- value_0The yield strength when internal variable = 0
C++ Type:double
Controllable:No
Description:The yield strength when internal variable = 0
TensorMechanicsHardeningPowerRule
The TensorMechanicsHardeningPowerRule has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Hardening defined by power rule
Overview
Example Input File Syntax
Input Parameters
- epsilon01The reference strain
Default:1
C++ Type:double
Controllable:No
Description:The reference strain
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- exponent0Let p = internal_parameter. Then value = value_0 * (p / epsilon0 + 1)^{exponent})
Default:0
C++ Type:double
Controllable:No
Description:Let p = internal_parameter. Then value = value_0 * (p / epsilon0 + 1)^{exponent})
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/plastic_j2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/plastic_j2.i)
- (modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/correctness/plastic_j2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/correctness/plastic_j2.i)
- (modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i)
(modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = false
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = false
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = false
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 1.0
exponent = 1.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 1.0
exponent = 1.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i)
# UserObject Orthotropic test, with power rule hardening with rate 1e1.
# Linear strain is applied in the x direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e1
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.1
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = .25
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = false
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/correctness/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = false
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = false
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = false
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 0.1
exponent = 2.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./strain]
type = ElementAverageValue
variable = strain_xx
[]
[./stress]
type = ElementAverageValue
variable = stress_xx
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.001
dtmin = 0.001
end_time = 0.05
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/correctness/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 0.1
exponent = 2.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./strain]
type = ElementAverageValue
variable = strain_xx
[]
[./stress]
type = ElementAverageValue
variable = stress_xx
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.001
dtmin = 0.001
end_time = 0.05
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i)
# UserObject IsotropicSD test, with power rule hardening with rate 1e2.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e2
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]