- length_factorLength Factor to use for Covariance Kernel
C++ Type:std::vector<double>
Controllable:No
Description:Length Factor to use for Covariance Kernel
- noise_variance0Noise Variance ($\sigma_n^2$) to use for kernel calculation.
Default:0
C++ Type:double
Controllable:No
Description:Noise Variance ($\sigma_n^2$) to use for kernel calculation.
- signal_varianceSignal Variance ($\sigma_f^2$) to use for kernel calculation.
C++ Type:double
Controllable:No
Description:Signal Variance ($\sigma_f^2$) to use for kernel calculation.
SquaredExponentialCovariance
Squared Exponential covariance function.
Overview
A widely used, general purpose isotropic covariance function is
is a scaled distance based on the length factor , defined as
Hyperparameters
Table 1: Hyperparameters for Squared Exponential Covariance Function
Variable | Domain | Description |
---|---|---|
Length factors corresponding to input parameters* | ||
Signal variance* | ||
Noise variance* |
*See the Gaussian Process Trainer documentation for more in depth explanation of , , and hyperparameters.
Example Input File Syntax
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D_tuned.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_tuned.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_training.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D_tuned.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/GP_normal_mc.i)
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcess
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcess
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 6
distributions = 'q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '9000 20 100'
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tao_options = '-tao_bncg_type kd'
tune_parameters = ' signal_variance length_factor'
tuning_min = ' 1e-9 1e-9'
tuning_max = ' 1e16 1e16'
tuning_algorithm = 'tao'
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[gauss_process_avg]
type = GaussianProcess
trainer = 'GP_avg_trainer'
[]
[]
# # Computing statistics
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'gauss_process_avg'
execute_on = final
[]
[]
[Reporters]
[cart_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 50
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '1 0.09 100
9000 20 100 '
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[cart_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcess
trainer = 'GP_avg_trainer'
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tao_options = '-tao_bncg_type ssml_bfgs'
tune_parameters = ' signal_variance length_factor'
tuning_min = ' 1e-9 1e-9'
tuning_max = ' 1e16 1e16'
tuning_algorithm = 'tao'
show_tao=true
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcess
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_training.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Covariance]
[covar]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
file_base = gauss_process_training
[out]
type = SurrogateTrainerOutput
trainers = 'GP_avg_trainer'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 6
distributions = 'q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '9000 20 100'
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[cart_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
sampler = train_sample
response = results/data:avg:value
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[gauss_process_avg]
type = GaussianProcess
trainer = 'GP_avg_trainer'
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 50
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '1 0.09 100
9000 20 100 '
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
tao_options = '-tao_bncg_type kd'
sampler = train_sample
response = results/data:avg:value
tune_parameters = ' signal_variance length_factor'
tuning_min = ' 1e-9 1e-9'
tuning_max = ' 1e16 1e16'
tuning_algorithm = 'tao'
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcess
trainer = 'GP_avg_trainer'
[]
[]
[Reporters]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[cart_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/GP_normal_mc.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 0
upper_bound = 20
[]
[q_dist]
type = Uniform
lower_bound = 7000
upper_bound = 13000
[]
[L_dist]
type = Uniform
lower_bound = 0.0
upper_bound = 0.1
[]
[Tinf_dist]
type = Uniform
lower_bound = 270
upper_bound = 330
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 500
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = sample
response = results/data:avg:value
tao_options = '-tao_bncg_type gd'
tune_parameters = ' signal_variance length_factor'
tuning_min = ' 1e-9 1e-3'
tuning_max = ' 100 100'
tuning_algorithm = 'tao'
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
signal_variance = 1
length_factor = '0.038971 0.038971 0.038971 0.038971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
file_base = GP_training_normal
[out]
type = SurrogateTrainerOutput
trainers = 'GP_avg'
execute_on = FINAL
[]
[]