction
variable = u
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 2
[]
[reaction_v]
type = FVReaction
variable = v
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = '0'
value = -0.5
[]
[right_u]
type = FVNeumannBC
variable = u
boundary = 1
value = 30
[]
[left_v]
type = FVDirichletBC
variable = v
boundary = '0'
value = 4
[]
[right_v]
type = FVNeumannBC
variable = v
boundary = 1
value = -40
[]
[]
[Bounds]
[u_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = upper
bound_value = 1
[]
[u_lower_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = lower
bound_value = 0
[]
[v_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = upper
bound_value = 3
[]
[v_lower_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = lower
bound_value = -1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-snes_type'
petsc_options_value = 'vinewtonrsls'
[]
[Outputs]
exodus = true
[]
(test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '5 5'
iy = '5'
subdomain_id = '1 1'
[]
[internal_sideset]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.01 & x>0.99'
included_subdomain_ids = 1
new_sideset_name = 'center'
input = 'mesh'
[]
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
inactive = 'center'
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = FVNeumannBC
variable = u
boundary = right
value = 4
[]
# Internal center sideset, should cause erroring out
[center]
type = FVNeumannBC
variable = u
boundary = center
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[vel_functor]
type = ADGenericVectorFunctorMaterial
prop_names = 'velocity'
prop_values = 'u v 0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[pdrop_total]
type = PressureDrop
pressure = pressure
upstream_boundary = 'bottom'
downstream_boundary = 'top'
boundary = 'top bottom'
[]
[pdrop_mid1]
type = PressureDrop
pressure = pressure
upstream_boundary = 'bottom'
downstream_boundary = 'internal_bot'
boundary = 'bottom internal_bot'
[]
[pdrop_mid2]
type = PressureDrop
pressure = pressure
upstream_boundary = 'internal_bot'
downstream_boundary = 'internal_top'
boundary = 'internal_top internal_bot'
[]
[pdrop_mid3]
type = PressureDrop
pressure = pressure
upstream_boundary = 'internal_top'
downstream_boundary = 'top'
boundary = 'top internal_top'
[]
[sum_drops]
type = ParsedPostprocessor
function = 'pdrop_mid1 + pdrop_mid2 + pdrop_mid3'
pp_names = 'pdrop_mid1 pdrop_mid2 pdrop_mid3'
[]
[p_upstream]
type = SideAverageValue
variable = pressure
boundary = 'bottom'
[]
[p_downstream]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
mu = 1
rho = 1
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[left]
type = ParsedSubdomainMeshGenerator
input = gen
combinatorial_geometry = 'x > 3 & x < 6'
block_id = 1
[]
[right]
type = ParsedSubdomainMeshGenerator
input = left
combinatorial_geometry = 'x < 3'
block_id = 2
[]
[more-right]
type = ParsedSubdomainMeshGenerator
input = right
combinatorial_geometry = 'x > 6'
block_id = 3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion_1]
type = PINSFVEnergyAnisotropicDiffusion
kappa = 'kappa'
variable = T_fluid
porosity = porosity
block = '1 2'
[]
[energy_diffusion_2]
type = PINSFVEnergyAnisotropicDiffusion
kappa = 'kappa'
variable = T_fluid
porosity = porosity
block = '3'
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'inlet-T-dirichlet'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[inlet-T-dirichlet]
type = FVDirichletBC
variable = T_fluid
value = '${T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '1'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[kappa]
type = ADGenericVectorFunctorMaterial
prop_names = 'kappa'
prop_values = '1e-3 1e-2 1e-1'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/fvkernels/fv_anisotropic_diffusion/fv_anisotropic_diffusion.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '10 10'
ix = '2 2'
dy = '20'
iy = '4'
subdomain_id = '1 2'
[]
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fem_diff1]
type = AnisotropicDiffusion
variable = u
tensor_coeff = '1 0 0
0 10 0
0 0 0'
block = 1
[]
[fem_diff2]
type = AnisotropicDiffusion
variable = u
tensor_coeff = '10 0 0
0 10 0
0 0 0'
block = 2
[]
[]
[BCs]
[fem_left_bottom]
type = NeumannBC
variable = u
boundary = 'left bottom'
value = 1
[]
[fem_top_right]
type = DirichletBC
variable = u
boundary = 'right top'
value = 0
[]
[]
[FVKernels]
[diff]
type = FVAnisotropicDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left_bottom]
type = FVNeumannBC
variable = v
boundary = 'left bottom'
value = 1
[]
[top_right]
type = FVDirichletBC
variable = v
boundary = 'right top'
value = 0
[]
[]
[Materials]
[diff1]
type = ADGenericVectorFunctorMaterial
prop_names = 'coeff'
prop_values = '1 10 1'
block = 1
[]
[diff2]
type = ADGenericVectorFunctorMaterial
prop_names = 'coeff'
prop_values = '10 10 1'
block = 2
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/two-var-flux-and-kernel/input.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = coeff
[]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left_u]
type = FVNeumannBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = FVDirichletBC
variable = u
boundary = right
value = 42
[]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
v_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 10
nx = 20
ny = 100
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${v_inlet}
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.4
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
rho = ${rho}
gravity = '0 -9.81 0'
momentum_component = 'x'
porosity = porosity
[]
[u_boussinesq]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = 'T_fluid'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'x'
alpha_name = 'alpha_b'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
rho = ${rho}
gravity = '-0 -9.81 0'
momentum_component = 'y'
porosity = porosity
[]
[v_boussinesq]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = 'T_fluid'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'y'
alpha_name = 'alpha_b'
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
function = ${v_inlet}
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse v_inlet * rho * cp * T_inlet}'
boundary = 'bottom'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv alpha_b'
prop_values = '1e-3 8e-4'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[outlet-v]
type = SideAverageValue
variable = superficial_vel_y
boundary = 'top'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'top'
[]
[]
[Outputs]
exodus = true
csv = false
[]