- fpThe name of the FluidProperties UserObject
C++ Type:UserObjectName
Controllable:No
Description:The name of the FluidProperties UserObject
TabulatedFluidProperties
Fluid properties using bicubic interpolation on tabulated values provided
The TabulatedFluidProperties UserObject calculates fluid properties using bicubic interpolation of data provided in a text file.
Property values are read from a CSV file containing property data. Monotonically increasing values of pressure and temperature must be included in the data file, specifying the phase space where tabulated fluid properties will be defined. An error is thrown if either temperature or pressure data is not included or not monotonic, and an error is also thrown if this UserObject is requested to provide a fluid property outside this phase space.
This class is intended to be used when complicated formulations for fluid properties (such as density or internal energy) are required, which can be computationally expensive. This is particularly the case when the fluid equation of state is based on a Helmholtz free energy that is a function of density and temperature, like that used in CO2FluidProperties. In this example, density must be solved iteratively using pressure and temperature, which increases the computational burden.
Using an interpolation of tabulated fluid properties can significantly reduce the computational time for computing fluid properties defined using complex equations of state, which may reduce the overall computational cost dramatically, especially if fluid properties are calculated a large number of times.
File format
The expected file format for the tabulated fluid properties is now described. The first line must be the header containing the required column names pressure and temperature, and also any number of the fluid properties that TabulatedFluidProperties understands. These are: density, enthalpy, internal_energy, viscosity, k (the thermal conductivity), cp (the isobaric specific heat capacity), cv (the isochoric specific heat capacity), and entropy.
The order is not important, although having pressure and temperature first makes the data easier for a human to read.
The data in the pressure and temperature columns must be monotonically increasing. This file format does require duplication of the pressure and temperature data - each pressure value must be included num_T times, while each temperature value is repeated num_p times, where num_T and num_p are the number of temperature and pressure points, respectively. This class will check that the required number of data points have been entered (num_T * num_p).
An example of a valid fluid properties file is provided below:
pressure, temperature, density, enthalpy, internal_energy
200000, 275, 3.90056, -21487, -72761.7
200000, 277, 3.86573, -19495.4, -71232.0
200000, 280, 3.83155, -17499.1, -69697.3
300000, 275, 6.07273, -22728.3, -73626.5
300000, 277, 6.01721, -20711.5, -72079.3
300000, 280, 5.96277, -18691.0, -70527.7
and so on.
Using TabulatedFluidProperties
Reading from an existing file
Consider the example where TabulatedFluidProperties is used to reduce the cost of calculating CO fluid properties. In this example, a file containing the tabulated fluid properties, named fluid_properties.csv
is provided. All properties listed in this file will be calculated using interpolation, while all remaining properties provided by the FluidProperties
interface will be calculated using a CO2FluidProperties UserObject.
The input file syntax necessary to achieve this is
[Modules]
[./FluidProperties]
[./co2]
type = CO2FluidProperties
[../]
[./tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
[../]
[]
[]
(modules/fluid_properties/test/tests/tabulated/tabulated.i)Writing data file
If no tabulated fluid property data file exists, then data for the properties specified in the input file parameter interpolated_properties will be generated using the pressure and temperature ranges specified in the input file at the beginning of the simulation.
For example, if we wish to generate a file containing tabulated properties for CO density, enthalpy and viscosity for and , divided into 50 and 100 equal points, respectively, then the input file syntax necessary is
[Modules]
[./FluidProperties]
[./co2]
type = CO2FluidProperties
[../]
[./tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
interpolated_properties = 'density enthalpy viscosity'
temperature_min = 300
temperature_max = 400
pressure_min = 1e6
pressure_max = 10e6
num_T = 50
num_p = 100
[../]
[]
[]
This tabulated data will be written to file in the correct format, enabling suitable data files to be created for future use. There is an upfront computational expense required for this initial data generation, depending on the required number of pressure and temperature points. However, provided that the number of data points required to generate the tabulated data is smaller than the number of times the property members in the FluidProperties UserObject are used, the initial time to generate the data and the subsequent interpolation time can be much less than using the original FluidProperties UserObject.
All fluid properties read from a file or specified in the input file (and their derivatives with respect to pressure and temperature) will be calculated using bicubic interpolation, while all remaining fluid properties will be calculated using the provided FluidProperties UserObject.
Input Parameters
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Controllable:No
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- fluid_property_filefluid_properties.csvName of the csv file containing the tabulated fluid property data. If no file exists and save_file = true, then one will be written to fluid_properties.csv using the temperature and pressure range specified.
Default:fluid_properties.csv
C++ Type:FileName
Controllable:No
Description:Name of the csv file containing the tabulated fluid property data. If no file exists and save_file = true, then one will be written to fluid_properties.csv using the temperature and pressure range specified.
- fp_typesingle-phase-fpType of the fluid property object
Default:single-phase-fp
C++ Type:FPType
Controllable:No
Description:Type of the fluid property object
- interpolated_propertiesdensity enthalpy internal_energy viscosityProperties to interpolate if no data file is provided
Default:density enthalpy internal_energy viscosity
C++ Type:MultiMooseEnum
Options:density, enthalpy, internal_energy, viscosity, k, cv, cp, entropy
Controllable:No
Description:Properties to interpolate if no data file is provided
- num_T100Number of points to divide temperature range. Default is 100
Default:100
C++ Type:unsigned int
Controllable:No
Description:Number of points to divide temperature range. Default is 100
- num_p100Number of points to divide pressure range. Default is 100
Default:100
C++ Type:unsigned int
Controllable:No
Description:Number of points to divide pressure range. Default is 100
- pressure_max5e+07Maximum pressure for tabulated data. Default is 50 MPa
Default:5e+07
C++ Type:double
Controllable:No
Description:Maximum pressure for tabulated data. Default is 50 MPa
- pressure_min100000Minimum pressure for tabulated data. Default is 0.1 MPa)
Default:100000
C++ Type:double
Controllable:No
Description:Minimum pressure for tabulated data. Default is 0.1 MPa)
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- save_fileTrueWhether to save the csv fluid properties file
Default:True
C++ Type:bool
Controllable:No
Description:Whether to save the csv fluid properties file
- temperature_max500Maximum temperature for tabulated data. Default is 500 K
Default:500
C++ Type:double
Controllable:No
Description:Maximum temperature for tabulated data. Default is 500 K
- temperature_min300Minimum temperature for tabulated data. Default is 300 K)
Default:300
C++ Type:double
Controllable:No
Description:Minimum temperature for tabulated data. Default is 300 K)
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/porous_flow/examples/tutorial/11_2D.i)
- (modules/porous_flow/examples/tutorial/11.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
- (modules/porous_flow/test/tests/sinks/injection_production_eg_outflowBC.i)
- (modules/porous_flow/test/tests/fluids/brine1_tabulated.i)
- (modules/porous_flow/examples/tutorial/05_tabulated.i)
- (modules/porous_flow/examples/ates/ates.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (modules/porous_flow/examples/restart/gas_injection.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
- (modules/fluid_properties/test/tests/brine/brine_tabulated.i)
- (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (modules/porous_flow/examples/reservoir_model/field_model.i)
- (modules/porous_flow/examples/reservoir_model/regular_grid.i)
- (modules/fluid_properties/test/tests/tabulated/tabulated.i)
- (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
- (modules/porous_flow/test/tests/sinks/injection_production_eg.i)
- (modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
(modules/fluid_properties/test/tests/tabulated/tabulated.i)
# Test thermophysical property calculations using TabulatedFluidProperties.
# Calculations for density, internal energy and enthalpy using bicubic spline
# interpolation of data generated using CO2FluidProperties.
[Mesh]
type = GeneratedMesh
dim = 2
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
initial_condition = 2e6
family = MONOMIAL
order = CONSTANT
[../]
[./temperature]
initial_condition = 350
family = MONOMIAL
order = CONSTANT
[../]
[./rho]
family = MONOMIAL
order = CONSTANT
[../]
[./mu]
family = MONOMIAL
order = CONSTANT
[../]
[./e]
family = MONOMIAL
order = CONSTANT
[../]
[./h]
family = MONOMIAL
order = CONSTANT
[../]
[./s]
family = MONOMIAL
order = CONSTANT
[../]
[./cv]
family = MONOMIAL
order = CONSTANT
[../]
[./cp]
family = MONOMIAL
order = CONSTANT
[../]
[./c]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./rho]
type = MaterialRealAux
variable = rho
property = density
[../]
[./my]
type = MaterialRealAux
variable = mu
property = viscosity
[../]
[./internal_energy]
type = MaterialRealAux
variable = e
property = e
[../]
[./enthalpy]
type = MaterialRealAux
variable = h
property = h
[../]
[./entropy]
type = MaterialRealAux
variable = s
property = s
[../]
[./cv]
type = MaterialRealAux
variable = cv
property = cv
[../]
[./cp]
type = MaterialRealAux
variable = cp
property = cp
[../]
[./c]
type = MaterialRealAux
variable = c
property = c
[../]
[]
[Modules]
[./FluidProperties]
[./co2]
type = CO2FluidProperties
[../]
[./tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
[../]
[]
[]
[Materials]
[./fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = tabulated
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Postprocessors]
[./rho]
type = ElementalVariableValue
elementid = 0
variable = rho
[../]
[./mu]
type = ElementalVariableValue
elementid = 0
variable = mu
[../]
[./e]
type = ElementalVariableValue
elementid = 0
variable = e
[../]
[./h]
type = ElementalVariableValue
elementid = 0
variable = h
[../]
[./s]
type = ElementalVariableValue
elementid = 0
variable = s
[../]
[./cv]
type = ElementalVariableValue
elementid = 0
variable = cv
[../]
[./cp]
type = ElementalVariableValue
elementid = 0
variable = cp
[../]
[./c]
type = ElementalVariableValue
elementid = 0
variable = c
[../]
[]
[Outputs]
csv = true
file_base = tabulated_out
execute_on = 'TIMESTEP_END'
perf_graph = true
[]
(modules/porous_flow/examples/tutorial/11_2D.i)
# Two-phase borehole injection problem in RZ coordinates
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 1.0
xmax = 10
bias_x = 1.4
ny = 3
ymin = -6
ymax = 6
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 -2 0'
top_right = '10 2 0'
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.0001'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[Problem]
coord_type = RZ
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_r disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_r]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = T
variable = disp_r
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr_aux]
type = RankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[pinned_top_bottom_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_r]
type = Pressure
boundary = injection_area
variable = disp_r
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/11.i)
# Two-phase borehole injection problem
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_x disp_y'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_x]
scaling = 1E-5
[]
[disp_y]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_x]
type = StressDivergenceTensors
temperature = T
variable = disp_x
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
use_displaced_mesh = false
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
temperature = T
variable = disp_y
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 1
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
use_displaced_mesh = false
component = 1
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr]
type = RankTwoScalarAux
variable = stress_rr
rank_two_tensor = stress
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_tt]
type = RankTwoScalarAux
variable = stress_tt
rank_two_tensor = stress
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[pinned_top_bottom_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'top bottom'
[]
[pinned_top_bottom_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity_mat]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure_mat]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
# Intercomparison problem 3: Radial flow from an injection well
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# A variation with zero salinity can be run by changing the initial condition
# of the AuxVariable xnacl
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
xmax = 10000
bias_x = 1.01
[]
[Problem]
type = FEProblem
coord_type = 'RZ'
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 0 0'
[]
[AuxVariables]
[pressure_liquid]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.15
[]
[]
[AuxKernels]
[pressure_liquid]
type = PorousFlowPropertyAux
variable = pressure_liquid
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
initial_condition = 12e6
[]
[zi]
initial_condition = 0
scaling = 1e4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 5.099e-5
m = 0.457
sat_lr = 0.0
pc_max = 1e7
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_file = water_fluid_properties.csv
save_file = false
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.12'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityVG
m = 0.457
phase = 0
s_res = 0.3
sum_s_res = 0.35
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.05
sum_s_res = 0.35
[]
[]
[BCs]
[rightwater]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
variable = pgas
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 0
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 0
use_relperm = true
[]
[rightco2]
type = PorousFlowPiecewiseLinearSink
variable = zi
boundary = 'right'
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 1
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 1
use_relperm = true
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres bjacobi lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8.64e8
nl_max_its = 25
l_max_its = 100
dtmax = 5e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[VectorPostprocessors]
[vars]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi xnacl'
execute_on = 'timestep_end'
outputs = spatial
[]
[auxvars]
type = ElementValueSampler
sort_by = x
variable = 'saturation_gas x1 y0'
execute_on = 'timestep_end'
outputs = spatial
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '25.25 0 0'
variable = pgas
outputs = time
[]
[sgas]
type = PointValue
point = '25.25 0 0'
variable = saturation_gas
outputs = time
[]
[zi]
type = PointValue
point = '25.25 0 0'
variable = zi
outputs = time
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
outputs = time
[]
[x1]
type = PointValue
point = '25.25 0 0'
variable = x1
outputs = time
[]
[y0]
type = PointValue
point = '25.25 0 0'
variable = y0
outputs = time
[]
[xnacl]
type = PointValue
point = '25.25 0 0'
variable = xnacl
outputs = time
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
sync_times = '2.592e6 8.64e6 8.64e7 8.64e8'
[time]
type = CSV
[]
[spatial]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/test/tests/sinks/injection_production_eg_outflowBC.i)
# phase = 0 is liquid phase
# phase = 1 is gas phase
# fluid_component = 0 is water
# fluid_component = 1 is CO2
# Constant rates of water and CO2 injection into the left boundary
# 1D mesh
# The PorousFlowOutflowBCs remove the correct water and CO2 from the right boundary
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[frac_water_in_liquid]
initial_condition = 1.0
[]
[frac_water_in_gas]
initial_condition = 0.0
[]
[water_kg_per_s]
[]
[co2_kg_per_s]
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 21E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = pgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas pwater'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 293.15
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'frac_water_in_liquid frac_water_in_gas'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[]
[BCs]
[water_injection]
type = PorousFlowSink
boundary = left
variable = pwater # pwater is associated with the water mass balance (fluid_component = 0 in its Kernels)
flux_function = -1E-5 # negative means a source, rather than a sink
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = pgas # pgas is associated with the CO2 mass balance (fluid_component = 1 in its Kernels)
flux_function = -2E-5 # negative means a source, rather than a sink
[]
[right_water_component0]
type = PorousFlowOutflowBC
boundary = right
variable = pwater
mass_fraction_component = 0
save_in = water_kg_per_s
[]
[right_co2_component1]
type = PorousFlowOutflowBC
boundary = right
variable = pgas
mass_fraction_component = 1
save_in = co2_kg_per_s
[]
[]
[Preconditioning]
active = 'basic'
[basic]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1E-10
nl_rel_tol = 1E-10
end_time = 1E5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E5
growth_factor = 1.1
[]
[]
[Postprocessors]
[water_kg_per_s]
type = NodalSum
boundary = right
variable = water_kg_per_s
[]
[co2_kg_per_s]
type = NodalSum
boundary = right
variable = co2_kg_per_s
[]
[]
[VectorPostprocessors]
[pps]
type = LineValueSampler
start_point = '0 0 0'
end_point = '20 0 0'
num_points = 20
sort_by = x
variable = 'pgas pwater saturation_gas'
[]
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/test/tests/fluids/brine1_tabulated.i)
# Test the density and viscosity calculated by the brine material using a
# TabulatedFluidProperties userobject for water
# Pressure 20 MPa
# Temperature 50C
# xnacl = 0.1047 (equivalent to 2.0 molality)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[pp]
initial_condition = 20e6
[]
[]
[Kernels]
[dummy]
type = Diffusion
variable = pp
[]
[]
[AuxVariables]
[temp]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1047
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[brine]
type = PorousFlowBrine
water_fp = watertab
temperature_unit = Celsius
xnacl = 0.1047
phase = 0
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Postprocessors]
[pressure]
type = ElementIntegralVariablePostprocessor
variable = pp
[]
[temperature]
type = ElementIntegralVariablePostprocessor
variable = temp
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
[]
[density]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_density_qp0'
[]
[viscosity]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_viscosity_qp0'
[]
[enthalpy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_enthalpy_qp0'
[]
[internal_energy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_internal_energy_qp0'
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = brine1
csv = true
[]
(modules/porous_flow/examples/tutorial/05_tabulated.i)
# Darcy flow with heat advection and conduction, using Water97 properties
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E6
[]
[temperature]
initial_condition = 313
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = tabulated_water
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 333
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated.csv
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = ${fparse inject_time + store_time + produce_time + rest_time}
end_simulation = ${fparse cycle_length * num_cycles}
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = ${fparse cycle_length * 2}
start_injection4 = ${fparse cycle_length * 3}
start_injection5 = ${fparse cycle_length * 4}
start_injection6 = ${fparse cycle_length * 5}
start_injection7 = ${fparse cycle_length * 6}
start_injection8 = ${fparse cycle_length * 7}
start_injection9 = ${fparse cycle_length * 8}
start_injection10 = ${fparse cycle_length * 9}
end_injection1 = ${fparse start_injection1 + inject_time}
end_injection2 = ${fparse start_injection2 + inject_time}
end_injection3 = ${fparse start_injection3 + inject_time}
end_injection4 = ${fparse start_injection4 + inject_time}
end_injection5 = ${fparse start_injection5 + inject_time}
end_injection6 = ${fparse start_injection6 + inject_time}
end_injection7 = ${fparse start_injection7 + inject_time}
end_injection8 = ${fparse start_injection8 + inject_time}
end_injection9 = ${fparse start_injection9 + inject_time}
end_injection10 = ${fparse start_injection10 + inject_time}
start_production1 = ${fparse end_injection1 + store_time}
start_production2 = ${fparse end_injection2 + store_time}
start_production3 = ${fparse end_injection3 + store_time}
start_production4 = ${fparse end_injection4 + store_time}
start_production5 = ${fparse end_injection5 + store_time}
start_production6 = ${fparse end_injection6 + store_time}
start_production7 = ${fparse end_injection7 + store_time}
start_production8 = ${fparse end_injection8 + store_time}
start_production9 = ${fparse end_injection9 + store_time}
start_production10 = ${fparse end_injection10 + store_time}
end_production1 = ${fparse start_production1 + produce_time}
end_production2 = ${fparse start_production2 + produce_time}
end_production3 = ${fparse start_production3 + produce_time}
end_production4 = ${fparse start_production4 + produce_time}
end_production5 = ${fparse start_production5 + produce_time}
end_production6 = ${fparse start_production6 + produce_time}
end_production7 = ${fparse start_production7 + produce_time}
end_production8 = ${fparse start_production8 + produce_time}
end_production9 = ${fparse start_production9 + produce_time}
end_production10 = ${fparse start_production10 + produce_time}
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = ${fparse 0.5 * aq_thickness}
screen_bottom = ${fparse -0.5 * aq_thickness}
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = ${fparse 1.0 / bias_y_aq_top}
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = ${fparse 1.0 / bias_y_cap_top}
depth_centre = ${fparse depth + aq_thickness/2}
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = ${fparse aq_thickness * 0.5}
half_height = ${fparse half_aq_thickness + cap_thickness}
approx_screen_length = ${fparse screen_top - screen_bottom}
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = ${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}
# radius of fine mesh
fine_r = ${fparse th_r * 2}
bias_r_fine = 1
num_r_fine = ${fparse int(fine_r/1)}
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = ${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}
# Thermal radius (correct version using bulk cp):
R_th = ${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}
aq_lambda_eff_hor = ${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}
aq_lambda_eff_ver = ${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}
aq_hor_dry_thermal_cond = ${fparse aq_lambda_eff_hor * 60 * 60 * 24} # J/day/m/K
aq_ver_dry_thermal_cond = ${fparse aq_lambda_eff_ver * 60 * 60 * 24} # J/day/m/K
aq_hor_wet_thermal_cond = ${fparse aq_lambda_eff_hor * 60 * 60 * 24} # J/day/m/K
aq_ver_wet_thermal_cond = ${fparse aq_lambda_eff_ver * 60 * 60 * 24} # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = ${fparse cap_hor_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_ver_dry_thermal_cond = ${fparse cap_ver_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_hor_wet_thermal_cond = ${fparse cap_hor_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_ver_wet_thermal_cond = ${fparse cap_ver_thermal_cond * 60 * 60 * 24} # J/day/m/K
######################################
[Mesh]
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
value = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
value = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
value = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
value = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
vars = true_screen_area
vals = true_screen_area
value = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
vars = true_screen_area
vals = true_screen_area
value = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
vars = 'dt heat_out'
vals = 'dt heat_out_fromBC'
value = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
vars = 'dt produced_T'
vals = 'dt produced_T'
value = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_modified.csv
[]
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = ConstantIC
value = 0
variable = zi
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/porous_flow/examples/restart/gas_injection.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, where the mesh used is identical to the mesh used in gravityeq.i, we can use
# the basic restart capability by simply setting the initial condition for porepressure
# using the results from gravityeq.i.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we shift the mesh 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Results can be improved by uniformly refining the initial mesh.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
uniform_refine = 1
[file]
type = FileMeshGenerator
file = gravityeq_out.e
[]
[translate]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0.1 0 0'
input = file
[]
[]
[Problem]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[pp_liq]
initial_from_file_var = porepressure
[]
[sat_gas]
initial_condition = 0
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[methane_density]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[pp_gas]
family = MONOMIAL
order = CONSTANT
[]
[sat_liq]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[]
[pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[]
[sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[]
[brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
vals = injection_area
vars = area
value = '-10/area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
[]
[]
[Modules]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[methane]
type = MethaneFluidProperties
[]
[methane_tab]
type = TabulatedFluidProperties
fp = methane
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
checkpoint = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
# Cold water injection into one side of the fracture network, and production from the other side
injection_rate = 10 # kg/s
[Mesh]
uniform_refine = 0
[cluster34]
type = FileMeshGenerator
file = 'Cluster_34.exo'
[]
[injection_node]
type = BoundingBoxNodeSetGenerator
input = cluster34
bottom_left = '-1000 0 -1000'
top_right = '1000 0.504 1000'
new_boundary = injection_node
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -9.81E-6' # Note the value, because of pressure_unit
[]
[Variables]
[frac_P]
scaling = 1E6
[]
[frac_T]
initial_condition = 473
[]
[]
[ICs]
[frac_P]
type = FunctionIC
variable = frac_P
function = insitu_pp
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = frac_P
temperature = frac_T
fp = water
pressure_unit = MPa
[]
[Kernels]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = heat_transfer_coefficient
save_in = joules_per_s
[]
[]
[AuxVariables]
[heat_transfer_coefficient]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.0
[]
[transferred_matrix_T]
initial_condition = 473
[]
[joules_per_s]
[]
[normal_dirn_x]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_y]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_z]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_length]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_thermal_cond]
family = MONOMIAL
order = CONSTANT
[]
[aperture]
family = MONOMIAL
order = CONSTANT
[]
[perm_times_app]
family = MONOMIAL
order = CONSTANT
[]
[density]
family = MONOMIAL
order = CONSTANT
[]
[viscosity]
family = MONOMIAL
order = CONSTANT
[]
[insitu_pp]
[]
[]
[AuxKernels]
[normal_dirn_x_auxk]
type = PorousFlowElementNormal
variable = normal_dirn_x
component = x
[]
[normal_dirn_y]
type = PorousFlowElementNormal
variable = normal_dirn_y
component = y
[]
[normal_dirn_z]
type = PorousFlowElementNormal
variable = normal_dirn_z
component = z
[]
[heat_transfer_coefficient_auxk]
type = ParsedAux
variable = heat_transfer_coefficient
args = 'enclosing_element_normal_length enclosing_element_normal_thermal_cond'
constant_names = h_s
constant_expressions = 1E3 # should be much bigger than thermal_conductivity / L ~ 1
function = 'if(enclosing_element_normal_length = 0, 0, h_s * enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length / (h_s * enclosing_element_normal_length * enclosing_element_normal_length + enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length))'
[]
[aperture]
type = PorousFlowPropertyAux
variable = aperture
property = porosity
[]
[perm_times_app]
type = PorousFlowPropertyAux
variable = perm_times_app
property = permeability
row = 0
column = 0
[]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
phase = 0
[]
[viscosity]
type = PorousFlowPropertyAux
variable = viscosity
property = viscosity
phase = 0
[]
[insitu_pp]
type = FunctionAux
execute_on = initial
variable = insitu_pp
function = insitu_pp
[]
[]
[BCs]
[inject_heat]
type = DirichletBC
boundary = injection_node
variable = frac_T
value = 373
[]
[]
[DiracKernels]
[inject_fluid]
type = PorousFlowPointSourceFromPostprocessor
mass_flux = ${injection_rate}
point = '58.8124 0.50384 74.7838'
variable = frac_P
[]
[withdraw_fluid]
type = PorousFlowPeacemanBorehole
SumQuantityUO = kg_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
variable = frac_P
[]
[withdraw_heat]
type = PorousFlowPeacemanBorehole
SumQuantityUO = J_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
use_enthalpy = true
variable = frac_T
[]
[]
[UserObjects]
[kg_out_uo]
type = PorousFlowSumQuantity
[]
[J_out_uo]
type = PorousFlowSumQuantity
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated.csv
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityLinear
porosity_ref = 1E-4 # fracture porosity = 1.0, but must include fracture aperture of 1E-4 at P = insitu_pp
P_ref = insitu_pp
P_coeff = 1E-3 # this is in metres/MPa, ie for P_ref = 1/P_coeff, the aperture becomes 1 metre
porosity_min = 1E-5
[]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k0 = 1E-15 # fracture perm = 1E-11 m^2, but must include fracture aperture of 1E-4
poroperm_function = kozeny_carman_phi0
m = 0
n = 3
phi0 = 1E-4
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2700 # kg/m^3
specific_heat_capacity = 0 # basically no rock inside the fracture
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.6E-4 0 0 0 0.6E-4 0 0 0 0.6E-4' # thermal conductivity of water times fracture aperture. This should increase linearly with aperture, but is set constant in this model
[]
[]
[Functions]
[kg_rate]
type = ParsedFunction
vals = 'dt kg_out'
vars = 'dt kg_out'
value = 'kg_out/dt'
[]
[insitu_pp]
type = ParsedFunction
value = '10 - 0.847E-2 * z' # Approximate hydrostatic in MPa
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
outputs = 'none'
[]
[kg_out]
type = PorousFlowPlotQuantity
uo = kg_out_uo
[]
[kg_per_s]
type = FunctionValuePostprocessor
function = kg_rate
[]
[J_out]
type = PorousFlowPlotQuantity
uo = J_out_uo
[]
[TK_out]
type = PointValue
variable = frac_T
point = '101.705 160.459 39.5722'
[]
[P_out]
type = PointValue
variable = frac_P
point = '101.705 160.459 39.5722'
[]
[P_in]
type = PointValue
variable = frac_P
point = '58.8124 0.50384 74.7838'
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = NodalValueSampler
outputs = none
sort_by = id
variable = joules_per_s
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 10
growth_factor = 1.5
timestep_limiting_postprocessor = 1E8
[]
end_time = 1E8
nl_abs_tol = 1E-3
nl_max_its = 20
[]
[Outputs]
print_linear_residuals = false
csv = true
[ex]
type = Exodus
sync_times = '1 10 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 30000 50000 70000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000 2100000 2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000'
sync_only = true
[]
[]
(modules/fluid_properties/test/tests/brine/brine_tabulated.i)
# Test BrineFluidProperties calculations of density, viscosity and thermal
# conductivity with a TabulatedFluidProperties water.
#
# Experimental density values from Pitzer et al, "Thermodynamic properties
# of aqueous sodium chloride solution", Journal of Physical and Chemical
# Reference Data, 13, 1-102 (1984)
#
# Experimental viscosity values from Phillips et al, "Viscosity of NaCl and
# other solutions up to 350C and 50MPa pressures", LBL-11586 (1980)
#
# Thermal conductivity values from Ozbek and Phillips, "Thermal conductivity of
# aqueous NaCl solutions from 20C to 330C", LBL-9086 (1980)
#
# --------------------------------------------------------------
# Pressure (Mpa) | 20 | 20 | 40
# Temperature (C) | 50 | 200 | 200
# NaCl molality (mol/kg) | 2 | 2 | 5
# NaCl mass fraction (kg/kg) | 0.1047 | 0.1047 | 0.2261
# --------------------------------------------------------------
# Expected values
# --------------------------------------------------------------
# Density (kg/m^3) | 1068.52 | 959.27 | 1065.58
# Viscosity (1e-6Pa.s) | 679.8 | 180.0 | 263.1
# Thermal conductivity (W/m/K) | 0.630 | 0.649 | 0.633
# --------------------------------------------------------------
# Calculated values
# --------------------------------------------------------------
# Density (kg/m^3) | 1067.18 | 958.68 | 1065.46
# Viscosity (1e-6 Pa.s) | 681.1 | 181.98 | 266.1
# Thermal conductivity (W/m/K) | 0.637 | 0.662 | 0.658
# --------------------------------------------------------------
#
# All results are within expected accuracy
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 1
xmax = 3
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
family = MONOMIAL
order = CONSTANT
[../]
[./temperature]
family = MONOMIAL
order = CONSTANT
[../]
[./xnacl]
family = MONOMIAL
order = CONSTANT
[../]
[./density]
family = MONOMIAL
order = CONSTANT
[../]
[./enthalpy]
family = MONOMIAL
order = CONSTANT
[../]
[./internal_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
value = 'if(x<2,20e6, 40e6)'
[../]
[./tic]
type = ParsedFunction
value = 'if(x<1, 323.15, 473.15)'
[../]
[./xic]
type = ParsedFunction
value = 'if(x<2,0.1047, 0.2261)'
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
function = pic
variable = pressure
[../]
[./t_ic]
type = FunctionIC
function = tic
variable = temperature
[../]
[./x_ic]
type = FunctionIC
function = xic
variable = xnacl
[../]
[]
[AuxKernels]
[./density]
type = MaterialRealAux
variable = density
property = density
[../]
[./enthalpy]
type = MaterialRealAux
variable = enthalpy
property = enthalpy
[../]
[./internal_energy]
type = MaterialRealAux
variable = internal_energy
property = e
[../]
[]
[Modules]
[./FluidProperties]
[./water]
type = Water97FluidProperties
[../]
[./water_tab]
type = TabulatedFluidProperties
fp = water
save_file = false
[../]
[./brine]
type = BrineFluidProperties
water_fp = water_tab
[../]
[../]
[]
[Materials]
[./fp_mat]
type = MultiComponentFluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
xmass = xnacl
fp = brine
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Postprocessors]
[./density0]
type = ElementalVariableValue
variable = density
elementid = 0
[../]
[./density1]
type = ElementalVariableValue
variable = density
elementid = 1
[../]
[./density2]
type = ElementalVariableValue
variable = density
elementid = 2
[../]
[./enthalpy0]
type = ElementalVariableValue
variable = enthalpy
elementid = 0
[../]
[./enthalpy1]
type = ElementalVariableValue
variable = enthalpy
elementid = 1
[../]
[./enthalpy2]
type = ElementalVariableValue
variable = enthalpy
elementid = 2
[../]
[./e0]
type = ElementalVariableValue
variable = internal_energy
elementid = 0
[../]
[./e1]
type = ElementalVariableValue
variable = internal_energy
elementid = 1
[../]
[./e2]
type = ElementalVariableValue
variable = internal_energy
elementid = 2
[../]
[]
[Outputs]
csv = true
file_base = brine_out
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymax = 2
xmax = 2
ny = 40
nx = 40
bias_y = 0.95
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = BoundingBoxIC
variable = zi
x1 = 0
x2 = 2
y1 = 1.95
y2 = 2
inside = 0.2
outside = 0
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2000
xmax = 2000
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_file = water_fluid_properties.csv
save_file = false
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '2000 0 0'
num_points = 10000
variable = 'pgas zi xnacl x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '4 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '4 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '4 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '4 0 0'
variable = y0
[]
[xnacl]
type = PointValue
point = '4 0 0'
variable = xnacl
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/examples/reservoir_model/field_model.i)
# Field model generated using geophysical modelling tool
[Mesh]
type = FileMesh
file = field.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -9.81'
temperature_unit = Celsius
[]
[Variables]
[porepressure]
initial_condition = 20e6
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[porosity]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = poro
[]
[permx_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permX
[]
[permy_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permY
[]
[permz_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permZ
[]
[permx]
family = MONOMIAL
order = CONSTANT
[]
[permy]
family = MONOMIAL
order = CONSTANT
[]
[permz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[permx]
type = ParsedAux
variable = permx
args = permx_md
function = '9.869233e-16*permx_md'
execute_on = initial
[]
[permy]
type = ParsedAux
variable = permy
args = permy_md
function = '9.869233e-16*permy_md'
execute_on = initial
[]
[permz]
type = ParsedAux
variable = permz
args = permz_md
function = '9.869233e-16*permz_md'
execute_on = initial
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
water_fp = watertab
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConstFromVar
perm_xx = permx
perm_yy = permy
perm_zz = permz
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e2
end_time = 1e2
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/porous_flow/examples/reservoir_model/regular_grid.i)
# SPE 10 comparative problem - model 1
# Data and description from https://www.spe.org/web/csp/datasets/set01.htm
# Simple input file that just establishes gravity equilibrium in the model
#
# Heterogeneous permeability is included by reading data from an external file
# using the PiecewiseMultilinear function, and saving that data to an elemental
# AuxVariable that is then used in PorousFlowPermeabilityConstFromVar
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 20
xmax = 762
ymax = 15.24
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[porepressure]
initial_condition = 20e6
[]
[]
[Functions]
[perm_md_fcn]
type = PiecewiseMultilinear
data_file = spe10_case1.data
[]
[]
[BCs]
[top]
type = DirichletBC
variable = porepressure
value = 20e6
boundary = top
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[porosity]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.2
[]
[perm_md]
family = MONOMIAL
order = CONSTANT
[]
[perm]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[AuxKernels]
[perm_md]
type = FunctionAux
function = perm_md_fcn
variable = perm_md
execute_on = initial
[]
[perm]
type = ParsedAux
variable = perm
args = perm_md
function = '9.869233e-16*perm_md'
execute_on = initial
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
water_fp = watertab
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConstFromVar
perm_xx = perm
perm_yy = perm
perm_zz = perm
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e5
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
steady_state_detection = true
steady_state_tolerance = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e2
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/fluid_properties/test/tests/tabulated/tabulated.i)
# Test thermophysical property calculations using TabulatedFluidProperties.
# Calculations for density, internal energy and enthalpy using bicubic spline
# interpolation of data generated using CO2FluidProperties.
[Mesh]
type = GeneratedMesh
dim = 2
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
initial_condition = 2e6
family = MONOMIAL
order = CONSTANT
[../]
[./temperature]
initial_condition = 350
family = MONOMIAL
order = CONSTANT
[../]
[./rho]
family = MONOMIAL
order = CONSTANT
[../]
[./mu]
family = MONOMIAL
order = CONSTANT
[../]
[./e]
family = MONOMIAL
order = CONSTANT
[../]
[./h]
family = MONOMIAL
order = CONSTANT
[../]
[./s]
family = MONOMIAL
order = CONSTANT
[../]
[./cv]
family = MONOMIAL
order = CONSTANT
[../]
[./cp]
family = MONOMIAL
order = CONSTANT
[../]
[./c]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./rho]
type = MaterialRealAux
variable = rho
property = density
[../]
[./my]
type = MaterialRealAux
variable = mu
property = viscosity
[../]
[./internal_energy]
type = MaterialRealAux
variable = e
property = e
[../]
[./enthalpy]
type = MaterialRealAux
variable = h
property = h
[../]
[./entropy]
type = MaterialRealAux
variable = s
property = s
[../]
[./cv]
type = MaterialRealAux
variable = cv
property = cv
[../]
[./cp]
type = MaterialRealAux
variable = cp
property = cp
[../]
[./c]
type = MaterialRealAux
variable = c
property = c
[../]
[]
[Modules]
[./FluidProperties]
[./co2]
type = CO2FluidProperties
[../]
[./tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
[../]
[]
[]
[Materials]
[./fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = tabulated
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Postprocessors]
[./rho]
type = ElementalVariableValue
elementid = 0
variable = rho
[../]
[./mu]
type = ElementalVariableValue
elementid = 0
variable = mu
[../]
[./e]
type = ElementalVariableValue
elementid = 0
variable = e
[../]
[./h]
type = ElementalVariableValue
elementid = 0
variable = h
[../]
[./s]
type = ElementalVariableValue
elementid = 0
variable = s
[../]
[./cv]
type = ElementalVariableValue
elementid = 0
variable = cv
[../]
[./cp]
type = ElementalVariableValue
elementid = 0
variable = cp
[../]
[./c]
type = ElementalVariableValue
elementid = 0
variable = c
[../]
[]
[Outputs]
csv = true
file_base = tabulated_out
execute_on = 'TIMESTEP_END'
perf_graph = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
type = GeneratedMesh
dim = 1
nx = 80
xmax = 200
bias_x = 1.05
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = tabulated
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
[]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 2
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '200 0 0'
num_points = 1000
variable = 'pgas zi x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
file_base = theis_tabulated_csvout
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/sinks/injection_production_eg.i)
# phase = 0 is liquid phase
# phase = 1 is gas phase
# fluid_component = 0 is water
# fluid_component = 1 is CO2
# Constant rate of CO2 injection into the left boundary
# 1D mesh
# The PorousFlowPiecewiseLinearSinks remove the correct water and CO2 from the right boundary
# Note i take pretty big timesteps here so the system is quite nonlinear
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[frac_water_in_liquid]
initial_condition = 1.0
[]
[frac_water_in_gas]
initial_condition = 0.0
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = pgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas pwater'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 293.15
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'frac_water_in_liquid frac_water_in_gas'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[]
[BCs]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = pgas # pgas is associated with the CO2 mass balance (fluid_component = 1 in its Kernels)
flux_function = -1E-2 # negative means a source, rather than a sink
[]
[right_water]
type = PorousFlowPiecewiseLinearSink
boundary = right
# a sink of water, since the Kernels given to pwater are for fluid_component = 0 (the water)
variable = pwater
# this Sink is a function of liquid porepressure
# Also, all the mass_fraction, mobility and relperm are referenced to the liquid phase now
fluid_phase = 0
# Sink strength = (Pwater - 20E6)
pt_vals = '0 1E9'
multipliers = '0 1E9'
PT_shift = 20E6
# multiply Sink strength computed above by mass fraction of water at the boundary
mass_fraction_component = 0
# also multiply Sink strength by mobility of the liquid
use_mobility = true
# also multiply Sink strength by the relperm of the liquid
use_relperm = true
# also multiplly Sink strength by 1/L, where L is the distance to the fixed-porepressure external environment
flux_function = 10 # 1/L
[]
[right_co2]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E9'
PT_shift = 20.1E6
mass_fraction_component = 1
use_mobility = true
use_relperm = true
flux_function = 10 # 1/L
[]
[]
[Preconditioning]
active = 'basic'
[basic]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1E-13
nl_rel_tol = 1E-10
end_time = 1e4
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E4
growth_factor = 1.1
[]
[]
[VectorPostprocessors]
[pps]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0 0 0'
end_point = '20 0 0'
num_points = 20
sort_by = x
variable = 'pgas pwater saturation_gas'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 25
nx = 50
ymax = 100
xmin = 0.1
xmax = 5000
bias_x = 1.05
bias_y = 0.95
[]
[Problem]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[pp_liq]
[]
[sat_gas]
initial_condition = 0
[]
[]
[ICs]
[ppliq_ic]
type = FunctionIC
variable = pp_liq
function = ppliq_ic
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[methane_density]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[pp_gas]
family = MONOMIAL
order = CONSTANT
[]
[sat_liq]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[]
[pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[]
[sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[]
[brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
use_relperm = true
mass_fraction_component = 0
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
vals = injection_area
vars = area
value = '-1/area'
[]
[ppliq_ic]
type = SolutionFunction
solution = soln
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
pc_max = 1e7
[]
[soln]
type = SolutionUserObject
mesh = gravityeq_out.e
system_variables = porepressure
[]
[]
[Modules]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[methane]
type = MethaneFluidProperties
[]
[methane_tab]
type = TabulatedFluidProperties
fp = methane
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 5e-14 0 0 0 1e-13'
[]
[relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
growth_factor = 1.5
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]