- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- systemALLThe system(s) for which you want to retrieve the number of DOFs (NL, AUX, ALL). Default == ALL
Default:ALL
C++ Type:MooseEnum
Controllable:No
Description:The system(s) for which you want to retrieve the number of DOFs (NL, AUX, ALL). Default == ALL
NumDOFs
The NumDOFs postprocessor provides information about the number of degrees of freedom (DOFs) in the simulation. This postprocessor is capable of providing the DOFs in either the Nonlinear system (the system of PDEs you are solving), the Auxiliary system, the system containing only explicit calculations, or both together.
If you are using Mesh Adaptivity, the number of DOFs will likely change as your simulation progresses. You might consider using execute_on = initial timestep_end
in that case. Otherwise execute_on = initial
should be sufficient.
When scaling your problem up to more processor cores, try not to spread your problem out too much. A good target should be around 20,000 DOFs in your Nonlinear System. Please see this PETSc FAQ for more information.
Description and Syntax
Return the number of Degrees of freedom from either the NL, Aux or both systems.
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names were you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/outputs/reporters/reporter.i)
- (modules/phase_field/test/tests/reconstruction/euler2rgb_non_uniform_orientation.i)
- (test/tests/variables/fe_hier/hier-1-3d.i)
- (test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
- (test/tests/misc/check_error/uo_pps_name_collision_test.i)
- (test/tests/variables/fe_hier/hier-3-3d.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_ebsd.i)
- (test/tests/variables/fe_hier/hier-1-2d.i)
- (test/tests/variables/fe_hier/hier-1-1d.i)
- (test/tests/variables/fe_hermite/hermite-3-3d.i)
- (test/tests/executioners/pp_binding/pp_binding_check.i)
- (test/tests/variables/fe_hier/hier-3-2d.i)
- (modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i)
- (test/tests/variables/fe_hier/hier-2-2d.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_advanced_op.i)
- (test/tests/postprocessors/num_dofs/UserObjTest.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (test/tests/variables/fe_monomial_const/monomial-const-3d.i)
- (modules/phase_field/test/tests/grain_tracker_test/split_grain.i)
- (modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
- (test/tests/variables/fe_monomial_const/monomial-const-2d.i)
- (test/tests/postprocessors/element_vec_l2_error_pps/element_vec_l2_error.i)
- (test/tests/outputs/debug/show_var_residual_norms_debug.i)
- (test/tests/postprocessors/num_dofs/num_dofs.i)
- (test/tests/bcs/penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
- (test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
- (test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i)
- (test/tests/bcs/penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
- (modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
- (test/tests/test_harness/csvdiff.i)
- (test/tests/tag/2d_diffusion_dg_tag.i)
- (modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i)
- (test/tests/bcs/ad_penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
- (test/tests/outputs/format/output_test_gnuplot.i)
- (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
- (test/tests/variables/fe_hermite/hermite-3-1d.i)
- (test/tests/variables/fe_hier/hier-2-3d.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_test_elemental.i)
- (test/tests/postprocessors/memory_usage/print_memory_usage.i)
- (test/tests/outputs/debug/show_var_residual_norms.i)
- (test/tests/outputs/postprocessor/postprocessor_invalid.i)
- (test/tests/outputs/format/output_test_gnuplot_ps.i)
- (test/tests/outputs/postprocessor/postprocessor.i)
- (modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
- (test/tests/postprocessors/mms_sine/3_d_mms_sine_postprocessor_test.i)
- (test/tests/variables/fe_hier/hier-3-1d.i)
- (test/tests/variables/fe_monomial_const/monomial-const-1d.i)
- (test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i)
- (modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
- (test/tests/misc/check_error/coupled_grad_without_declare.i)
- (test/tests/postprocessors/num_vars/num_vars.i)
- (modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
- (modules/phase_field/examples/nucleation/refine.i)
- (test/tests/outputs/format/output_test_gnuplot_gif.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_nodal.i)
- (test/tests/variables/fe_hier/hier-2-1d.i)
- (test/tests/variables/fe_hermite/hermite-3-2d.i)
- (test/tests/postprocessors/time_extreme_value/time_extreme_value.i)
- (test/tests/postprocessors/mms_sine/2_d_mms_sine_postprocessor_test.i)
- (test/tests/bcs/ad_penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
- (test/tests/postprocessors/mms_slope/mms_slope_test.i)
- (test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i)
- (test/tests/variables/fe_hermite_convergence/hermite_converge_periodic.i)
- (modules/phase_field/examples/grain_growth/3D_6000_gr.i)
- (test/tests/variables/fe_hermite_convergence/hermite_converge_dirichlet.i)
- (modules/combined/examples/phase_field-mechanics/EBSD_reconstruction_grain_growth_mech.i)
- (modules/phase_field/examples/ebsd_reconstruction/IN100-111grn.i)
- (test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
References
No citations exist within this document.(test/tests/outputs/reporters/reporter.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables/u]
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Reporters]
[constant]
type = ConstantReporter
integer_vector_names = 'int_vec'
integer_vector_values = '1 2 3 4'
real_vector_names = 'vec_1 vec_2'
real_vector_values = '5.0 50.0 500.0 5000.0; 6.6 66.6 666.6 6666.6'
string_vector_names = 'str_vec'
string_vector_values = 'seven eight nine ten'
integer_names = int
integer_values = 11
real_names = num
real_values = 12.1
string_names = str
string_values = thirteen
[]
[test]
type = TestDeclareReporter
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Executioner]
type = Transient
num_steps = 3
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/reconstruction/euler2rgb_non_uniform_orientation.i)
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
filename = ebsd_scan.txt
[]
[]
[GlobalParams]
op_num = 10
var_name_base = gr
[]
[UserObjects]
[ebsd_reader]
type = EBSDReader
bins = 40
[]
[ebsd]
type = PolycrystalEBSD
coloring_algorithm = jp
ebsd_reader = ebsd_reader
enable_var_coloring = true
[]
[grain_tracker]
type = GrainTracker
flood_entity_type = ELEMENTAL
compute_halo_maps = true # For displaying HALO fields
polycrystal_ic_uo = ebsd
[]
[]
[ICs]
[PolycrystalICs]
[PolycrystalColoringIC]
polycrystal_ic_uo = ebsd
[]
[]
[]
[Variables]
[PolycrystalVariables]
[]
[]
[AuxVariables]
[bnds]
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[]
[Modules]
[PhaseField]
[EulerAngles2RGB]
crystal_structure = cubic
euler_angle_provider = ebsd_reader
grain_tracker = grain_tracker
[]
[]
[]
[Materials]
[Copper]
# T = 500 # K
type = GBEvolution
T = 500
wGB = 0.6 # um
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
molar_volume = 7.11e-6 # Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0e-6
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[n_elements]
type = NumElems
execute_on = 'initial timestep_end'
[]
[n_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[]
[DOFs]
type = NumDOFs
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = Newton
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 0.7'
l_tol = 1.0e-6
l_max_its = 100
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 0
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/variables/fe_hier/hier-1-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 5
ny = 5
elem_type = HEX8
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 1
[../]
[./bc_fnb]
type = ParsedFunction
value = -1
[../]
[./bc_fnl]
type = ParsedFunction
value = -1
[../]
[./bc_fnr]
type = ParsedFunction
value = 1
[../]
[./bc_fnf]
type = ParsedFunction
value = 1
[../]
[./bc_fnk]
type = ParsedFunction
value = -1
[../]
[./forcing_fn]
type = ParsedFunction
value = x+y+z
[../]
[./solution]
type = ParsedGradFunction
value = x+y+z
grad_x = 1
grad_y = 1
grad_z = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[]
[u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = 'u'
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = 'u'
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 7
dt = 0.1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = u_func
[]
[dofs]
type = NumDOFs
[]
[]
[Adaptivity]
max_h_level = 3
marker = error
[Indicators]
[jump]
type = GradientJumpIndicator
variable = u
[]
[]
[Markers]
[error]
type = ErrorFractionMarker
indicator = jump
coarsen = 0.1
refine = 0.3
[]
[]
[]
[VectorPostprocessors]
[dynamic_line_sampler]
type = DynamicPointValueSampler
variable = u
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 6
sort_by = x
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/misc/check_error/uo_pps_name_collision_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
[]
[UserObjects]
[./ud]
type = MTUserObject
scalar = 2
vector = '9 7 5'
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -2
[../]
[./exact_fn]
type = ParsedFunction
value = x*x
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = UserObjectKernel
variable = u
user_object = ud
[]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
function = exact_fn
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./ud]
type = NumDOFs
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/variables/fe_hier/hier-3-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./bc_fnk]
type = ParsedFunction
value = -3*z*z
[../]
[./bc_fnf]
type = ParsedFunction
value = 3*z*z
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x-6*y-6*z+(x*x*x)+(y*y*y)+(z*z*z)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)+(z*z*z)
grad_x = 3*x*x
grad_y = 3*y*y
grad_z = 3*z*z
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_ebsd.i)
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
filename = 'ebsd_9.txt'
[]
[]
[GlobalParams]
op_num = 4
var_name_base = gr
[]
[UserObjects]
[ebsd_reader]
type = EBSDReader
[]
[ebsd]
type = PolycrystalEBSD
coloring_algorithm = bt
ebsd_reader = ebsd_reader
output_adjacency_matrix = true
[]
[grain_tracker]
type = GrainTracker
threshold = 0.2
connecting_threshold = 0.08
flood_entity_type = ELEMENTAL
compute_halo_maps = true # For displaying HALO fields
polycrystal_ic_uo = ebsd
execute_on = 'initial timestep_end'
[]
[]
[ICs]
[PolycrystalICs]
[PolycrystalColoringIC]
polycrystal_ic_uo = ebsd
[]
[]
[]
[Variables]
[PolycrystalVariables]
[]
[]
[AuxVariables]
[bnds]
[]
[unique_grains]
family = MONOMIAL
order = CONSTANT
[]
[var_indices]
family = MONOMIAL
order = CONSTANT
[]
[ebsd_grains]
family = MONOMIAL
order = CONSTANT
[]
[phi1]
family = MONOMIAL
order = CONSTANT
[]
[halo0]
order = CONSTANT
family = MONOMIAL
[]
[halo1]
order = CONSTANT
family = MONOMIAL
[]
[halo2]
order = CONSTANT
family = MONOMIAL
[]
[halo3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[]
[unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[]
[var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[]
[grain_aux]
type = EBSDReaderPointDataAux
variable = ebsd_grains
ebsd_reader = ebsd_reader
data_name = 'feature_id'
execute_on = 'initial timestep_end'
[]
[phi1]
type = OutputEulerAngles
euler_angle_provider = ebsd_reader
output_euler_angle = phi1
grain_tracker = grain_tracker
variable = phi1
[]
[halo0]
type = FeatureFloodCountAux
variable = halo0
map_index = 0
field_display = HALOS
flood_counter = grain_tracker
[]
[halo1]
type = FeatureFloodCountAux
variable = halo1
map_index = 1
field_display = HALOS
flood_counter = grain_tracker
[]
[halo2]
type = FeatureFloodCountAux
variable = halo2
map_index = 2
field_display = HALOS
flood_counter = grain_tracker
[]
[halo3]
type = FeatureFloodCountAux
variable = halo3
map_index = 3
field_display = HALOS
flood_counter = grain_tracker
[]
[]
[Materials]
[CuGrGr]
type = GBEvolution
T = 500 #K
wGB = 0.75 #micron
length_scale = 1.0e-6
time_scale = 1.0e-4
GBmob0 = 2.5e-6
Q = 0.23
GBenergy = 0.708
molar_volume = 7.11e-6
[]
[]
[Postprocessors]
[n_nodes]
type = NumNodes
execute_on = timestep_end
[]
[DOFs]
type = NumDOFs
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
'-pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 20
nl_rel_tol = 1.0e-9
nl_max_its = 20
start_time = 0.0
num_steps = 1
dt = 0.05
[]
[Outputs]
execute_on = 'initial'
exodus = true
perf_graph = true
[]
(test/tests/variables/fe_hier/hier-1-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 1
[../]
[./bc_fnb]
type = ParsedFunction
value = -1
[../]
[./bc_fnl]
type = ParsedFunction
value = -1
[../]
[./bc_fnr]
type = ParsedFunction
value = 1
[../]
[./forcing_fn]
type = ParsedFunction
value = x+y
[../]
[./solution]
type = ParsedGradFunction
value = x+y
grad_x = 1
grad_y = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_hier/hier-1-1d.i)
###########################################################
# This is a simple test demonstrating the use of the
# Hierarchic variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
value = -1
[../]
[./bc_fnr]
type = ParsedFunction
value = 1
[../]
[./forcing_fn]
type = ParsedFunction
value = x
[../]
[./solution]
type = ParsedGradFunction
value = x
grad_x = 1
[../]
[]
# Hierarchic Variable type
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_hermite/hermite-3-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./bc_fnk]
type = ParsedFunction
value = -3*z*z
[../]
[./bc_fnf]
type = ParsedFunction
value = 3*z*z
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x-6*y-6*z+(x*x*x)+(y*y*y)+(z*z*z)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)+(z*z*z)
grad_x = 3*x*x
grad_y = 3*y*y
grad_z = 3*z*z
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/executioners/pp_binding/pp_binding_check.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Postprocessors]
[./ndofs]
type = NumDOFs
[../]
[]
[Problem]
type = FEProblem
solve = false
kernel_coverage_check = false
[]
[Executioner]
type = PPBindingSteady
postprocessor = ndofs
[]
[Outputs]
[]
(test/tests/variables/fe_hier/hier-3-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x-6*y+(x*x*x)+(y*y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)
grad_x = 3*x*x
grad_y = 3*y*y
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 17
nz = 0
xmax = 1000
ymax = 866
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 3
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./hex_ic]
type = PolycrystalHex
coloring_algorithm = bt
grain_num = 36
x_offset = 0.0
output_adjacency_matrix = true
[../]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_test2_2D.tex
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = hex_ic
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
variable = 'gr0 gr1 gr2'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
block = 0
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[./bnd_length]
type = GrainBoundaryArea
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 40
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/variables/fe_hier/hier-2-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 2*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -2*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 2*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_advanced_op.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
parallel_type = replicated # Periodic BCs
[]
[GlobalParams]
op_num = 8
var_name_base = gr
order = CONSTANT
family = MONOMIAL
[]
[Variables]
[./PolycrystalVariables]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./voronoi]
type = PolycrystalVoronoi
rand_seed = 1
grain_num = 35
coloring_algorithm = bt
output_adjacency_matrix = true
[../]
[./grain_tracker]
type = GrainTracker
threshold = 0.5
connecting_threshold = 0.5
compute_halo_maps = true # For displaying HALO fields
remap_grains = false
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./unique_grains]
[../]
[./var_indices]
[../]
[./halos]
[../]
[./halo0]
[../]
[./halo1]
[../]
[./halo2]
[../]
[./halo3]
[../]
[./halo4]
[../]
[./halo5]
[../]
[./halo6]
[../]
[./halo7]
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./halo0]
type = FeatureFloodCountAux
variable = halo0
map_index = 0
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo1]
type = FeatureFloodCountAux
variable = halo1
map_index = 1
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo2]
type = FeatureFloodCountAux
variable = halo2
map_index = 2
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo3]
type = FeatureFloodCountAux
variable = halo3
map_index = 3
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo4]
type = FeatureFloodCountAux
variable = halo4
map_index = 4
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo5]
type = FeatureFloodCountAux
variable = halo5
map_index = 5
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo6]
type = FeatureFloodCountAux
variable = halo6
map_index = 6
field_display = HALOS
flood_counter = grain_tracker
[../]
[./halo7]
type = FeatureFloodCountAux
variable = halo7
map_index = 7
field_display = HALOS
flood_counter = grain_tracker
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./CuGrGr]
type = GBEvolution
T = 500 # K
wGB = 100 # nm
GBmob0 = 2.5e-6
Q = 0.23
GBenergy = 0.708
molar_volume = 7.11e-6
[../]
[]
[Postprocessors]
[./DOFs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 0
dt = 100.0
[]
[Outputs]
csv = true
perf_graph = true
[]
[Problem]
solve = false
[]
(test/tests/postprocessors/num_dofs/UserObjTest.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
[]
[Postprocessors]
[./num_dofs_nl]
type = NumDOFs
system = NL
[../]
[]
[Outputs]
csv = true
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = ConstantIC
value = 0
variable = zi
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(test/tests/variables/fe_monomial_const/monomial-const-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 21
ny = 21
nz = 21
elem_type = HEX8
[]
[Functions]
[./bc_fn]
type=ParsedFunction
value=0
[../]
[./bc_fnt]
type = ParsedFunction
value = 0
[../]
[./bc_fnb]
type = ParsedFunction
value = 0
[../]
[./bc_fnl]
type = ParsedFunction
value = 0
[../]
[./bc_fnr]
type = ParsedFunction
value = 0
[../]
[./forcing_fn]
# type = ParsedFunction
# value = 0
type = MTPiecewiseConst3D
[../]
[./solution]
type = MTPiecewiseConst3D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'top bottom left right'
function = bc_fn
[../]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-9
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/phase_field/test/tests/grain_tracker_test/split_grain.i)
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
filename = EBSD_split_grain.txt
[]
[]
[GlobalParams]
op_num = 4
var_name_base = gr
[]
[UserObjects]
[ebsd_reader]
type = EBSDReader
[]
[ebsd]
type = PolycrystalEBSD
coloring_algorithm = bt
ebsd_reader = ebsd_reader
enable_var_coloring = true
output_adjacency_matrix = true
[]
[grain_tracker]
type = GrainTracker
flood_entity_type = ELEMENTAL
compute_halo_maps = true # For displaying HALO fields
polycrystal_ic_uo = ebsd
[]
[]
[ICs]
[PolycrystalICs]
[PolycrystalColoringIC]
polycrystal_ic_uo = ebsd
[]
[]
[]
[Variables]
[PolycrystalVariables]
[]
[]
[AuxVariables]
[bnds]
[]
[unique_grains]
order = CONSTANT
family = MONOMIAL
[]
[ghost_elements]
order = CONSTANT
family = MONOMIAL
[]
[halos]
order = CONSTANT
family = MONOMIAL
[]
[var_indices]
order = CONSTANT
family = MONOMIAL
[]
[ebsd_grains]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[ghost_elements]
type = FeatureFloodCountAux
variable = ghost_elements
field_display = GHOSTED_ENTITIES
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[]
[halos]
type = FeatureFloodCountAux
variable = halos
field_display = HALOS
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[]
[var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[]
[unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[]
[grain_aux]
type = EBSDReaderPointDataAux
variable = ebsd_grains
ebsd_reader = ebsd_reader
data_name = 'feature_id'
execute_on = 'initial timestep_end'
[]
[]
[Modules]
[PhaseField]
[EulerAngles2RGB]
crystal_structure = cubic
euler_angle_provider = ebsd_reader
grain_tracker = grain_tracker
[]
[]
[]
[Materials]
[Copper]
# T = 500 # K
type = GBEvolution
T = 500
wGB = 0.6 # um
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
molar_volume = 7.11e-6 # Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0e-6
[]
[]
[Postprocessors]
[n_elements]
type = NumElems
execute_on = 'initial timestep_end'
[]
[n_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[]
[DOFs]
type = NumDOFs
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 0.7'
l_tol = 1.0e-4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 10.0
growth_factor = 1.1
optimal_iterations = 7
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
elem_type = TET4
dim = 3
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(test/tests/variables/fe_monomial_const/monomial-const-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 100
ny = 100
elem_type = QUAD4
[]
[Functions]
[./bc_fn]
type=ParsedFunction
value=0
[../]
[./bc_fnt]
type = ParsedFunction
value = 0
[../]
[./bc_fnb]
type = ParsedFunction
value = 0
[../]
[./bc_fnl]
type = ParsedFunction
value = 0
[../]
[./bc_fnr]
type = ParsedFunction
value = 0
[../]
[./forcing_fn]
# type = ParsedFunction
# value = 0
type = MTPiecewiseConst2D
[../]
[./solution]
type = MTPiecewiseConst2D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'top bottom left right'
function = bc_fn
[../]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-10
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/postprocessors/element_vec_l2_error_pps/element_vec_l2_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'bc_u bc_v f_u f_v'
# A ParsedFunction allows us to supply analytic expressions
# directly in the input file
[./bc_u]
type = ParsedFunction
value = sin(alpha*pi*x)
vars = 'alpha'
vals = '2'
[../]
[./bc_v]
type = ParsedFunction
value = sin(alpha*pi*y)
vars = 'alpha'
vals = '2'
[../]
[./f_u]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '2'
[../]
[./f_v]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*y)
vars = 'alpha'
vals = '2'
[../]
[]
[Kernels]
active = 'diff_u diff_v forcing_u forcing_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
# This Kernel can take a function name to use
[./forcing_u]
type = BodyForce
variable = u
function = f_u
[../]
[./forcing_v]
type = BodyForce
variable = v
function = f_v
[../]
[]
[BCs]
active = 'all_u all_v'
# The BC can take a function name to use
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = 'bottom right top left'
function = bc_u
[../]
[./all_v]
type = FunctionDirichletBC
variable = v
boundary = 'bottom right top left'
function = bc_v
[../]
[]
[Executioner]
type = Steady
[./Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 3
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./integral]
type = ElementVectorL2Error
var_x = u
var_y = v
function_x = bc_u
function_y = bc_v
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/outputs/debug/show_var_residual_norms_debug.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fnu]
type = ParsedFunction
value = -5.8*(x+y)+x*x*x-x+y*y*y-y
[../]
[./forcing_fnv]
type = ParsedFunction
value = -4
[../]
[./slnu]
type = ParsedGradFunction
value = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[../]
[./slnv]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
#NeumannBC functions
[./bc_fnut]
type = ParsedFunction
value = 3*y*y-1
[../]
[./bc_fnub]
type = ParsedFunction
value = -3*y*y+1
[../]
[./bc_fnul]
type = ParsedFunction
value = -3*x*x+1
[../]
[./bc_fnur]
type = ParsedFunction
value = 3*x*x-1
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[./diff1]
type = Diffusion
variable = u
[../]
[./test1]
type = CoupledConvection
variable = u
velocity_vector = v
[../]
[./diff2]
type = Diffusion
variable = v
[../]
[./react]
type = Reaction
variable = u
[../]
[./forceu]
type = BodyForce
variable = u
function = forcing_fnu
[../]
[./forcev]
type = BodyForce
variable = v
function = forcing_fnv
[../]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[./bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[../]
[./bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[../]
[./bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[../]
[./bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[../]
[./bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[../]
[./bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[../]
[]
[Preconditioning]
active = ' '
[./prec]
type = SMP
full = true
[../]
[]
[Postprocessors]
active='L2u L2v'
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2u]
type = ElementL2Error
variable = u
function = slnu
[../]
[./L2v]
type = ElementL2Error
variable = v
function = slnv
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/postprocessors/num_dofs/num_dofs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[./v_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./num_dofs_nl]
type = NumDOFs
system = NL
[../]
[./num_dofs_aux]
type = NumDOFs
system = AUX
[../]
# default
[./num_dofs_all]
type = NumDOFs
system = ALL
[../]
[]
[Outputs]
csv = true
[]
(test/tests/bcs/penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -2*(x*x+y*y-2)+(1-x*x)*(1-y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = PenaltyDirichletBC
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e5
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
#value = alpha*alpha*pi*pi*(y*y*sin(alpha*pi*x*y)+y*y*sin(alpha*pi*x*y))
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[./u_func]
type = ParsedGradFunction
#value = sin(alpha*pi*x*y)
#grad_x = alpha*pi*y*cos(alpha*pi*x*y)
#grad_y = alpha*pi*x*cos(alpha*pi*x*y)
value = sin(alpha*pi*x)
grad_x = alpha*pi*cos(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[]
[Executioner]
type = Steady
[./Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 4
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[./h1_semi]
type = ElementH1SemiError
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i)
###########################################################
# This is a test of the Discontinuous Galerkin System.
# Discontinous basis functions are used (Monomials) and
# a Laplacian DGKernel contributes to the
# internal edges around each element. Jumps are allowed
# but penalized by this method.
#
# @Requirement F3.60
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
# xmin = -1
# xmax = 1
# ymin = -1
# ymax = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
# function = -4.0+(x*x)+(y*y)
# function = x
# function = (x*x)-2.0
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
# function = (x*x*x)-6.0*x
[../]
[./exact_fn]
type = ParsedGradFunction
# function = x
# grad_x = 1
# grad_y = 0
# function = (x*x)+(y*y)
# grad_x = 2*x
# grad_y = 2*y
# function = (x*x)
# grad_x = 2*x
# grad_y = 0
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
# function = (x*x*x)
# grad_x = 3*x*x
# grad_y = 0
[../]
[]
[Kernels]
active = 'diff abs forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
active = 'dg_diff'
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
# petsc_options = '-snes_mf'
# max_r_steps = 2
[./Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[../]
nl_rel_tol = 1e-10
# nl_rel_tol = 1e-12
[]
[Postprocessors]
active = 'h dofs l2_err'
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(test/tests/bcs/penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = FunctionPenaltyDirichletBC
variable = u
function = solution
boundary = 'top left right bottom'
penalty = 1e6
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(test/tests/test_harness/csvdiff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./num_dofs]
type = NumDOFs
[../]
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/tag/2d_diffusion_dg_tag.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = MONOMIAL
[../]
[./tag_variable2]
order = FIRST
family = MONOMIAL
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./abs]
type = Reaction
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 8
var_name_base = gr
grain_num = 36
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_rand_2D.tex
[../]
[./voronoi]
type = PolycrystalVoronoi
coloring_algorithm = bt
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
fill_method = symmetric9
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x'
variable = 'gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./ngrains]
type = FeatureFloodCount
variable = bnds
threshold = 0.7
[../]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'disp_x,disp_y'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 25
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
file_base = poly36_grtracker
exodus = true
[]
(test/tests/bcs/ad_penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = ADDiffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = ADBodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = ADFunctionPenaltyDirichletBC
variable = u
function = solution
boundary = 'top left right bottom'
penalty = 1e6
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/outputs/format/output_test_gnuplot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
gnuplot = true
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymax = 2
xmax = 2
ny = 40
nx = 40
bias_y = 0.95
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = BoundingBoxIC
variable = zi
x1 = 0
x2 = 2
y1 = 1.95
y2 = 2
inside = 0.2
outside = 0
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(test/tests/variables/fe_hermite/hermite-3-1d.i)
###########################################################
# This is a simple test demonstrating the use of the
# Hermite variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x+(x*x*x)
[../]
[./solution]
type = ParsedGradFunction
value = x*x*x
grad_x = 3*x*x
[../]
[]
# Hermite Variable type
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_hier/hier-2-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 2*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -2*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 2*x
[../]
[./bc_fnf]
type = ParsedFunction
value = 2*z
[../]
[./bc_fnk]
type = ParsedFunction
value = -2*z
[../]
[./forcing_fn]
type = ParsedFunction
value = -6+x*x+y*y+z*z
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y+z*z
grad_x = 2*x
grad_y = 2*y
grad_z = 2*z
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_test_elemental.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
op_num = 12 # Should match grain_num so we can test with FauxGrainTracker too
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[UserObjects]
[./voronoi]
type = PolycrystalVoronoi
grain_num = 12 # Number of grains
coloring_algorithm = bt # bt will assign one grain to each op if they are the same
rand_seed = 8675
[../]
[./grain_tracker]
type = GrainTracker
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./CuGrGr]
type = GBEvolution
T = 500 # K
wGB = 100 # nm
GBmob0 = 2.5e-6
Q = 0.23
GBenergy = 0.708
molar_volume = 7.11e-6
[../]
[]
[Postprocessors]
[./DOFs]
type = NumDOFs
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 100.0
[]
[Adaptivity]
marker = error_marker
max_h_level = 1
[./Markers]
active = 'error_marker'
[./bnds_marker]
type = ValueThresholdMarker
invert = true
refine = 0.85
coarsen = 0.975
third_state = DO_NOTHING
variable = bnds
[../]
[./error_marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = bnds_error
refine = 0.7
[../]
[../]
[./Indicators]
[./bnds_error]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/memory_usage/print_memory_usage.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Adaptivity]
[./Markers]
[./uni]
type = UniformMarker
mark = REFINE
[../]
[../]
# this marker will tag every element for refinement, growing the problem
# exponentially with each timestep
marker = uni
# avoid a refine after the final step
stop_time = 4.5
[]
[Postprocessors]
[./physical]
type = MemoryUsage
mem_type = physical_memory
value_type = total
# by default MemoryUsage reports the peak value for the current timestep
# out of all samples that have been taken (at linear and non-linear iterations)
execute_on = 'INITIAL TIMESTEP_END NONLINEAR LINEAR'
[../]
[./virtual]
type = MemoryUsage
mem_type = virtual_memory
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./page_faults]
type = MemoryUsage
mem_type = page_faults
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./DOFs]
type = NumDOFs
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./walltime]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
num_steps = 5
dt = 1
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
perf_graph = true
[]
(test/tests/outputs/debug/show_var_residual_norms.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fnu]
type = ParsedFunction
value = -5.8*(x+y)+x*x*x-x+y*y*y-y
[../]
[./forcing_fnv]
type = ParsedFunction
value = -4
[../]
[./slnu]
type = ParsedGradFunction
value = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[../]
[./slnv]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
#NeumannBC functions
[./bc_fnut]
type = ParsedFunction
value = 3*y*y-1
[../]
[./bc_fnub]
type = ParsedFunction
value = -3*y*y+1
[../]
[./bc_fnul]
type = ParsedFunction
value = -3*x*x+1
[../]
[./bc_fnur]
type = ParsedFunction
value = 3*x*x-1
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[./diff1]
type = Diffusion
variable = u
[../]
[./test1]
type = CoupledConvection
variable = u
velocity_vector = v
[../]
[./diff2]
type = Diffusion
variable = v
[../]
[./react]
type = Reaction
variable = u
[../]
[./forceu]
type = BodyForce
variable = u
function = forcing_fnu
[../]
[./forcev]
type = BodyForce
variable = v
function = forcing_fnv
[../]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[./bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[../]
[./bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[../]
[./bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[../]
[./bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[../]
[./bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[../]
[./bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[../]
[]
[Preconditioning]
active = ' '
[./prec]
type = SMP
full = true
[../]
[]
[Postprocessors]
active='L2u L2v'
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2u]
type = ElementL2Error
variable = u
function = slnu
[../]
[./L2v]
type = ElementL2Error
variable = v
function = slnv
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[./debug] # This is a test, use the [Debug] block to enable this
type = VariableResidualNormsDebugOutput
[../]
[]
(test/tests/outputs/postprocessor/postprocessor_invalid.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
outputs = 'exodus2 console'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
outputs = 'exodus'
[../]
[./num_nonlinear]
type = NumVars
system = 'NL'
outputs = 'all'
[../]
[./num_dofs]
type = NumDOFs
outputs = 'none'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
[../]
[./exodus2]
type = Exodus
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/outputs/format/output_test_gnuplot_ps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Gnuplot
extension = ps
[../]
[]
(test/tests/outputs/postprocessor/postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'ALL'
outputs = 'exodus2 console'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
outputs = 'exodus'
[../]
[./num_nonlinear]
type = NumVars
system = 'NL'
outputs = 'all'
[../]
[./num_dofs]
type = NumDOFs
outputs = 'none'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
[../]
[./exodus2]
type = Exodus
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
elem_type = TRI3
dim = 2
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(test/tests/postprocessors/mms_sine/3_d_mms_sine_postprocessor_test.i)
#mms_sine_posprocessor_test.i
#This is for u = sin(a*x*y*z*t)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions] #Added so that we can use the Postprocessor
active = 'solution'
[./solution]
type = ParsedFunction
value = sin(a*x*y*z*t)
vars = 'a'
vals = '3.141592653589793'
[../]
[]
[AuxVariables] #We added nodal AuxVariables
active = 'nodal_aux'
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff implicit conv forcing reaction'
[./diff]
type = MMSDiffusion
variable = u
[../]
[./implicit] #We got from MOOSE kernels
type = MMSImplicitEuler
variable = u
[../]
[./conv] #We created our own convection kernel
type = MMSConvection
variable = u
x = -1
y = 2
z = -3
[../]
[./forcing] #We created our own forcing kernel
type = MMSForcing
variable = u
[../]
[./reaction] #We got from MOOSE kernels
type = MMSReaction
variable = u
[../]
[]
[AuxKernels] #We created our own AuxKernel
active = 'ConstantAux'
[./ConstantAux]
type = MMSConstantAux
variable = nodal_aux
[../]
[]
[BCs]
active = 'all_u'
[./all_u]
type = MMSCoupledDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
# value = sin(a*x*y*z*t)
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 5
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'l2_error dofs'
[./l2_error]
type = ElementL2Error
variable = u
function = solution
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 3_d_postprocessor_out
csv = true
[]
(test/tests/variables/fe_hier/hier-3-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x+(x*x*x)
[../]
[./solution]
type = ParsedGradFunction
value = x*x*x
grad_x = 3*x*x
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_monomial_const/monomial-const-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 100
elem_type = EDGE3
[]
[Functions]
[./bc_fn]
type=ParsedFunction
value=0
[../]
[./forcing_fn]
type = MTPiecewiseConst1D
[../]
[./solution]
type = MTPiecewiseConst1D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'left right'
function = bc_fn
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-9
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = ADDGDiffusion
variable = u
epsilon = -1
sigma = 6
diff = diff
[../]
[]
[Materials]
[./ad_coupled_mat]
type = ADCoupledMaterial
coupled_var = u
ad_mat_prop = diff
regular_mat_prop = diff_regular
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[./Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[../]
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
(test/tests/misc/check_error/coupled_grad_without_declare.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fnu]
type = ParsedFunction
value = -5.8*(x+y)+x*x*x-x+y*y*y-y
[../]
[./forcing_fnv]
type = ParsedFunction
value = -4
[../]
[./slnu]
type = ParsedGradFunction
value = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[../]
[./slnv]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
#NeumannBC functions
[./bc_fnut]
type = ParsedFunction
value = 3*y*y-1
[../]
[./bc_fnub]
type = ParsedFunction
value = -3*y*y+1
[../]
[./bc_fnul]
type = ParsedFunction
value = -3*x*x+1
[../]
[./bc_fnur]
type = ParsedFunction
value = 3*x*x-1
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[./diff1]
type = Diffusion
variable = u
[../]
[./test1]
type = CoupledConvection
variable = u
velocity_vector = v
# Trigger the error in this class
test_coupling_declaration_error = true
[../]
[./diff2]
type = Diffusion
variable = v
[../]
[./react]
type = Reaction
variable = u
[../]
[./forceu]
type = BodyForce
variable = u
function = forcing_fnu
[../]
[./forcev]
type = BodyForce
variable = v
function = forcing_fnv
[../]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[./bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[../]
[./bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[../]
[./bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[../]
[./bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[../]
[./bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[../]
[./bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[../]
[./bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[../]
[]
[Preconditioning]
active = ' '
[./prec]
type = SMP
full = true
[../]
[]
[Postprocessors]
active='L2u L2v'
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2u]
type = ElementL2Error
variable = u
function = slnu
[../]
[./L2v]
type = ElementL2Error
variable = v
function = slnv
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/postprocessors/num_vars/num_vars.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fnu]
type = ParsedFunction
value = -6*(x+y)+x*x+y*y
[../]
[./forcing_fnv]
type = ParsedFunction
value = -4+x*x*x-x+y*y*y-y
[../]
[./bc_fnut]
type = ParsedFunction
value = 3*y*y-1
[../]
[./bc_fnub]
type = ParsedFunction
value = -3*y*y+1
[../]
[./bc_fnul]
type = ParsedFunction
value = -3*x*x+1
[../]
[./bc_fnur]
type = ParsedFunction
value = 3*x*x-1
[../]
[./slnu]
type = ParsedGradFunction
value = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[../]
[./slnv]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff1]
type = Diffusion
variable = u
[../]
[./diff2]
type = Diffusion
variable = v
[../]
[./forceu]
type = BodyForce
variable = u
function = forcing_fnu
[../]
[./forcev]
type = BodyForce
variable = v
function = forcing_fnv
[../]
[]
[BCs]
# active = 'bc_u bc_v'
# [./bc_u]
# type = FunctionDirichletBC
# variable = u
# function = slnu
# boundary = 'top left right bottom'
# [../]
[./bc_ut]
type = FunctionDirichletBC
variable = u
boundary = top
function = bc_fnut
[../]
[./bc_ub]
type = FunctionDirichletBC
variable = u
boundary = bottom
function = bc_fnub
[../]
[./bc_ul]
type = FunctionDirichletBC
variable = u
boundary = left
function = bc_fnul
[../]
[./bc_ur]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_fnur
[../]
[./bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'top left right bottom'
[../]
[]
[Preconditioning]
[./prec]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_vars'
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2u]
type = ElementL2Error
variable = u
function = slnu
[../]
[./L2v]
type = ElementL2Error
variable = v
function = slnv
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-15
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
uniform_refine = 2
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
family = MONOMIAL
order = FIRST
[../]
[./phi_exact]
[../]
[]
[AuxKernels]
[./phi_exact]
type = FunctionAux
function = phi_exact
variable = phi_exact
[../]
[]
[Functions]
[./phi_initial]
type = ParsedFunction
value = '1-x'
[../]
[./phi_exact]
type = ParsedFunction
vars = epsilon
vals = 0.05
value = '1 / (1+exp((x-0.5)/epsilon))'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_initial
variable = phi
[../]
[./phi_0_ic]
type = FunctionIC
function = phi_initial
variable = phi_0
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.05
[../]
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 0.1
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = phi_exact
execute_on = 'initial timestep_end'
[../]
[./ndofs]
type = NumDOFs
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
start_point = '0 0.5 0'
end_point = '1 0.5 0'
variable = phi
num_points = 100
sort_by = x
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
nl_max_its = 100
solve_type = PJFNK
num_steps = 10
start_time = 0
nl_abs_tol = 1e-13
scheme = implicit-euler
dt = 0.05
petsc_options_iname = '-pc_type -pc_sub_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
[]
[Outputs]
exodus = true
[./out]
type = CSV
time_data = true
file_base = output/olsson_1d_out
[../]
[]
(modules/phase_field/examples/nucleation/refine.i)
#
# Example derived from cahn_hilliard.i demonstrating the use of Adaptivity
# with the DiscreteNucleation system. The DiscreteNucleationMarker triggers
# mesh refinement for the nucleus geometry. It is up to the user to specify
# refinement for the physics. In this example this is done using a GradientJumpIndicator
# with a ValueThresholdMarker. The nucleation system marker and the physics marker
# must be combined using a ComboMarker to combine their effect.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 500
ymax = 500
elem_type = QUAD
[]
[Modules]
[./PhaseField]
[./Conserved]
[./c]
free_energy = F
mobility = M
kappa = kappa_c
solve_type = REVERSE_SPLIT
[../]
[../]
[../]
[]
[ICs]
[./c_IC]
type = ConstantIC
variable = c
value = 0.2
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 25'
[../]
[./chemical_free_energy]
# simple double well free energy
type = DerivativeParsedMaterial
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 0'
function = 16*barr_height*c^2*(1-c)^2 # +0.01*(c*plog(c,0.005)+(1-c)*plog(1-c,0.005))
derivative_order = 2
outputs = exodus
[../]
[./probability]
# This is a made up toy nucleation rate it should be replaced by
# classical nucleation theory in a real simulation.
type = ParsedMaterial
f_name = P
args = c
function = 'if(c<0.21,c*1e-8,0)'
outputs = exodus
[../]
[./nucleation]
# The nucleation material is configured to insert nuclei into the free energy
# tht force the concentration to go to 0.95, and holds this enforcement for 500
# time units.
type = DiscreteNucleation
f_name = Fn
op_names = c
op_values = 0.90
penalty = 5
penalty_mode = MIN
map = map
outputs = exodus
[../]
[./free_energy]
# add the chemical and nucleation free energy contributions together
type = DerivativeSumMaterial
derivative_order = 2
args = c
sum_materials = 'Fc Fn'
[../]
[]
[UserObjects]
[./inserter]
# The inserter runs at the end of each time step to add nucleation events
# that happened during the timestep (if it converged) to the list of nuclei
type = DiscreteNucleationInserter
hold_time = 50
probability = P
radius = 10
[../]
[./map]
# The map UO runs at the beginning of a timestep and generates a per-element/qp
# map of nucleus locations. The map is only regenerated if the mesh changed or
# the list of nuclei was modified.
# The map converts the nucleation points into finite area objects with a given radius.
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./ndof]
type = NumDOFs
[../]
[./rate]
type = DiscreteNucleationData
value = RATE
inserter = inserter
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.0005
dt_max = 10
[../]
[./update]
type = DiscreteNucleationData
value = UPDATE
inserter = inserter
[../]
[./count]
type = DiscreteNucleationData
value = COUNT
inserter = inserter
[../]
[]
[Adaptivity]
[./Indicators]
[./jump]
type = GradientJumpIndicator
variable = c
[../]
[../]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[./grad]
type = ValueThresholdMarker
variable = jump
coarsen = 0.1
refine = 0.2
[../]
[./combo]
type = ComboMarker
markers = 'nuc grad'
[../]
[../]
marker = combo
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
nl_max_its = 20
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 120
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 1.5
cutback_factor = 0.5
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
[]
(test/tests/outputs/format/output_test_gnuplot_gif.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Gnuplot
extension = gif
[../]
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_nodal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
op_num = 10
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[UserObjects]
[./voronoi]
type = PolycrystalVoronoi
grain_num = 10 # Number of grains
coloring_algorithm = bt # bt will assign one grain to each op if they are the same
rand_seed = 1
[../]
[./grain_tracker]
type = GrainTracker
threshold = 0.5
connecting_threshold = 0.2
# Note: This is here for demonstration purposes
# use elemental for most simulations
flood_entity_type = NODAL
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./unique_grains]
order = FIRST
family = LAGRANGE
[../]
[./var_indices]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[]
[BCs]
[]
[Materials]
[./CuGrGr]
type = GBEvolution
T = 500 # K
wGB = 100 # nm
GBmob0 = 2.5e-6
Q = 0.23
GBenergy = 0.708
molar_volume = 7.11e-6
[../]
[]
[Postprocessors]
[./DOFs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 100.0
[]
[Outputs]
exodus = true
[]
(test/tests/variables/fe_hier/hier-2-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
value = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 2*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -2+x*x
[../]
[./solution]
type = ParsedGradFunction
value = x*x
grad_x = 2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_hermite/hermite-3-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
value = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
value = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
value = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
value = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
value = -6*x-6*y+(x*x*x)+(y*y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)
grad_x = 3*x*x
grad_y = 3*y*y
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/postprocessors/time_extreme_value/time_extreme_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = u
boundary = left
function = 'if(t<1.0,t,1.0)'
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = 'if(t<1.0,2.0-t,1.0)'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
active = 'max_nl_dofs nl_dofs'
[max_nl_dofs]
type = TimeExtremeValue
value_type = max
postprocessor = nl_dofs
execute_on = 'initial timestep_end'
[]
[time_of_max_nl_dofs]
type = TimeExtremeValue
value_type = max
output_type = time
postprocessor = nl_dofs
execute_on = 'initial timestep_end'
[]
[nl_dofs]
type = NumDOFs
system = NL
execute_on = 'initial timestep_end'
[]
[]
[Adaptivity]
marker = marker
max_h_level = 2
[Markers]
[marker]
type = ValueRangeMarker
lower_bound = 0.7
upper_bound = 1.3
buffer_size = 0.2
variable = u
invert = true
third_state = DO_NOTHING
[]
[]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/mms_sine/2_d_mms_sine_postprocessor_test.i)
#2_d_mms_sine_postprocessor_test.i
#This is for u = sin(a*x*y*z*t)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions] #Added so that we can use the Postprocessor
active = 'solution'
[./solution]
type = ParsedFunction
value = sin(a*x*y*z*t)
vars = 'a'
vals = '3.141592653589793'
[../]
[]
[AuxVariables] #We added nodal AuxVariables
active = 'nodal_aux'
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff implicit conv forcing reaction'
[./diff]
type = MMSDiffusion
variable = u
[../]
[./implicit] #We got from MOOSE kernels
type = MMSImplicitEuler
variable = u
[../]
[./conv] #We created our own convection kernel
type = MMSConvection
variable = u
x = -1
y = 2
[../]
[./forcing] #We created our own forcing kernel
type = MMSForcing
variable = u
[../]
[./reaction] #We got from MOOSE kernels
type = MMSReaction
variable = u
[../]
[]
[AuxKernels] #We created our own AuxKernel
active = 'ConstantAux'
[./ConstantAux]
type = MMSConstantAux
variable = nodal_aux
[../]
[]
[BCs]
active = 'all_u'
[./all_u]
type = MMSCoupledDirichletBC
variable = u
boundary = '0 1 2 3'
# value = sin(a*x*y*z*t)
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 5
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'l2_error dofs'
[./l2_error]
type = ElementL2Error
variable = u
function = solution
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 2_d_postprocessor_out
csv = true
[]
(test/tests/bcs/ad_penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -2*(x*x+y*y-2)+(1-x*x)*(1-y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = ADDiffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = ADBodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = ADPenaltyDirichletBC
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e5
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/postprocessors/mms_slope/mms_slope_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# do not use uniform refine, we are using adaptive refining
# uniform_refine = 6
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[./u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-14
[./Adaptivity]
# if the refine fraction is 1 it will refine every element
# remember < 1 means only refine that percentage of elements
refine_fraction = 1
steps = 6
# do not coarsen at all
coarsen_fraction = 0
# maximum level of refinement steps, make sure this is > max_r_steps
max_h_level = 10
# leave this as is
error_estimator = KellyErrorEstimator
[../]
[]
# print l2 and h1 errors from the Postprocessors too so I can compare
[Postprocessors]
active = 'l2_error h1_error dofs'
# active = ' '
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
[../]
[./dofs]
type = NumDOFs
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 0.5
[../]
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
value = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
active = 'diff abs forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
active = 'dg_diff'
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
active = 'all'
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'h dofs l2_err'
[./h]
type = AverageElementSize
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/variables/fe_hermite_convergence/hermite_converge_periodic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./bc_fn]
type = ParsedGradFunction
value = -sin(pi*x)*sin(pi*y)
grad_x = -pi*cos(pi*x)*sin(pi*y)
grad_y = -pi*sin(pi*x)*cos(pi*y)
[../]
[./bc_fnt]
type = ParsedFunction
value = -pi*sin(pi*x)*cos(pi*y)
[../]
[./bc_fnb]
type = ParsedFunction
value = pi*sin(pi*x)*cos(pi*y)
[../]
[./forcing_fn]
type = ParsedFunction
value = -2*pi*pi*sin(pi*x)*sin(pi*y)-sin(pi*x)*sin(pi*y)
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction= 'x y'
[../]
[../]
[./bc_top]
type=FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type=FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = bc_fn
[../]
[./H1error]
type = ElementH1Error
variable = u
function = bc_fn
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = bc_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
# We use higher-order quadrature to ensure that the forcing function
# is integrated accurately.
[./Quadrature]
order=ELEVENTH
[../]
[]
[Adaptivity]
steps = 2
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
print_mesh_changed_info = true
[]
(modules/phase_field/examples/grain_growth/3D_6000_gr.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 180
ny = 180
nz = 180
xmin = 0
xmax = 180
ymin = 0
ymax = 180
zmin = 0
zmax = 180
elem_type = HEX8
[]
[GlobalParams]
op_num = 28
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./voronoi]
type = PolycrystalVoronoi
grain_num = 6000 # Number of grains
rand_seed = 8675 # 301
coloring_algorithm = jp
[../]
[./term]
type = Terminator
expression = 'grain_tracker < 218'
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./ghost_elements]
order = CONSTANT
family = MONOMIAL
[../]
[./halos]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
field_display = UNIQUE_REGION
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[../]
[./ghost_elements]
type = FeatureFloodCountAux
variable = ghost_elements
field_display = GHOSTED_ENTITIES
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[../]
[./halos]
type = FeatureFloodCountAux
variable = halos
field_display = HALOS
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
field_display = VARIABLE_COLORING
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[../]
[]
#[BCs]
# [./Periodic]
# [./All]
# auto_direction = 'x y'
# [../]
# [../]
#[]
[Materials]
[./Copper]
type = GBEvolution
T = 500
wGB = 3 # um
GBmob0 = 2.5e-6 #m^4/(Js) from Schoenfelder 1997
Q = 0.23 #Migration energy in eV
GBenergy = 0.708 #GB energy in J/m^2
molar_volume = 7.11e-6 #Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./n_elements]
type = NumElems
execute_on = timestep_end
[../]
[./n_nodes]
type = NumNodes
execute_on = timestep_end
[../]
[./DOFs]
type = NumDOFs
[../]
[./grain_tracker]
type = GrainTracker
threshold = 0.1
compute_halo_maps = true
[../]
[]
#[Preconditioning]
# [./SMP]
# type = SMP
# full = true
# [../]
#[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK #Preconditioned JFNK (default)
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 500
dt = 0.0002
[./TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 0.0002
growth_factor = 1.1
optimal_iterations = 8
[../]
#[./Adaptivity]
# initial_adaptivity = 4
# refine_fraction = 0.6
# coarsen_fraction = 0.1
# max_h_level = 4
# print_changed_info = true
#[../]
[]
[Outputs]
nemesis = true
checkpoint = true
csv = true
[./console]
type = Console
[../]
[]
(test/tests/variables/fe_hermite_convergence/hermite_converge_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./bc_fn]
type = ParsedGradFunction
value = -sin(pi*x)*sin(pi*y)
grad_x = -pi*cos(pi*x)*sin(pi*y)
grad_y = -pi*sin(pi*x)*cos(pi*y)
[../]
[./forcing_fn]
type = ParsedFunction
value = -2*pi*pi*sin(pi*x)*sin(pi*y)-sin(pi*x)*sin(pi*y)
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionPenaltyDirichletBC
variable = u
boundary = 'bottom right top left'
function = bc_fn
penalty = 1e10
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = bc_fn
[../]
[./H1error]
type = ElementH1Error
variable = u
function = bc_fn
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = bc_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
# We use higher-order quadrature to ensure that the forcing function
# is integrated accurately.
[./Quadrature]
order=ELEVENTH
[../]
[]
[Adaptivity]
steps = 2
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
print_mesh_changed_info = true
[]
(modules/combined/examples/phase_field-mechanics/EBSD_reconstruction_grain_growth_mech.i)
# This example reconstructs the grain structure from an EBSD data file
# Then, an isotropic grain model is run with linear elasticity and an anisotropic
# elasticity tensor that uses the measured EBSD angles.
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
uniform_refine = 2 #Mesh can go two levels coarser than the EBSD grid
filename = IN100_128x128.txt
[]
[]
[GlobalParams]
op_num = 8
var_name_base = gr
displacements = 'disp_x disp_y'
[]
[Variables]
[PolycrystalVariables] #Polycrystal variable generation (30 order parameters)
[]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[bnds]
[]
[gt_indices]
order = CONSTANT
family = MONOMIAL
[]
[unique_grains]
order = CONSTANT
family = MONOMIAL
[]
[vonmises_stress]
order = CONSTANT
family = MONOMIAL
[]
[C1111]
order = CONSTANT
family = MONOMIAL
[]
[phi1]
order = CONSTANT
family = MONOMIAL
[]
[Phi]
order = CONSTANT
family = MONOMIAL
[]
[phi2]
order = CONSTANT
family = MONOMIAL
[]
[EBSD_grain]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[PolycrystalICs]
[ReconVarIC]
ebsd_reader = ebsd
coloring_algorithm = bt
[]
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[PolycrystalElasticDrivingForce]
[]
[TensorMechanics]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[gt_indices]
type = FeatureFloodCountAux
variable = gt_indices
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[]
[unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[]
[C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[]
[vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
execute_on = timestep_end
[]
[phi1]
type = OutputEulerAngles
variable = phi1
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
execute_on = 'initial'
[]
[Phi]
type = OutputEulerAngles
variable = Phi
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'Phi'
execute_on = 'initial'
[]
[phi2]
type = OutputEulerAngles
variable = phi2
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'phi2'
execute_on = 'initial'
[]
[grain_aux]
type = EBSDReaderPointDataAux
variable = EBSD_grain
ebsd_reader = ebsd
data_name = 'feature_id'
execute_on = 'initial'
[]
[]
[BCs]
[top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -2.0
[]
[x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[]
[y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[]
[Modules]
[PhaseField]
[EulerAngles2RGB]
crystal_structure = cubic
euler_angle_provider = ebsd
grain_tracker = grain_tracker
[]
[]
[]
[Materials]
[Copper]
# T = 500 # K
type = GBEvolution
block = 0
T = 500
wGB = 0.6 # um
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
molar_volume = 7.11e-6; # Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0e-6
[]
[ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[n_elements]
type = NumElems
execute_on = 'initial timestep_end'
[]
[n_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[]
[DOFs]
type = NumDOFs
[]
[]
[UserObjects]
[ebsd]
type = EBSDReader
[]
[grain_tracker]
type = GrainTrackerElasticity
compute_var_to_feature_map = true
ebsd_reader = ebsd
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
euler_angle_provider = ebsd
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = ' hypre boomeramg 0.7'
l_tol = 1.0e-4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 30
dt = 10
[Adaptivity]
initial_adaptivity = 0
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
[]
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 10.0
growth_factor = 1.1
optimal_iterations = 7
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/phase_field/examples/ebsd_reconstruction/IN100-111grn.i)
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
filename = IN100_120x120.txt
pre_refine = 2
[]
[]
[GlobalParams]
op_num = 8
var_name_base = gr
[]
[UserObjects]
[ebsd_reader]
type = EBSDReader
[]
[ebsd]
type = PolycrystalEBSD
coloring_algorithm = bt
ebsd_reader = ebsd_reader
enable_var_coloring = true
[]
[grain_tracker]
type = GrainTracker
flood_entity_type = ELEMENTAL
compute_halo_maps = true # For displaying HALO fields
polycrystal_ic_uo = ebsd
[]
[]
[ICs]
[PolycrystalICs]
[PolycrystalColoringIC]
polycrystal_ic_uo = ebsd
[]
[]
[]
[Variables]
[PolycrystalVariables]
[]
[]
[AuxVariables]
[bnds]
[]
[unique_grains_ic]
order = CONSTANT
family = MONOMIAL
[]
[unique_grains]
order = CONSTANT
family = MONOMIAL
[]
[ghost_elements]
order = CONSTANT
family = MONOMIAL
[]
[halos]
order = CONSTANT
family = MONOMIAL
[]
[var_indices_ic]
order = CONSTANT
family = MONOMIAL
[]
[var_indices]
order = CONSTANT
family = MONOMIAL
[]
[ebsd_grains]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[ghost_elements]
type = FeatureFloodCountAux
variable = ghost_elements
field_display = GHOSTED_ENTITIES
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[]
[halos]
type = FeatureFloodCountAux
variable = halos
field_display = HALOS
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
[]
[var_indices_ic]
type = FeatureFloodCountAux
variable = var_indices_ic
execute_on = 'initial'
flood_counter = ebsd
field_display = VARIABLE_COLORING
[]
[unique_grains_ic]
type = FeatureFloodCountAux
variable = unique_grains_ic
execute_on = 'initial'
flood_counter = ebsd
field_display = UNIQUE_REGION
[]
[var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[]
[unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[]
[grain_aux]
type = EBSDReaderPointDataAux
variable = ebsd_grains
ebsd_reader = ebsd_reader
data_name = 'feature_id'
execute_on = 'initial timestep_end'
[]
[]
[Modules]
[PhaseField]
[EulerAngles2RGB]
crystal_structure = cubic
euler_angle_provider = ebsd_reader
grain_tracker = grain_tracker
[]
[]
[]
[Materials]
[Copper]
# T = 500 # K
type = GBEvolution
T = 500
wGB = 0.6 # um
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
molar_volume = 7.11e-6 # Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0e-6
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[n_elements]
type = NumElems
execute_on = 'initial timestep_end'
[]
[n_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[]
[DOFs]
type = NumDOFs
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 0.7'
l_tol = 1.0e-4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 30
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 10.0
growth_factor = 1.1
optimal_iterations = 7
[]
[Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
[]
[]
[Outputs]
exodus = true
checkpoint = true
perf_graph = true
[]
(test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 2
ymin = 0
ymax = 2
# Since this test prints the number of residual evaluations, its
# output strongly depends on the number of processors you run it on,
# and, apparently, the type of Mesh. To reduce this variability, we
# limit it to run with ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Postprocessors]
[./nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[../]
[./elements]
type = NumElems
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./residuals]
type = NumResidualEvaluations
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]