- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this boundary condition applies
- vel_xThe x-axis velocity
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x-axis velocity
VolumetricFlowRate
Computes the volumetric flow rate of an advected quantity through a sideset.
Example input syntax
In this example, we measure:
the mass flow rate
the momentum flow rate
the enthalpy flow rate
with numerous VolumetricFlowRate
postprocessors to prove the conservation of mass, momentum and energy of the finite volume discretization of the incompressible Navier Stokes equations.
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)Input Parameters
- advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
Default:upwind
C++ Type:MooseEnum
Options:average, upwind, sou, min_mod, vanLeer, quick, skewness-corrected
Controllable:No
Description:The interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
- advected_mat_prop0The advected material property of which to study the flow; useful for finite element simulations
Default:0
C++ Type:MooseFunctorName
Controllable:No
Description:The advected material property of which to study the flow; useful for finite element simulations
- advected_quantityThe quantity to advect. This is the canonical parameter to set the advected quantity when finite volume is being used.
C++ Type:MooseFunctorName
Controllable:No
Description:The quantity to advect. This is the canonical parameter to set the advected quantity when finite volume is being used.
- advected_variableThe advected variable quantity of which to study the flow; useful for finite element simulations
C++ Type:std::vector<VariableName>
Controllable:No
Description:The advected variable quantity of which to study the flow; useful for finite element simulations
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, TRANSFER, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
- vel_yThe y-axis velocity
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y-axis velocity
- vel_zThe z-axis velocity
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z-axis velocity
- velocity_interp_methodrcThe interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Default:rc
C++ Type:MooseEnum
Options:average, rc
Controllable:No
Description:The interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names were you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_traction_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFE.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized_second_order.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized_second_order.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_no_parts.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_traction_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_by_parts.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad-rz-displacements.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_high_reynolds.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized_second_order.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = ${rho}
[]
[porosity]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
force_boundary_execution = true
porosity = porosity
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_traction_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = false
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
# Jacobian doesn't appear to be correct for RZ traction form
solve_type = PJFNK
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFE.i)
[Mesh]
second_order = true
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Modules]
[IncompressibleNavierStokes]
equation_type = steady-state
# no slip BCs
velocity_boundary = 'bottom right left'
velocity_function = '0 1 0 0 0 0'
pressure_boundary = 'top'
pressure_function = '1'
density_name = rho
dynamic_viscosity_name = mu
integrate_p_by_parts = false
order = SECOND
[]
[]
[Materials]
[const]
type = GenericConstantMaterial
block = '1 2 3'
prop_names = 'rho mu'
prop_values = '1 1'
[]
[ADconst]
type = ADGenericFunctorMaterial
block = '1 2 3'
prop_names = 'rho_ad'
prop_values = '1'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Postprocessors]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = vel_x
vel_y = vel_y
advected_variable = 1
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = vel_x
vel_y = vel_y
advected_mat_prop = 'rho_ad'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = vel_x
vel_y = vel_y
[]
[other_mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = vel_x
vel_y = vel_y
advected_mat_prop = 'rho_ad'
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = vel_x
vel_y = vel_y
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = vel_x
vel_y = vel_y
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_x
[]
[mid1_momentum_x]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_x
[]
[mid2_momentum_x]
type = VolumetricFlowRate
boundary = internal_top
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_x
[]
[outlet_momentum_x]
type = VolumetricFlowRate
boundary = top
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_x
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_y
[]
[mid1_momentum_y]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_y
[]
[mid2_momentum_y]
type = VolumetricFlowRate
boundary = internal_top
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_y
[]
[outlet_momentum_y]
type = VolumetricFlowRate
boundary = top
vel_x = vel_x
vel_y = vel_y
advected_variable = vel_y
[]
[]
[Outputs]
exodus = false
csv = true
inactive = 'console_mass console_momentum_x console_momentum_y'
[console_mass]
type = Console
start_step = 1
show = 'inlet_mass_variable inlet_mass_constant inlet_mass_matprop mid1_mass mid2_mass outlet_mass'
[]
[console_momentum_x]
type = Console
start_step = 1
show = 'inlet_momentum_x mid1_momentum_x mid2_momentum_x outlet_momentum_x'
[]
[console_momentum_y]
type = Console
start_step = 1
show = 'inlet_momentum_y mid1_momentum_y mid2_momentum_y outlet_momentum_y'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized_second_order.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = SECOND
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized_second_order.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_no_parts.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = false
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_traction_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
viscous_form = 'traction'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
mu = 1
rho = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5 1'
dy = '0.5 0.5'
ix = '8 5 8'
iy = '8 8'
subdomain_id = '0 1 2
1 2 1'
[]
[top_outlet]
type = ParsedGenerateSideset
input = cmg
combinatorial_geometry = 'x>2.499 & y>0.4999'
new_sideset_name = top_right
[]
[bottom_outlet]
type = ParsedGenerateSideset
input = top_outlet
combinatorial_geometry = 'x>2.499 & y<0.50001'
new_sideset_name = bottom_right
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[diodes_against_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '-1 0 0'
block = 1
momentum_component = 'x'
[]
[diode_free_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '1 0 0'
block = 2
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = 1
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[outlet]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[mdot_top]
type = VolumetricFlowRate
boundary = 'top_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[mdot_bottom]
type = VolumetricFlowRate
boundary = 'bottom_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_by_parts.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Integrating the pressure by parts.
# .) Natural boundary condition at the outlet.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_nobcbc.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[./u_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad-rz-displacements.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
use_displaced_mesh = true
[]
[Mesh]
file = '2d_cone.msh'
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x][]
[vel_y][]
[disp_x]
order = SECOND
[]
[disp_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
[]
[p]
[]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[mass]
type = INSADMass
variable = p
[]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
[out]
type = Exodus
hide = 'disp_x disp_y'
[]
[]
[Postprocessors]
[flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[]
[flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts.i)
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = 1
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
temp_solid = Ts
temp_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'interface left'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'interface left'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'bottom_to_0'
function = 0
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'bottom_to_0'
function = 1
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'bottom_to_0'
value = 0.5
[]
[outlet]
type = INSFVMassAdvectionOutflowBC
variable = pressure
boundary = 'top_to_0'
u = u
v = v
rho = ${rho}
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'y'
rho = ${rho}
[]
[heater]
type = FVDirichletBC
variable = 'Ts'
boundary = 'right'
value = 10
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[max_T]
type = ElementExtremeValue
variable = T
block = 0
[]
[max_Ts]
type = ElementExtremeValue
variable = Ts
block = 1
[]
[mdot_out]
type = VolumetricFlowRate
boundary = 'top_to_0'
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady.i)
[GlobalParams]
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_high_reynolds.i)
[GlobalParams]
gravity = '0 0 0'
laplace = true
transient_term = false
supg = true
pspg = true
family = LAGRANGE
order = FIRST
[]
[Mesh]
file = 'cone_linear_alltri.e'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
# type = Transient
# dt = 0.005
# dtmin = 0.005
# num_steps = 5
# l_max_its = 100
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
# petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
# petsc_options_value = 'bjacobi ilu 4'
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
nl_max_its = 20
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
# [./x_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_x
# [../]
# [./y_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_y
# [../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1e-3'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized_second_order.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = SECOND
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_nobcbc.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[./u_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
[GlobalParams]
integrate_p_by_parts = false
viscous_form = 'traction'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[AuxVariables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
order = SECOND
[]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required because of the no bcs
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./velocity_out]
type = INSADMomentumNoBCBC
boundary = top
variable = velocity
pressure = p
[../]
[./velocity_in]
type = VectorFunctionDirichletBC
boundary = bottom
variable = velocity
function_x = 0
function_y = 'inlet_func'
[../]
[./wall]
type = VectorFunctionDirichletBC
boundary = 'right'
variable = velocity
function_x = 0
function_y = 0
[../]
[./axis]
type = ADVectorFunctionDirichletBC
boundary = 'left'
variable = velocity
set_y_comp = false
function_x = 0
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]