- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
NumResidualEvaluations
Returns the total number of residual evaluations performed.
This postprocessor helps to understand where the computation time is being spent, to perform optimization studies for example. More information about forming the residual in the nonlinear system may be found here.
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names were you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/phase_field/tutorials/spinodal_decomposition/s3_decomp.i)
- (test/tests/outputs/iterative/iterative_csv.i)
- (modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
- (modules/phase_field/tutorials/spinodal_decomposition/s2_fasttest.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
- (modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
- (test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
(modules/phase_field/tutorials/spinodal_decomposition/s3_decomp.i)
#
# Simulation of iron-chromium alloy decomposition using simplified conditions.
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the materials and
# must have the same value in each one.
[./constants]
# Define constant values kappa_c and M. Eventually M will be replaced with
# an equation rather than a constant.
type = GenericFunctionMaterial
prop_names = 'kappa_c M'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27
2.2841e-26*1e+09^2/6.24150934e+18/1e-27'
# kappa_c*eV_J*nm_m^2*d
# M*nm_m^2/eV_J/d
[../]
[./local_energy]
# Defines the function for the local free energy density as given in the
# problem, then converts units and adds scaling factor.
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/outputs/iterative/iterative_csv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./iterations]
type = NumResidualEvaluations
execute_on = linear
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear linear timestep_end'
[../]
[]
(modules/phase_field/tutorials/spinodal_decomposition/s4_mobility.i)
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
f_name = M
args = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
function = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
f_name = prec_indic
args = c
function = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
# Uses an unsmoothed version of capped-Mohr-Coulomb (via ComputeMultiPlasticityStress with TensorMechanicsPlasticTensileMulti and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its]
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its]
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[../]
[./num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1
internal_constraint_tolerance = 1.0E-6
#shift = 1
use_custom_returnMap = false
use_custom_cto = false
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-6
plastic_models = 'tensile mc'
max_NR_iterations = 50
specialIC = rock
deactivation_scheme = safe_to_dumb
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_planar
perf_graph = true
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
# Uses a multi-smooted version of Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_smooth
perf_graph = true
exodus = false
csv = true
[]
(modules/phase_field/tutorials/spinodal_decomposition/s2_fasttest.i)
#
# Simulation of an iron-chromium alloy using simple code and a test set of
# initial conditions.
#
[Mesh]
# generate a 2D, 25nm x 25nm mesh
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 100
ny = 100
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
# Use a bounding box IC at equilibrium concentrations to make sure the
# model behaves as expected.
[./testIC]
type = BoundingBoxIC
variable = c
x1 = 5
x2 = 20
y1 = 5
y2 = 20
inside = 0.823
outside = 0.236
[../]
[]
[BCs]
# periodic BC as is usually done on phase-field models
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# See wiki page "Developing Phase Field Models" for more information on Split
# Cahn-Hilliard equation kernels.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the materials and
# must have the same value in each one.
[./constants]
# Define constant values kappa_c and M. Eventually M will be replaced with
# an equation rather than a constant.
type = GenericFunctionMaterial
prop_names = 'kappa_c M'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27
2.2841e-26*1e+09^2/6.24150934e+18/1e-27'
# kappa_c*eV_J*nm_m^2*d
# M*nm_m^2/eV_J/d
[../]
[./local_energy]
# Defines the function for the local free energy density as given in the
# problem, then converts units and adds scaling factor.
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[]
[Postprocessors]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
# Preconditioning is required for Newton's method. See wiki page "Solving
# Phase Field Models" for more information.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/SolvingModels/
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 86400 # 1 day. We only need to run this long enough to verify
# the model is working properly.
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
# Turn on time stepping
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
# Uses an Abbo et al smoothed version of Mohr-Coulomb (via TensorMechanicsPlasticMohrCoulomb and ComputeMultiPlasticityStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # num_iters is the average number of NR iterations encountered in the element in this timestep, so we must get max(max_nr_its) to obtain the max number of iterations
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.02E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_abbo
perf_graph = true
exodus = false
csv = true
[]
(modules/phase_field/tutorials/spinodal_decomposition/s5_energycurve.i)
#
# Example simulation of an iron-chromium alloy at 500 C. Equilibrium
# concentrations are at 23.6 and 82.3 mol% Cr. Kappa value, free energy equation,
# and mobility equation were provided by Lars Hoglund. Solved using the split
# form of the Cahn-Hilliard equation.
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 25
ny = 25
nz = 0
xmin = 0
xmax = 25
ymin = 0
ymax = 25
zmin = 0
zmax = 0
uniform_refine = 2
[]
[Variables]
[./c] # Mole fraction of Cr (unitless)
order = FIRST
family = LAGRANGE
scaling = 1e+04
[../]
[./w] # Chemical potential (eV/mol)
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./f_density] # Local energy density (eV/mol)
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./concentrationIC] # 46.774 mol% Cr with variations
type = RandomIC
min = 0.44774
max = 0.48774
seed = 210
variable = c
[../]
[]
[BCs]
[./Periodic]
[./c_bcs]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./w_dot]
variable = w
v = c
type = CoupledTimeDerivative
[../]
[./coupled_res]
variable = w
type = SplitCHWRes
mob_name = M
[../]
[./coupled_parsed]
variable = c
type = SplitCHParsed
f_name = f_loc
kappa_name = kappa_c
w = w
[../]
[]
[AuxKernels]
# Calculates the energy density by combining the local and gradient energies
[./f_density] # (eV/mol/nm^2)
type = TotalFreeEnergy
variable = f_density
f_name = 'f_loc'
kappa_names = 'kappa_c'
interfacial_vars = c
[../]
[]
[Materials]
# d is a scaling factor that makes it easier for the solution to converge
# without changing the results. It is defined in each of the first three
# materials and must have the same value in each one.
[./kappa] # Gradient energy coefficient (eV nm^2/mol)
type = GenericFunctionMaterial
prop_names = 'kappa_c'
prop_values = '8.125e-16*6.24150934e+18*1e+09^2*1e-27'
# kappa_c *eV_J*nm_m^2* d
[../]
[./mobility] # Mobility (nm^2 mol/eV/s)
# NOTE: This is a fitted equation, so only 'Conv' has units
type = DerivativeParsedMaterial
f_name = M
args = c
constant_names = 'Acr Bcr Ccr Dcr
Ecr Fcr Gcr
Afe Bfe Cfe Dfe
Efe Ffe Gfe
nm_m eV_J d'
constant_expressions = '-32.770969 -25.8186669 -3.29612744 17.669757
37.6197853 20.6941796 10.8095813
-31.687117 -26.0291774 0.2286581 24.3633544
44.3334237 8.72990497 20.956768
1e+09 6.24150934e+18 1e-27'
function = 'nm_m^2/eV_J/d*((1-c)^2*c*10^
(Acr*c+Bcr*(1-c)+Ccr*c*log(c)+Dcr*(1-c)*log(1-c)+
Ecr*c*(1-c)+Fcr*c*(1-c)*(2*c-1)+Gcr*c*(1-c)*(2*c-1)^2)
+c^2*(1-c)*10^
(Afe*c+Bfe*(1-c)+Cfe*c*log(c)+Dfe*(1-c)*log(1-c)+
Efe*c*(1-c)+Ffe*c*(1-c)*(2*c-1)+Gfe*c*(1-c)*(2*c-1)^2))'
derivative_order = 1
outputs = exodus
[../]
[./local_energy] # Local free energy function (eV/mol)
type = DerivativeParsedMaterial
f_name = f_loc
args = c
constant_names = 'A B C D E F G eV_J d'
constant_expressions = '-2.446831e+04 -2.827533e+04 4.167994e+03 7.052907e+03
1.208993e+04 2.568625e+03 -2.354293e+03
6.24150934e+18 1e-27'
function = 'eV_J*d*(A*c+B*(1-c)+C*c*log(c)+D*(1-c)*log(1-c)+
E*c*(1-c)+F*c*(1-c)*(2*c-1)+G*c*(1-c)*(2*c-1)^2)'
derivative_order = 2
[../]
[./precipitate_indicator] # Returns 1/625 if precipitate
type = ParsedMaterial
f_name = prec_indic
args = c
function = if(c>0.6,0.0016,0)
[../]
[]
[Postprocessors]
[./step_size] # Size of the time step
type = TimestepSize
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./total_energy] # Total free energy at each timestep
type = ElementIntegralVariablePostprocessor
variable = f_density
execute_on = 'initial timestep_end'
[../]
[./num_features] # Number of precipitates formed
type = FeatureFloodCount
variable = c
threshold = 0.6
[../]
[./precipitate_area] # Fraction of surface devoted to precipitates
type = ElementIntegralMaterialProperty
mat_prop = prec_indic
[../]
[./active_time] # Time computer spent on simulation
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./coupled]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 30
l_tol = 1e-6
nl_max_its = 50
nl_abs_tol = 1e-9
end_time = 604800 # 7 days
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type
-sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly
ilu 1'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
cutback_factor = 0.8
growth_factor = 1.5
optimal_iterations = 7
[../]
[./Adaptivity]
coarsen_fraction = 0.1
refine_fraction = 0.7
max_h_level = 2
[../]
[]
[Outputs]
exodus = true
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
# Uses a multi-smoothed version of capped-Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
perfect_guess = false # this is so we can observe some Newton-Raphson iterations, for comparison with other models, and it is not optimal in any real-life simulations
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_smooth
perf_graph = true
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
# Uses non-smoothed Mohr-Coulomb (via ComputeMultiPlasticityStress and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[]
[]
[Postprocessors]
[uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[]
[s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[]
[num_res]
type = NumResidualEvaluations
[]
[nr_its]
type = ElementAverageValue
variable = num_iters
[]
[max_nr_its]
type = ElementExtremeValue
variable = num_iters
[]
[runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[]
[zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[]
[]
[AuxVariables]
[mc_int]
order = CONSTANT
family = MONOMIAL
[]
[plastic_strain]
order = CONSTANT
family = MONOMIAL
[]
[num_iters]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[]
[plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[]
[num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[]
[]
[UserObjects]
[mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[]
[mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[]
[mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[]
[mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[]
[strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
dtmin = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
perf_graph = true
csv = true
[]
(test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 2
ymin = 0
ymax = 2
# Since this test prints the number of residual evaluations, its
# output strongly depends on the number of processors you run it on,
# and, apparently, the type of Mesh. To reduce this variability, we
# limit it to run with ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Postprocessors]
[./nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[../]
[./elements]
type = NumElems
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./residuals]
type = NumResidualEvaluations
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]