- combinatorial_geometryFunction expression encoding a combinatorial geometry
C++ Type:std::string
Controllable:No
Description:Function expression encoding a combinatorial geometry
- inputThe mesh we want to modify
C++ Type:MeshGeneratorName
Controllable:No
Description:The mesh we want to modify
- new_sideset_nameThe name of the new sideset
C++ Type:BoundaryName
Controllable:No
Description:The name of the new sideset
ParsedGenerateSideset
A MeshGenerator that adds element sides to a sideset if the centroid satisfies the combinatorial_geometry
expression. Optionally, element sides are also added if they are included in included_subdomain_ids
and if they feature the designated normal.
Input Parameters
- constant_expressionsVector of values for the constants in constant_names (can be an FParser expression)
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of values for the constants in constant_names (can be an FParser expression)
- constant_namesVector of constants used in the parsed function (use this for kB etc.)
C++ Type:std::vector<std::string>
Controllable:No
Description:Vector of constants used in the parsed function (use this for kB etc.)
- fixed_normalFalseThis Boolean determines whether we fix our normal or allow it to vary to "paint" around curves
Default:False
C++ Type:bool
Controllable:No
Description:This Boolean determines whether we fix our normal or allow it to vary to "paint" around curves
- included_neighbor_idsA set of neighboring subdomain ids. A face is only added if the subdomain id of the neighbor is in this set
C++ Type:std::vector<unsigned short>
Controllable:No
Description:A set of neighboring subdomain ids. A face is only added if the subdomain id of the neighbor is in this set
- included_subdomain_idsA set of subdomain ids whose sides will be included in the new sidesets
C++ Type:std::vector<unsigned short>
Controllable:No
Description:A set of subdomain ids whose sides will be included in the new sidesets
- normal0 0 0If provided specifies the normal vector on sides that are added to the new
Default:0 0 0
C++ Type:libMesh::Point
Controllable:No
Description:If provided specifies the normal vector on sides that are added to the new
- replaceFalseIf true, replace the old sidesets. If false, the current sidesets (if any) will be preserved.
Default:False
C++ Type:bool
Controllable:No
Description:If true, replace the old sidesets. If false, the current sidesets (if any) will be preserved.
- show_infoFalseWhether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)
- variance0.1The variance [0.0 - 1.0] allowed when comparing normals
Default:0.1
C++ Type:double
Controllable:No
Description:The variance [0.0 - 1.0] allowed when comparing normals
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- disable_fpoptimizerFalseDisable the function parser algebraic optimizer
Default:False
C++ Type:bool
Controllable:No
Description:Disable the function parser algebraic optimizer
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
- enable_ad_cacheTrueEnable cacheing of function derivatives for faster startup time
Default:True
C++ Type:bool
Controllable:No
Description:Enable cacheing of function derivatives for faster startup time
- enable_auto_optimizeTrueEnable automatic immediate optimization of derivatives
Default:True
C++ Type:bool
Controllable:No
Description:Enable automatic immediate optimization of derivatives
- enable_jitTrueEnable just-in-time compilation of function expressions for faster evaluation
Default:True
C++ Type:bool
Controllable:No
Description:Enable just-in-time compilation of function expressions for faster evaluation
- evalerror_behaviornanWhat to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception
Default:nan
C++ Type:MooseEnum
Options:nan, nan_warning, error, exception
Controllable:No
Description:What to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception
Advanced Parameters
Input Files
- (modules/porous_flow/examples/tutorial/00_2D.i)
- (modules/heat_conduction/test/tests/radiation_transfer_symmetry/cavity_with_pillars.i)
- (modules/porous_flow/examples/tutorial/04.i)
- (test/tests/meshgenerators/parsed_generate_sideset/parsed_generate_sideset.i)
- (modules/porous_flow/examples/tutorial/11.i)
- (modules/porous_flow/examples/tutorial/11_2D.i)
- (modules/porous_flow/examples/tutorial/05_tabulated.i)
- (modules/porous_flow/examples/ates/ates.i)
- (modules/porous_flow/examples/tutorial/03.i)
- (modules/heat_conduction/test/tests/radiation_transfer_symmetry/cavity_with_pillars_symmetry_bc.i)
- (modules/heat_conduction/test/tests/view_factors_symmetry/cavity_with_pillars.i)
- (modules/porous_flow/examples/groundwater/ex02_steady_state.i)
- (modules/porous_flow/examples/tutorial/08.i)
- (modules/porous_flow/examples/tutorial/00.i)
- (modules/heat_conduction/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
- (test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
- (test/tests/meshgenerators/parsed_generate_sideset/parsed_generate_sideset_neighbor_sub_id.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary.i)
- (modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
- (modules/porous_flow/examples/tutorial/06_KT.i)
- (modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
- (modules/porous_flow/examples/tutorial/05.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
- (test/tests/meshgenerators/show_info/show_info.i)
- (modules/porous_flow/examples/tutorial/07.i)
- (modules/porous_flow/examples/tutorial/06.i)
- (modules/heat_conduction/test/tests/view_factors_symmetry/cavity_with_pillars_symmetry_bc.i)
- (test/tests/vectorpostprocessors/side_value_sampler/side_value_sampler.i)
- (modules/porous_flow/examples/tutorial/10.i)
- (modules/porous_flow/examples/tutorial/01.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary_ray_tracing.i)
- (modules/porous_flow/examples/tutorial/08_KT.i)
- (test/tests/mesh_modifiers/parsed_sideset/parsed_sideset.i)
- (test/tests/meshgenerators/fancy_extruder_generator/fancy_extruder_then_parsed_gen_sideset.i)
(modules/porous_flow/examples/tutorial/00_2D.i)
# Creates the mesh for the remainder of the tutorial
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 1.0
xmax = 10
bias_x = 1.4
ny = 3
ymin = -6
ymax = 6
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 -2 0'
top_right = '10 2 0'
input = gen
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.0001'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[Variables]
[dummy_var]
[]
[]
[Kernels]
[dummy_diffusion]
type = Diffusion
variable = dummy_var
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = 2D_mesh
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_symmetry/cavity_with_pillars.i)
#
# inner_left: 8
# inner_right: 9
# inner_top: 12
# inner_bottom: 11
# inner_front: 10
# back_2: 7
# obstruction: 6
#
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 3
dx = '0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.4'
dy = '0.5 0.75 0.5'
dz = '1.5 0.5'
subdomain_id = '
3 1 1 1 1 1 1 4
3 1 2 1 1 2 1 4
3 1 1 1 1 1 1 4
3 1 1 1 1 1 1 4
3 1 1 1 1 1 1 4
3 1 1 1 1 1 1 4
'
[]
[add_obstruction]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = obstruction
input = cartesian
[]
[add_new_back]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 -1'
new_sideset_name = back_2
input = add_obstruction
[]
[add_inner_left]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
new_boundary = inner_left
input = add_new_back
[]
[add_inner_right]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 4
paired_block = 1
new_boundary = inner_right
input = add_inner_left
[]
[add_inner_front]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z - 2) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 1'
new_sideset_name = inner_front
input = add_inner_right
[]
[add_inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
included_subdomain_ids = '1'
normal = '0 -1 0'
new_sideset_name = inner_bottom
input = add_inner_front
[]
[add_inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 1.75) < 1e-10'
included_subdomain_ids = '1'
normal = '0 1 0'
new_sideset_name = inner_top
input = add_inner_bottom
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[temperature]
block = '2 3 4'
initial_condition = 300
[]
[]
[Kernels]
[conduction]
type = HeatConduction
variable = temperature
block = '2 3 4'
diffusion_coefficient = 1
[]
[source]
type = BodyForce
variable = temperature
value = 1000
block = '2'
[]
[]
[BCs]
[convective]
type = CoupledConvectiveHeatFluxBC
variable = temperature
T_infinity = 300
htc = 50
boundary = 'left right'
[]
[]
[GrayDiffuseRadiation]
[cavity]
boundary = '6 7 8 9 10 11 12'
emissivity = '1 1 1 1 1 1 1'
n_patches = '1 1 1 1 1 1 1'
adiabatic_boundary = '7 10 11 12'
partitioners = 'metis metis metis metis metis metis metis'
temperature = temperature
ray_tracing_face_order = SECOND
normalize_view_factor = false
[]
[]
[Postprocessors]
[Tpv]
type = PointValue
variable = temperature
point = '0.3 0.5 0.5'
[]
[volume]
type = VolumePostprocessor
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/04.i)
# Darcy flow with heat advection and conduction, and elasticity
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[porepressure]
[]
[temperature]
initial_condition = 293
scaling = 1E-8
[]
[disp_x]
scaling = 1E-10
[]
[disp_y]
scaling = 1E-10
[]
[disp_z]
scaling = 1E-10
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydroMechanical
gravity = '0 0 0'
fp = the_simple_fluid
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[roller_top_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
factor = 1E6
use_displaced_mesh = false
[]
[cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
factor = 1E6
use_displaced_mesh = false
[]
[]
[AuxVariables]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_pp]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_rr
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[stress_pp]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_pp
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
thermal_expansion = 0.0002
cp = 4194
cv = 4186
porepressure_coefficient = 0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 0.001 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 293
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-15
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/parsed_generate_sideset/parsed_generate_sideset.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmax = 3
ymax = 3
zmax = 3
[]
[./subdomains]
type = ParsedSubdomainMeshGenerator
input = gmg
combinatorial_geometry = 'x < 1 & y > 1 & y < 2'
block_id = 1
[]
[./sideset]
type = ParsedGenerateSideset
input = subdomains
combinatorial_geometry = 'z < 1'
included_subdomain_ids = '1'
normal = '1 0 0'
new_sideset_name = interior
[]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/11.i)
# Two-phase borehole injection problem
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_x disp_y'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_x]
scaling = 1E-5
[]
[disp_y]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_x]
type = StressDivergenceTensors
temperature = T
variable = disp_x
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
use_displaced_mesh = false
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
temperature = T
variable = disp_y
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 1
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
use_displaced_mesh = false
component = 1
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr]
type = RankTwoScalarAux
variable = stress_rr
rank_two_tensor = stress
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_tt]
type = RankTwoScalarAux
variable = stress_tt
rank_two_tensor = stress
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[pinned_top_bottom_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'top bottom'
[]
[pinned_top_bottom_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity_mat]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure_mat]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/11_2D.i)
# Two-phase borehole injection problem in RZ coordinates
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 1.0
xmax = 10
bias_x = 1.4
ny = 3
ymin = -6
ymax = 6
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 -2 0'
top_right = '10 2 0'
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.0001'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[Problem]
coord_type = RZ
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_r disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_r]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = T
variable = disp_r
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr_aux]
type = RankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[pinned_top_bottom_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_r]
type = Pressure
boundary = injection_area
variable = disp_r
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/05_tabulated.i)
# Darcy flow with heat advection and conduction, using Water97 properties
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E6
[]
[temperature]
initial_condition = 313
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = tabulated_water
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 333
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated.csv
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = ${fparse inject_time + store_time + produce_time + rest_time}
end_simulation = ${fparse cycle_length * num_cycles}
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = ${fparse cycle_length * 2}
start_injection4 = ${fparse cycle_length * 3}
start_injection5 = ${fparse cycle_length * 4}
start_injection6 = ${fparse cycle_length * 5}
start_injection7 = ${fparse cycle_length * 6}
start_injection8 = ${fparse cycle_length * 7}
start_injection9 = ${fparse cycle_length * 8}
start_injection10 = ${fparse cycle_length * 9}
end_injection1 = ${fparse start_injection1 + inject_time}
end_injection2 = ${fparse start_injection2 + inject_time}
end_injection3 = ${fparse start_injection3 + inject_time}
end_injection4 = ${fparse start_injection4 + inject_time}
end_injection5 = ${fparse start_injection5 + inject_time}
end_injection6 = ${fparse start_injection6 + inject_time}
end_injection7 = ${fparse start_injection7 + inject_time}
end_injection8 = ${fparse start_injection8 + inject_time}
end_injection9 = ${fparse start_injection9 + inject_time}
end_injection10 = ${fparse start_injection10 + inject_time}
start_production1 = ${fparse end_injection1 + store_time}
start_production2 = ${fparse end_injection2 + store_time}
start_production3 = ${fparse end_injection3 + store_time}
start_production4 = ${fparse end_injection4 + store_time}
start_production5 = ${fparse end_injection5 + store_time}
start_production6 = ${fparse end_injection6 + store_time}
start_production7 = ${fparse end_injection7 + store_time}
start_production8 = ${fparse end_injection8 + store_time}
start_production9 = ${fparse end_injection9 + store_time}
start_production10 = ${fparse end_injection10 + store_time}
end_production1 = ${fparse start_production1 + produce_time}
end_production2 = ${fparse start_production2 + produce_time}
end_production3 = ${fparse start_production3 + produce_time}
end_production4 = ${fparse start_production4 + produce_time}
end_production5 = ${fparse start_production5 + produce_time}
end_production6 = ${fparse start_production6 + produce_time}
end_production7 = ${fparse start_production7 + produce_time}
end_production8 = ${fparse start_production8 + produce_time}
end_production9 = ${fparse start_production9 + produce_time}
end_production10 = ${fparse start_production10 + produce_time}
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = ${fparse 0.5 * aq_thickness}
screen_bottom = ${fparse -0.5 * aq_thickness}
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = ${fparse 1.0 / bias_y_aq_top}
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = ${fparse 1.0 / bias_y_cap_top}
depth_centre = ${fparse depth + aq_thickness/2}
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = ${fparse aq_thickness * 0.5}
half_height = ${fparse half_aq_thickness + cap_thickness}
approx_screen_length = ${fparse screen_top - screen_bottom}
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = ${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}
# radius of fine mesh
fine_r = ${fparse th_r * 2}
bias_r_fine = 1
num_r_fine = ${fparse int(fine_r/1)}
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = ${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}
# Thermal radius (correct version using bulk cp):
R_th = ${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}
aq_lambda_eff_hor = ${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}
aq_lambda_eff_ver = ${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}
aq_hor_dry_thermal_cond = ${fparse aq_lambda_eff_hor * 60 * 60 * 24} # J/day/m/K
aq_ver_dry_thermal_cond = ${fparse aq_lambda_eff_ver * 60 * 60 * 24} # J/day/m/K
aq_hor_wet_thermal_cond = ${fparse aq_lambda_eff_hor * 60 * 60 * 24} # J/day/m/K
aq_ver_wet_thermal_cond = ${fparse aq_lambda_eff_ver * 60 * 60 * 24} # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = ${fparse cap_hor_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_ver_dry_thermal_cond = ${fparse cap_ver_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_hor_wet_thermal_cond = ${fparse cap_hor_thermal_cond * 60 * 60 * 24} # J/day/m/K
cap_ver_wet_thermal_cond = ${fparse cap_ver_thermal_cond * 60 * 60 * 24} # J/day/m/K
######################################
[Mesh]
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
value = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
value = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
value = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
value = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
vars = true_screen_area
vals = true_screen_area
value = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
vars = true_screen_area
vals = true_screen_area
value = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
vars = 'dt heat_out'
vals = 'dt heat_out_fromBC'
value = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
vars = 'dt produced_T'
vals = 'dt produced_T'
value = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_modified.csv
[]
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/tutorial/03.i)
# Darcy flow with heat advection and conduction
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[temperature]
initial_condition = 293
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
thermal_expansion = 0.0002
cp = 4194
cv = 4186
porepressure_coefficient = 0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_symmetry/cavity_with_pillars_symmetry_bc.i)
#
# inner_left: 8
# inner_top: 11
# inner_bottom: 10
# inner_front: 9
# back_2: 7
# obstruction: 6
#
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 3
dx = '0.4 0.5 0.5 0.5'
dy = '0.5 0.75 0.5'
dz = '1.5 0.5'
subdomain_id = '
3 1 1 1
3 1 2 1
3 1 1 1
3 1 1 1
3 1 1 1
3 1 1 1
'
[]
[add_obstruction]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = obstruction
input = cartesian
[]
[add_new_back]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 -1'
new_sideset_name = back_2
input = add_obstruction
[]
[add_inner_left]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
new_boundary = inner_left
input = add_new_back
[]
[add_inner_front]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z - 2) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 1'
new_sideset_name = inner_front
input = add_inner_left
[]
[add_inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
included_subdomain_ids = '1'
normal = '0 -1 0'
new_sideset_name = inner_bottom
input = add_inner_front
[]
[add_inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 1.75) < 1e-10'
included_subdomain_ids = '1'
normal = '0 1 0'
new_sideset_name = inner_top
input = add_inner_bottom
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[temperature]
block = '2 3'
initial_condition = 300
[]
[]
[Kernels]
[conduction]
type = HeatConduction
variable = temperature
block = '2 3'
diffusion_coefficient = 1
[]
[source]
type = BodyForce
variable = temperature
value = 1000
block = '2'
[]
[]
[BCs]
[convective]
type = CoupledConvectiveHeatFluxBC
variable = temperature
T_infinity = 300
htc = 50
boundary = 'left'
[]
[]
[GrayDiffuseRadiation]
[./cavity]
boundary = '6 7 8 9 10 11'
emissivity = '1 1 1 1 1 1'
n_patches = '1 1 1 1 1 1'
adiabatic_boundary = '7 9 10 11'
symmetry_boundary = '2'
partitioners = 'metis metis metis metis metis metis'
temperature = temperature
ray_tracing_face_order = SECOND
normalize_view_factor = false
[../]
[]
[Postprocessors]
[Tpv]
type = PointValue
variable = temperature
point = '0.3 0.5 0.5'
[]
[volume]
type = VolumePostprocessor
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/view_factors_symmetry/cavity_with_pillars.i)
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 3
dx = '0.5 0.5 0.5 0.5 0.5 0.5'
dy = '0.5 0.75 0.5'
dz = '1.5 0.5'
subdomain_id = '
1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
'
[]
[add_obstruction]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = obstruction
input = cartesian
[]
[add_new_back]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 -1'
new_sideset_name = back_2
input = add_obstruction
[]
[]
[UserObjects]
[view_factor_study]
type = ViewFactorRayStudy
execute_on = initial
boundary = 'left right top bottom front back_2 obstruction'
face_order = FOURTH
[]
[view_factor]
type = RayTracingViewFactor
boundary = 'left right top bottom front back_2 obstruction'
execute_on = INITIAL
normalize_view_factor = false
ray_study_name = view_factor_study
[]
[]
[RayBCs/viewfactor]
type = ViewFactorRayBC
boundary = 'left right top bottom front back_2 obstruction'
[]
[Postprocessors]
[left_right]
type = ViewFactorPP
from_boundary = left
to_boundary = right
view_factor_object_name = view_factor
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/porous_flow/examples/groundwater/ex02_steady_state.i)
# Steady-state groundwater model. See groundwater_models.md for a detailed description
[Mesh]
[basic_mesh]
# mesh create by external program: lies within -500<=x<=500 and -200<=y<=200, with varying z
type = FileMeshGenerator
file = ex02_mesh.e
[]
[name_blocks]
type = RenameBlockGenerator
input = basic_mesh
old_block = '2 3 4'
new_block = 'bot_aquifer aquitard top_aquifer'
[]
[zmax]
type = SideSetsFromNormalsGenerator
input = name_blocks
new_boundary = zmax
normals = '0 0 1'
[]
[xmin_bot_aquifer]
type = ParsedGenerateSideset
input = zmax
included_subdomain_ids = 2
normal = '-1 0 0'
combinatorial_geometry = 'x <= -500.0'
new_sideset_name = xmin_bot_aquifer
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = initial_pp
[]
[]
[BCs]
[rainfall_recharge]
type = PorousFlowSink
boundary = zmax
variable = pp
flux_function = -1E-6 # recharge of 0.1mm/day = 1E-4m3/m2/day = 0.1kg/m2/day ~ 1E-6kg/m2/s
[]
[evapotranspiration]
type = PorousFlowHalfCubicSink
boundary = zmax
variable = pp
center = 0.0
cutoff = -5E4 # roots of depth 5m. 5m of water = 5E4 Pa
use_mobility = true
fluid_phase = 0
# Assume pan evaporation of 4mm/day = 4E-3m3/m2/day = 4kg/m2/day ~ 4E-5kg/m2/s
# Assume that if permeability was 1E-10m^2 and water table at topography then ET acts as pan strength
# Because use_mobility = true, then 4E-5 = maximum_flux = max * perm * density / visc = max * 1E-4, so max = 40
max = 40
[]
[]
[DiracKernels]
[river]
type = PorousFlowPolyLineSink
SumQuantityUO = baseflow
point_file = ex02_river.bh
# Assume a perennial river.
# Assume the river has an incision depth of 1m and a stage height of 1.5m, and these are constant in time and uniform over the whole model. Hence, if groundwater head is 0.5m (5000Pa) there will be no baseflow and leakage.
p_or_t_vals = '-999995000 5000 1000005000'
# Assume the riverbed conductance, k_zz*density*river_segment_length*river_width/riverbed_thickness/viscosity = 1E-6*river_segment_length kg/Pa/s
fluxes = '-1E3 0 1E3'
variable = pp
[]
[]
[Functions]
[initial_pp]
type = SolutionFunction
scale_factor = 1E4
from_variable = cosflow_depth
solution = initial_mesh
[]
[baseflow_rate]
type = ParsedFunction
vars = 'baseflow_kg dt'
vals = 'baseflow_kg dt'
value = 'baseflow_kg / dt * 24.0 * 3600.0 / 400.0'
[]
[]
[PorousFlowUnsaturated]
fp = simple_fluid
porepressure = pp
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity_everywhere]
type = PorousFlowPorosityConst
porosity = 0.05
[]
[permeability_aquifers]
type = PorousFlowPermeabilityConst
block = 'top_aquifer bot_aquifer'
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-13'
[]
[permeability_aquitard]
type = PorousFlowPermeabilityConst
block = aquitard
permeability = '1E-16 0 0 0 1E-16 0 0 0 1E-17'
[]
[]
[UserObjects]
[initial_mesh]
type = SolutionUserObject
execute_on = INITIAL
mesh = ex02_mesh.e
timestep = LATEST
system_variables = cosflow_depth
[]
[baseflow]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[baseflow_kg]
type = PorousFlowPlotQuantity
uo = baseflow
outputs = 'none'
[]
[dt]
type = TimestepSize
outputs = 'none'
[]
[baseflow_l_per_m_per_day]
type = FunctionValuePostprocessor
function = baseflow_rate
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
# following 2 lines are not mandatory, but illustrate a popular preconditioner choice in groundwater models
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = ' asm ilu 2 '
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E6
[TimeStepper]
type = FunctionDT
function = 'max(1E6, t)'
[]
end_time = 1E12
nl_abs_tol = 1E-13
[]
[Outputs]
print_linear_residuals = false
[ex]
type = Exodus
execute_on = final
[]
[csv]
type = CSV
[]
[]
(modules/porous_flow/examples/tutorial/08.i)
# Unsaturated Darcy-Richards flow
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[]
[PorousFlowUnsaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
relative_permeability_exponent = 3
relative_permeability_type = Corey
residual_saturation = 0.1
van_genuchten_alpha = 1E-6
van_genuchten_m = 0.6
[]
[BCs]
[production]
type = PorousFlowSink
variable = porepressure
fluid_phase = 0
flux_function = 1E-2
use_relperm = true
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/00.i)
# Creates the mesh for the remainder of the tutorial
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[Variables]
[dummy_var]
[]
[]
[Kernels]
[dummy_diffusion]
type = Diffusion
variable = dummy_var
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = 3D_mesh
exodus = true
[]
(modules/heat_conduction/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[]
[remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[]
[readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[temp]
initial_condition = 800.0
[]
[]
[Kernels]
[heat]
type = ADHeatConduction
variable = temp
[]
[]
[BCs]
[lefttemp]
type = ADDirichletBC
boundary = left
variable = temp
value = 800
[]
[radiative_bc]
type = ADInfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[]
[]
[Materials]
[density]
type = ADGenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[right]
type = ADSideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[]
[min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[]
[max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[]
[]
[Outputs]
csv = true
[]
(test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '5 5'
iy = '5'
subdomain_id = '1 1'
[]
[internal_sideset]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.01 & x>0.99'
included_subdomain_ids = 1
new_sideset_name = 'center'
input = 'mesh'
[]
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
inactive = 'center'
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = FVNeumannBC
variable = u
boundary = right
value = 4
[]
# Internal center sideset, should cause erroring out
[center]
type = FVNeumannBC
variable = u
boundary = center
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/parsed_generate_sideset/parsed_generate_sideset_neighbor_sub_id.i)
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '2 2'
subdomain_id = '0 1 0 0'
[../]
[sideset]
type = ParsedGenerateSideset
input = cmg
combinatorial_geometry = 'abs(x - 1) < 1e-6'
included_neighbor_ids = '1'
new_sideset_name = interior
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '6'
iy = '9'
subdomain_id = '0 1 2'
[../]
[./inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 0
paired_block = 1
new_boundary = 'inner_left'
[../]
[./inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 1
new_boundary = 'inner_right'
[../]
[./inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 6) < 1e-10'
normal = '0 1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_top'
input = 'inner_right'
[../]
[./inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
normal = '0 -1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_bottom'
input = 'inner_top'
[../]
[./rename]
type = RenameBlockGenerator
old_block = '2'
new_block = '0'
input = inner_bottom
[../]
[]
[Variables]
[./temperature]
block = 0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[../]
[]
[GrayDiffuseRadiation]
[./cavity]
boundary = '4 5 6 7'
emissivity = '0.9 0.8 0.4 1'
n_patches = '2 2 2 3'
partitioners = 'centroid centroid centroid centroid'
centroid_partitioner_directions = 'x y y x'
temperature = temperature
adiabatic_boundary = '7'
fixed_temperature_boundary = '6'
fixed_boundary_temperatures = '800'
view_factor_calculator = analytical
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 1000
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[../]
[]
[Postprocessors]
[./average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
mu = 1
rho = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5 1'
dy = '0.5 0.5'
ix = '8 5 8'
iy = '8 8'
subdomain_id = '0 1 2
1 2 1'
[]
[top_outlet]
type = ParsedGenerateSideset
input = cmg
combinatorial_geometry = 'x>2.499 & y>0.4999'
new_sideset_name = top_right
[]
[bottom_outlet]
type = ParsedGenerateSideset
input = top_outlet
combinatorial_geometry = 'x>2.499 & y<0.50001'
new_sideset_name = bottom_right
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[diodes_against_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '-1 0 0'
block = 1
momentum_component = 'x'
[]
[diode_free_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '1 0 0'
block = 2
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = 1
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[outlet]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[mdot_top]
type = VolumetricFlowRate
boundary = 'top_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[mdot_bottom]
type = VolumetricFlowRate
boundary = 'bottom_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/06_KT.i)
# Darcy flow with a tracer
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[ICs]
[tracer_concentration]
type = FunctionIC
function = '0.5*if(x*x+y*y<1.01,1,0)'
variable = tracer_concentration
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
stabilization = KT
flux_limiter_type = superbee
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[injected_tracer]
type = DirichletBC
variable = tracer_concentration
value = 0.5
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[../]
[./remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[../]
[./readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[../]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./temp]
initial_condition = 800.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 800
[../]
[./radiative_bc]
type = InfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[./right]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[../]
[./min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[../]
[./max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/examples/tutorial/05.i)
# Darcy flow with heat advection and conduction, using Water97 properties
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E6
[]
[temperature]
initial_condition = 313
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 333
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
# The meshes conform: all fracture nodes are also matrix nodes (the fracture elements are sides of matrix elements).
# The overall mesh has two blocks, named "matrix" and "fracture".
#
# Two variables are defined:
# - frac_T, which is the temperature inside the fracture;
# - matrix_T, which is the temperature in the matrix.
# frac_T is governed by a diffusion equation along the 1D fracture.
# matrix_T is governed by a diffusion equation in the 2D matrix, with small diffusion coefficient.
# Heat is exchanged between the two systems via a heat-transfer coefficient, defined on the fracture subdomain, using two PorousFlowHeatMassTransfer Kernels
#
# If the mesh is too coarse, overshoots and undershoots in matrix_T can be observed.
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = 0
xmax = 10.0
ny = 20 # anything less than this produces over/under-shoots
ymin = -2
ymax = 2
[]
[matrix_subdomain]
type = RenameBlockGenerator
input = generate
old_block = 0
new_block = matrix
[]
[fracture_sideset]
type = ParsedGenerateSideset
input = matrix_subdomain
combinatorial_geometry = 'y>-1E-6 & y<1E-6'
normal = '0 1 0'
new_sideset_name = fracture_sideset
[]
[fracture_subdomain]
type = LowerDBlockFromSidesetGenerator
input = fracture_sideset
new_block_id = 1
new_block_name = fracture
sidesets = fracture_sideset
[]
[]
[Variables]
[frac_T]
block = fracture
[]
[matrix_T]
# Needs to be defined on both blocks, so PorousFlowHeatMassTransfer works appropriately
# Kernels for diffusion are on block=matrix only
[]
[]
[BCs]
[frac_T]
type = DirichletBC
variable = frac_T
boundary = left
value = 1
[]
[]
[Kernels]
[dot_frac_T]
type = CoefTimeDerivative
Coefficient = 1E-2
variable = frac_T
block = fracture
[]
[fracture_diffusion]
type = AnisotropicDiffusion
variable = frac_T
tensor_coeff = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
block = fracture
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
block = fracture
variable = frac_T
v = matrix_T
transfer_coefficient = 0.02
[]
[dot_matrix_T]
type = TimeDerivative
variable = matrix_T
block = matrix
[]
[matrix_diffusion]
type = AnisotropicDiffusion
variable = matrix_T
tensor_coeff = '1E-3 0 0 0 1E-3 0 0 0 1E-3'
block = matrix
[]
[fromFracture]
type = PorousFlowHeatMassTransfer
block = fracture
variable = matrix_T
v = frac_T
transfer_coefficient = 0.02
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[frac_T]
type = NodalValueSampler
block = fracture
outputs = frac_T
sort_by = x
variable = frac_T
[]
[]
[Outputs]
print_linear_residuals = false
exodus = false
[frac_T]
type = CSV
execute_on = FINAL
[]
[]
(test/tests/meshgenerators/show_info/show_info.i)
[Mesh]
[gmg_quad]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
show_info = true
[]
[gmg_quad_block1]
type = ParsedSubdomainMeshGenerator
input = gmg_quad
combinatorial_geometry = 'x > 0.5'
block_name = 'dummy'
block_id = 1
show_info = true
[]
[gmg_tri]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
elem_type = TRI3
show_info = true
[]
[gmg_tri_block2]
type = ParsedSubdomainMeshGenerator
input = gmg_tri
combinatorial_geometry = 'y > 0.5'
block_id = 2
block_name = 'dummy2'
show_info = true
[]
[gmg_tri_block3]
type = ParsedSubdomainMeshGenerator
input = gmg_tri_block2
combinatorial_geometry = 'y < 0.5'
block_id = 3
block_name = 'dummy3'
show_info = true
[]
[pmg]
type = PatternedMeshGenerator
inputs = 'gmg_quad_block1 gmg_tri_block3'
pattern = '0 1 0;
1 1 0'
show_info = true
[]
[interior]
type = ParsedGenerateSideset
input = pmg
combinatorial_geometry = 'x > 0.99 & x < 1.01'
normal = '1 0 0'
new_sideset_name = interior
show_info = true
[]
[]
(modules/porous_flow/examples/tutorial/07.i)
# Darcy flow with a tracer that precipitates causing mineralisation and porosity changes and permeability changes
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
number_aqueous_kinetic = 1
temperature = 283.0
stabilization = none # Note to reader: try this with other stabilization and compare the results
[]
[AuxVariables]
[eqm_k]
initial_condition = 0.1
[]
[mineral_conc]
family = MONOMIAL
order = CONSTANT
[]
[initial_and_reference_conc]
initial_condition = 0
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[permeability]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[mineral_conc]
type = PorousFlowPropertyAux
property = mineral_concentration
mineral_species = 0
variable = mineral_conc
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[permeability]
type = PorousFlowPropertyAux
property = permeability
column = 0
row = 0
variable = permeability
[]
[]
[Kernels]
[precipitation_dissolution]
type = PorousFlowPreDis
mineral_density = 1000.0
stoichiometry = 1
variable = tracer_concentration
[]
[]
[BCs]
[constant_injection_of_tracer]
type = PorousFlowSink
variable = tracer_concentration
flux_function = -5E-3
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity_mat]
type = PorousFlowPorosity
porosity_zero = 0.1
chemical = true
initial_mineral_concentrations = initial_and_reference_conc
reference_chemistry = initial_and_reference_conc
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
k0 = 1E-14
m = 2
n = 3
phi0 = 0.1
poroperm_function = kozeny_carman_phi0
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
m = 2
n = 3
phi0 = 0.1
poroperm_function = kozeny_carman_phi0
[]
[precipitation_dissolution_mat]
type = PorousFlowAqueousPreDisChemistry
reference_temperature = 283.0
activation_energy = 1 # irrelevant because T=Tref
equilibrium_constants = eqm_k # equilibrium tracer concentration
kinetic_rate_constant = 1E-8
molar_volume = 1
num_reactions = 1
primary_activity_coefficients = 1
primary_concentrations = tracer_concentration
reactions = 1
specific_reactive_surface_area = 1
[]
[mineral_concentration]
type = PorousFlowAqueousPreDisMineral
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/06.i)
# Darcy flow with a tracer
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[ICs]
[tracer_concentration]
type = FunctionIC
function = '0.5*if(x*x+y*y<1.01,1,0)'
variable = tracer_concentration
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
stabilization = none # Note to reader: 06_KT.i uses KT stabilization - compare the results
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[injected_tracer]
type = DirichletBC
variable = tracer_concentration
value = 0.5
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/view_factors_symmetry/cavity_with_pillars_symmetry_bc.i)
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 3
dx = '0.5 0.5 0.5'
dy = '0.5 0.75 0.5'
dz = '1.5 0.5'
subdomain_id = '1 1 1
1 2 1
1 1 1
1 1 1
1 1 1
1 1 1'
[]
[add_obstruction]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = obstruction
input = cartesian
[]
[add_new_back]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(z) < 1e-10'
included_subdomain_ids = '1'
normal = '0 0 -1'
new_sideset_name = back_2
input = add_obstruction
[]
[]
[UserObjects]
[view_factor_study]
type = ViewFactorRayStudy
execute_on = initial
boundary = 'left top bottom front back_2 obstruction'
face_order = FOURTH
[]
[view_factor]
type = RayTracingViewFactor
boundary = 'left top bottom front back_2 obstruction'
execute_on = INITIAL
normalize_view_factor = false
ray_study_name = view_factor_study
[]
[]
[RayBCs]
[vf_bc]
type = ViewFactorRayBC
boundary = 'left top bottom front back_2 obstruction'
[]
[symmetry]
type = ReflectRayBC
boundary = 'right'
[]
[]
[Postprocessors]
[left_left]
type = ViewFactorPP
from_boundary = left
to_boundary = left
view_factor_object_name = view_factor
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(test/tests/vectorpostprocessors/side_value_sampler/side_value_sampler.i)
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.5 0.5'
dy = '1'
ix = '5 5'
iy = '10'
subdomain_id = '1 1'
[]
# Limited to 1 side to avoid inconsistencies in parallel
[internal_sideset]
type = ParsedGenerateSideset
combinatorial_geometry = 'y<0.51 & y>0.49 & x<0.11'
new_sideset_name = 'center'
input = 'mesh'
[]
# this keeps numbering continuous so tests dont fail on different ids in CSV
allow_renumbering = false
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[VectorPostprocessors]
inactive = 'internal_sample'
[side_sample]
type = SideValueSampler
variable = 'u v'
boundary = top
sort_by = x
[]
[internal_sample]
type = SideValueSampler
variable = 'u v'
boundary = center
sort_by = 'id'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[vpp_csv]
type = CSV
[]
[]
(modules/porous_flow/examples/tutorial/10.i)
# Unsaturated Darcy-Richards flow without using an Action
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pp
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[Kernels]
[time_derivative]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[AuxVariables]
[sat]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[saturation]
type = PorousFlowPropertyAux
variable = sat
property = saturation
[]
[]
[BCs]
[production]
type = PorousFlowSink
variable = pp
fluid_phase = 0
flux_function = 1E-2
use_relperm = true
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[saturation_calculator]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[temperature]
type = PorousFlowTemperature
temperature = 293
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 3
s_res = 0.1
sum_s_res = 0.1
phase = 0
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/01.i)
# Darcy flow
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-13
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary_ray_tracing.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '6'
iy = '9'
subdomain_id = '0 1 2'
[]
[inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 0
paired_block = 1
new_boundary = 'inner_left'
[]
[inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 1
new_boundary = 'inner_right'
[]
[inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 6) < 1e-10'
normal = '0 1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_top'
input = 'inner_right'
[]
[inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
normal = '0 -1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_bottom'
input = 'inner_top'
[]
[rename]
type = RenameBlockGenerator
old_block = '2'
new_block = '0'
input = inner_bottom
[]
[]
[Variables]
[temperature]
block = 0
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[]
[]
[GrayDiffuseRadiation]
[cavity]
boundary = '4 5 6 7'
emissivity = '0.9 0.8 0.4 1'
n_patches = '2 2 2 3'
partitioners = 'centroid centroid centroid centroid'
centroid_partitioner_directions = 'x y y x'
temperature = temperature
adiabatic_boundary = '7'
fixed_temperature_boundary = '6'
fixed_boundary_temperatures = '800'
view_factor_calculator = ray_tracing
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left
value = 1000
[]
[right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[]
[]
[Postprocessors]
[average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/08_KT.i)
# Unsaturated Darcy-Richards flow
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[]
[PorousFlowUnsaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
relative_permeability_exponent = 3
relative_permeability_type = Corey
residual_saturation = 0.1
van_genuchten_alpha = 1E-6
van_genuchten_m = 0.6
stabilization = KT
flux_limiter_type = None
[]
[BCs]
[production]
type = PorousFlowSink
variable = porepressure
fluid_phase = 0
flux_function = 1E-2
use_relperm = true
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E5
dt = 1E5
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/parsed_sideset/parsed_sideset.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmax = 3
ymax = 3
zmax = 3
[]
[subdomains]
type = ParsedSubdomainMeshGenerator
input = gen
combinatorial_geometry = 'x < 1 & y > 1 & y < 2'
block_id = 1
[]
[sideset]
type = ParsedGenerateSideset
input = subdomains
combinatorial_geometry = 'z < 1'
included_subdomain_ids = '1'
normal = '1 0 0'
new_sideset_name = interior
[]
[]
# This input file is intended to be run with the "--mesh-only" option so
# no other sections are required
(test/tests/meshgenerators/fancy_extruder_generator/fancy_extruder_then_parsed_gen_sideset.i)
[Mesh]
[file]
type = CartesianMeshGenerator
dim = 2
dx = '1 1 1 1'
dy = '1 1'
subdomain_id = '1 2 3 4
1 2 3 4'
[]
[extrude]
type = FancyExtruderGenerator
direction = '0 0 1'
heights = '1 1 1'
num_layers = '1 1 1'
input = file
[]
[add_side]
type = ParsedGenerateSideset
combinatorial_geometry = '2 > 1'
new_sideset_name = new_s
included_subdomain_ids = 1
included_neighbor_ids = 2
input = extrude
[]
[]