- inputThe mesh we want to modify
C++ Type:MeshGeneratorName
Controllable:No
Description:The mesh we want to modify
BlockDeletionGenerator
Mesh generator which removes elements from the specified subdomains
Overview
The BlockDeletionGenerator
is used to remove elements from a mesh matching a user provided subdomain ID. While most mesh generation operations should be based on geometric operations, it is sometimes easier to remove discretized elements, by blocks, for certain problems.
For example, if we have a mesh that models both a pipe and its interior, but we only want to model the fluid flow, we may delete the subdomain associated with the pipe.
Once a block is deleted from the mesh, it should not be referred to in the input. Variables and materials can no longer be block restricted to a deleted block, for example.
Example input syntax
In this example input file, we remove blocks 1 and 3 with a single BlockDeletionGenerator
. This leaves only block 2 in the simulation.
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[./ed0]
type = BlockDeletionGenerator
input = cmg
block = '1 3'
[../]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)Input Parameters
- blockThe list of blocks to be deleted
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks to be deleted
- new_boundaryoptional boundary name to assign to the cut surface
C++ Type:BoundaryName
Controllable:No
Description:optional boundary name to assign to the cut surface
- show_infoFalseWhether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder.i)
- (modules/combined/examples/stochastic/graphite_ring_thermomechanics.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_balance/large_gap_heat_transfer_test_cylinder.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest8.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest10.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest12.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest1.i)
- (modules/reactor/test/tests/meshgenerators/reporting_id/cartesian_id/core_zigzag_reporting_id.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_balance/large_gap_heat_transfer_test_rz_cylinder.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest9.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-action.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar_error.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i)
- (modules/heat_conduction/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest6.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
- (modules/reactor/test/tests/meshgenerators/reporting_id/hexagonal_id/core_reporting_id_exclude.i)
- (modules/heat_conduction/test/tests/postprocessors/ad_convective_ht_side_integral.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest7.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest2.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder_mortar.i)
- (modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_not_prepared.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest5.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest3.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest4.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/shock_tube_2D_cavity/hllc_sod_shocktube_2D.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
- (modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i)
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[./ed0]
type = BlockDeletionGenerator
input = cmg
block = '1 3'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
allow_renumbering = false
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[ThermalContact]
[RPV_gap]
type = GapHeatTransfer
gap_geometry_type = 'CYLINDER'
emissivity_primary = 0.8
emissivity_secondary = 0.8
variable = Tsolid
primary = 'core_outer'
secondary = 'rpv_inner'
gap_conductivity = 0.1
quadrature = true
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 0 5'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = Tsolid
[]
[]
[Executioner]
type = Steady
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
[Quadrature]
side_order = seventh
[]
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/examples/stochastic/graphite_ring_thermomechanics.i)
# Generate 1/4 of a 2-ring disk and extrude it by half to obtain
# 1/8 of a 3D tube. Mirror boundary conditions will exist on the
# cut portions.
[Mesh]
[disk]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '1.0 1.1 1.2'
rings = '1 1 1'
has_outer_square = false
preserve_volumes = false
portion = top_right
[]
[ring]
type = BlockDeletionGenerator
input = disk
block = 1
new_boundary = 'inner'
[]
[cylinder]
type = MeshExtruderGenerator
input = ring
extrusion_vector = '0 0 1.5'
num_layers = 15
bottom_sideset = 'back'
top_sideset = 'front'
[]
[]
[Variables]
[T]
initial_condition = 300
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[hc]
type = HeatConduction
variable = T
[]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[]
[BCs]
[temp_inner]
type = FunctionNeumannBC
variable = T
boundary = 'inner'
function = surface_source
[]
[temp_front]
type = ConvectiveHeatFluxBC
variable = T
boundary = 'front'
T_infinity = 300
heat_transfer_coefficient = 10
[]
[temp_outer]
type = ConvectiveHeatFluxBC
variable = T
boundary = 'outer'
T_infinity = 300
heat_transfer_coefficient = 10
[]
# mirror boundary conditions.
[disp_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[disp_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[disp_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0.0
[]
[]
[Materials]
[cond_inner]
type = GenericConstantMaterial
block = 2
prop_names = thermal_conductivity
prop_values = 25
[]
[cond_outer]
type = GenericConstantMaterial
block = 3
prop_names = thermal_conductivity
prop_values = 100
[]
[elasticity_tensor_inner]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
block = 2
[]
[elasticity_tensor_outer]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.1e5
poissons_ratio = 0.2
block = 3
[]
[thermal_strain_inner]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 2e-6
temperature = T
stress_free_temperature = 300
eigenstrain_name = eigenstrain_inner
block = 2
[]
[thermal_strain_outer]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 300
eigenstrain_name = eigenstrain_outer
block = 3
[]
[strain_inner] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_inner'
block = 2
[]
[strain_outer] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_outer'
block = 3
[]
[stress] #We use linear elasticity
type = ComputeLinearElasticStress
[]
[]
[Functions]
[surface_source]
type = ParsedFunction
value = 'Q_t*pi/2.0/3.0 * cos(pi/3.0*z)'
vars = 'Q_t'
vals = heat_source
[]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 100
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[VectorPostprocessors]
[temp_center]
type = LineValueSampler
variable = T
start_point = '1 0 0'
end_point = '1.2 0 0'
num_points = 11
sort_by = 'x'
[]
[temp_end]
type = LineValueSampler
variable = T
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[dispx_center]
type = LineValueSampler
variable = disp_x
start_point = '1 0 0'
end_point = '1.2 0 0'
num_points = 11
sort_by = 'x'
[]
[dispx_end]
type = LineValueSampler
variable = disp_x
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[dispz_end]
type = LineValueSampler
variable = disp_z
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[]
[Postprocessors]
[heat_source]
type = FunctionValuePostprocessor
function = 1
scale_factor = 10000
execute_on = linear
[]
[temp_center_inner]
type = PointValue
variable = T
point = '1 0 0'
[]
[temp_center_outer]
type = PointValue
variable = T
point = '1.2 0 0'
[]
[temp_end_inner]
type = PointValue
variable = T
point = '1 0 1.5'
[]
[temp_end_outer]
type = PointValue
variable = T
point = '1.2 0 1.5'
[]
[dispx_center_inner]
type = PointValue
variable = disp_x
point = '1 0 0'
[]
[dispx_center_outer]
type = PointValue
variable = disp_x
point = '1.2 0 0'
[]
[dispx_end_inner]
type = PointValue
variable = disp_x
point = '1 0 1.5'
[]
[dispx_end_outer]
type = PointValue
variable = disp_x
point = '1.2 0 1.5'
[]
[dispz_inner]
type = PointValue
variable = disp_z
point = '1 0 1.5'
[]
[dispz_outer]
type = PointValue
variable = disp_z
point = '1.2 0 1.5'
[]
[]
[Outputs]
exodus = false
csv = false
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_balance/large_gap_heat_transfer_test_cylinder.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = ${fparse 2 + rpv_core_gap_size}
rpv_outer_radius = ${fparse 2.5 + rpv_core_gap_size}
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[ThermalContact]
[RPV_gap]
type = GapHeatTransfer
gap_geometry_type = 'CYLINDER'
emissivity_primary = 0.8
emissivity_secondary = 0.8
variable = Tsolid
primary = 'core_outer'
secondary = 'rpv_inner'
gap_conductivity = 0.1
quadrature = true
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 0 5'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[Executioner]
type = Steady
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
[Quadrature]
side_order = seventh
[]
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see Drucker-Prager parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# Weak-plane cohesion = 0.1 MPa
# Weak-plane friction angle = 20 deg
# Weak-plane dilation angle = 10 deg
# Weak-plane tensile strength = 0.1 MPa
# Weak-plane compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_wp_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
# Uses a multi-smoothed version of capped-Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
perfect_guess = false # this is so we can observe some Newton-Raphson iterations, for comparison with other models, and it is not optimal in any real-life simulations
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_smooth
perf_graph = true
exodus = false
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[./left]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '3 2 0'
top_right = '4 3 1'
[../]
[./interior_sideset]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = right
new_boundary = interior_ss
[../]
[./new_block_number]
type = SubdomainBoundingBoxGenerator
block_id = 3
bottom_left = '0 0 0'
top_right = '4 4 1'
input = 'interior_sideset'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 3
input = 'new_block_number'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest8.i)
# 2D, removal of a block containing a nodeset inside it
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '4 4 1'
[]
[interior_nodeset]
type = BoundingBoxNodeSetGenerator
input = SubdomainBoundingBox1
new_boundary = interior_ns
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = interior_nodeset
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest10.i)
# 2D, removal of a block containing a sideset inside it
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[left]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '3 2 0'
top_right = '4 3 1'
[]
[interior_sideset]
type = SideSetsBetweenSubdomainsGenerator
input = right
primary_block = 1
paired_block = 2
new_boundary = interior_ss
[]
[new_block_number]
type = SubdomainBoundingBoxGenerator
input = interior_sideset
block_id = 3
bottom_left = '0 0 0'
top_right = '4 4 1'
[]
[ed0]
type = BlockDeletionGenerator
input = new_block_number
block = 3
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder.i)
rpv_core_gap_size = 0.2
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_width = '${fparse rpv_outer_radius - rpv_inner_radius}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[gmg]
type = CartesianMeshGenerator
dim = 2
dx = '${core_outer_radius} ${rpv_core_gap_size} ${rpv_width}'
ix = '400 1 100'
dy = 1
iy = '5'
[]
[set_block_id1]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '${core_outer_radius} 1 0'
block_id = 1
location = INSIDE
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id1
primary_block = 1
paired_block = 0
new_boundary = 'core_outer'
[]
[set_block_id3]
type = SubdomainBoundingBoxGenerator
input = rename_core_bdy
bottom_left = '${rpv_inner_radius} 0 0'
top_right = '${rpv_outer_radius} 1 0'
block_id = 3
location = INSIDE
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id3
primary_block = 3
paired_block = 0
new_boundary = 'rpv_inner'
[]
# comment out for test without gap
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 0
[]
allow_renumbering = false
[]
[Problem]
coord_type = RZ
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'right' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[ThermalContact]
[RPV_gap]
type = GapHeatTransfer
gap_geometry_type = 'CYLINDER'
emissivity_primary = 0.8
emissivity_secondary = 0.8
variable = Tsolid
primary = 'core_outer'
secondary = 'rpv_inner'
gap_conductivity = 0.1
quadrature = true
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'right' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[flux_from_core] # converges to ptot as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = core_outer
diffusivity = thermal_conductivity
[]
[flux_into_rpv] # converges to rpv_convective_out as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = rpv_inner
diffusivity = thermal_conductivity
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = Tsolid
[]
[]
[Executioner]
type = Steady
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
[Quadrature]
# order = fifth
side_order = seventh
[]
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see weak-plane parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = mc
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# This is an elastic simulation, but the weak-plane and Drucker-Prager
# parameters and AuxVariables may be found below. They are irrelevant
# in this simulation. The weak-plane and Drucker-Prager cohesions,
# tensile strengths and compressive strengths have been set very high
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str
compressive_strength = wp_compressive_str
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'Linear'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = cosserat_elastic
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest12.i)
# 2D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[mark]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0.9 0.9 0'
top_right = '3.1 3.1 0'
[]
[delete]
type = BlockDeletionGenerator
input = mark
block = 1
new_boundary = cut_surface
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[outer]
type = DirichletBC
variable = u
boundary = 'top bottom left right'
value = 1
[]
[inner]
type = DirichletBC
variable = u
boundary = cut_surface
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[./ed0]
type = BlockDeletionGenerator
input = cmg
block = '1 3'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest1.i)
# 2D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/reactor/test/tests/meshgenerators/reporting_id/cartesian_id/core_zigzag_reporting_id.i)
[Mesh]
[pin1]
type = ConcentricCircleMeshGenerator
num_sectors = 2
radii = '0.4 0.5'
rings = '1 1 1'
has_outer_square = on
pitch = 1.26
preserve_volumes = yes
smoothing_max_it = 3
[]
[pin2]
type = ConcentricCircleMeshGenerator
num_sectors = 2
radii = '0.3 0.4'
rings = '1 1 1'
has_outer_square = on
pitch = 1.26
preserve_volumes = yes
smoothing_max_it = 3
[]
[pin_dummy]
type = RenameBlockGenerator
input = 'pin1'
old_block = '1 2 3'
new_block = '9999 9999 9999'
[]
[assembly1]
type = CartesianIDPatternedMeshGenerator
inputs = 'pin1 pin2'
pattern = ' 1 0 1 0;
0 1 0 1;
1 0 1 0;
0 1 0 1'
assign_type = 'cell'
id_name = 'pin_id'
[]
[assembly2]
type = CartesianIDPatternedMeshGenerator
inputs = 'pin1 pin2'
pattern = ' 0 1 1 0;
1 0 0 1;
1 0 0 1;
0 1 1 0'
assign_type = 'cell'
id_name = 'pin_id'
[]
[assembly_dummy]
type = CartesianIDPatternedMeshGenerator
inputs = 'pin_dummy'
pattern = ' 0 0 0 0;
0 0 0 0;
0 0 0 0;
0 0 0 0'
assign_type = 'cell'
id_name = 'pin_id'
[]
[core_base]
type = CartesianIDPatternedMeshGenerator
inputs = 'assembly1 assembly2 assembly_dummy'
pattern = '0 1;
2 0'
assign_type = 'cell'
id_name = 'assembly_id'
exclude_id = 'assembly_dummy'
[]
[core]
type = BlockDeletionGenerator
input = 'core_base'
block = 9999 # dummy
new_boundary = 'zagged'
[]
final_generator = core
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[AuxVariables]
[pin_id]
family = MONOMIAL
order = CONSTANT
[]
[assembly_id]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[set_pin_id]
type = ExtraElementIDAux
variable = pin_id
extra_id_name = pin_id
[]
[set_assembly_id]
type = ExtraElementIDAux
variable = assembly_id
extra_id_name = assembly_id
[]
[]
[Outputs]
exodus = true
execute_on = timestep_end
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = pyramid.e
[]
[./sbb2]
type = SubdomainBoundingBoxGenerator
input = fmg
block_id = 2
bottom_left = '-0.5 -0.5 -0.5'
top_right = '0.5 0.5 0.5'
[../]
[./swiss_cheese2]
type = BlockDeletionGenerator
block = 2
input = 'sbb2'
[../]
[./sbb3]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese2
block_id = 3
bottom_left = '-5 -5 -3'
top_right = '-2 -2 -1'
[../]
[./swiss_cheese3]
type = BlockDeletionGenerator
block = 3
input = 'sbb3'
[../]
[./sbb4]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese3
block_id = 4
bottom_left = '-1 2 -2'
top_right = '1 5 0'
[../]
[./swiss_cheese4]
type = BlockDeletionGenerator
block = 4
input = 'sbb4'
[../]
[./sbb5]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese4
block_id = 5
center = '2.4 -1.4 0.4'
height = 3
length = 8
length_direction = '-2 1 -1'
width = 3
width_direction = '1 2 0'
[../]
[./swiss_cheese5]
type = BlockDeletionGenerator
block = 5
input = 'sbb5'
[../]
[./sbb6]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese5
block_id = 6
center = '-1 0.4 2.2'
height = 1
length = 8
length_direction = '2 -1 -1'
width = 1
width_direction = '1 2 0'
[../]
[./swiss_cheese6]
type = BlockDeletionGenerator
block = 6
input = 'sbb6'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 100
dt = 100
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 4 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = 'SubdomainBoundingBox1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
# Uses an unsmoothed version of capped-Mohr-Coulomb (via ComputeMultiPlasticityStress with TensorMechanicsPlasticTensileMulti and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its]
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its]
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[../]
[./num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1
internal_constraint_tolerance = 1.0E-6
#shift = 1
use_custom_returnMap = false
use_custom_cto = false
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-6
plastic_models = 'tensile mc'
max_NR_iterations = 50
specialIC = rock
deactivation_scheme = safe_to_dumb
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_planar
perf_graph = true
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
# Uses a multi-smooted version of Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_smooth
perf_graph = true
exodus = false
csv = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_balance/large_gap_heat_transfer_test_rz_cylinder.i)
rpv_core_gap_size = 0.2
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_width = '${fparse rpv_outer_radius - rpv_inner_radius}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[gmg]
type = CartesianMeshGenerator
dim = 2
dx = '${core_outer_radius} ${rpv_core_gap_size} ${rpv_width}'
ix = '400 1 100'
dy = 1
iy = '5'
[]
[set_block_id1]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '${core_outer_radius} 1 0'
block_id = 1
location = INSIDE
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id1
primary_block = 1
paired_block = 0
new_boundary = 'core_outer'
[]
[set_block_id3]
type = SubdomainBoundingBoxGenerator
input = rename_core_bdy
bottom_left = '${rpv_inner_radius} 0 0'
top_right = '${rpv_outer_radius} 1 0'
block_id = 3
location = INSIDE
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id3
primary_block = 3
paired_block = 0
new_boundary = 'rpv_inner'
[]
# comment out for test without gap
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 0
[]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'right' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[ThermalContact]
[RPV_gap]
type = GapHeatTransfer
gap_geometry_type = 'CYLINDER'
emissivity_primary = 0.8
emissivity_secondary = 0.8
variable = Tsolid
primary = 'core_outer'
secondary = 'rpv_inner'
gap_conductivity = 0.1
quadrature = true
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'right' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[flux_from_core] # converges to ptot as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = core_outer
diffusivity = thermal_conductivity
[]
[flux_into_rpv] # converges to rpv_convective_out as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = rpv_inner
diffusivity = thermal_conductivity
[]
[]
[Executioner]
type = Steady
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
[Quadrature]
# order = fifth
side_order = seventh
[]
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
# Uses an Abbo et al smoothed version of Mohr-Coulomb (via TensorMechanicsPlasticMohrCoulomb and ComputeMultiPlasticityStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # num_iters is the average number of NR iterations encountered in the element in this timestep, so we must get max(max_nr_its) to obtain the max number of iterations
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.02E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_abbo
perf_graph = true
exodus = false
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./mark]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0.9 0.9 0'
top_right = '3.1 3.1 0'
[../]
[./delete]
type = BlockDeletionGenerator
block = 1
input = mark
new_boundary = cut_surface
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./outer]
type = DirichletBC
variable = u
boundary = 'top bottom left right'
value = 1
[../]
[./inner]
type = DirichletBC
variable = u
boundary = cut_surface
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest9.i)
# 2D, removal of a block which should also completely remove a sideset
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 4 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox1
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-action.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[]
# These sidesets need to be deleted because the contact action adds them automatically. For this
# particular mesh, the new IDs will be identical to the deleted ones and will conflict if we don't
# remove the original ones.
[delete_3]
type = BlockDeletionGenerator
input = original_file_mesh
block = 3
[]
[revised_file_mesh]
type = BlockDeletionGenerator
input = delete_3
block = 4
[]
[]
[Variables]
[disp_x]
block = '1 2'
# order = SECOND
[]
[disp_y]
block = '1 2'
# order = SECOND
[]
[]
[Contact]
[frictional]
primary = 20
secondary = 10
formulation = mortar
model = coulomb
friction_coefficient = 0.1
c_normal = 1.0e-2
c_tangential = 1.0e-1
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
hide = 'contact_pressure nodal_area_frictional penetration'
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = frictional_secondary_subdomain
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '4 4 1'
[../]
[./interior_nodeset]
type = GenerateBoundingBoxNodeSet
input = SubdomainBoundingBox1
new_boundary = interior_ns
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = interior_nodeset
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar_error.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = ${fparse 2 + rpv_core_gap_size}
rpv_outer_radius = ${fparse 2.5 + rpv_core_gap_size}
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
cylinder_axis_point_2 = '0 0 5'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = 'Tsolid'
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO '
'1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((min(t/end_t,1)*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*min(t/end_t,1)*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 10000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_wp
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/heat_conduction/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[]
[remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[]
[readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[temp]
initial_condition = 800.0
[]
[]
[Kernels]
[heat]
type = ADHeatConduction
variable = temp
[]
[]
[BCs]
[lefttemp]
type = ADDirichletBC
boundary = left
variable = temp
value = 800
[]
[radiative_bc]
type = ADInfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[]
[]
[Materials]
[density]
type = ADGenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[right]
type = ADSideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[]
[min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[]
[max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[]
[]
[Outputs]
csv = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest6.i)
# 3D, non-concave
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 2
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 2
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[SubdomainBoundingBox3]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox2
block_id = 1
bottom_left = '2 2 1'
top_right = '3 3 2'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox3
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/reactor/test/tests/meshgenerators/reporting_id/hexagonal_id/core_reporting_id_exclude.i)
[Mesh]
[assembly]
type = SimpleHexagonGenerator
hexagon_size = 5.0
hexagon_size_style = 'apothem'
block_id = '1'
[]
[dummy]
type = SimpleHexagonGenerator
hexagon_size = 5.0
hexagon_size_style = 'apothem'
block_id = '2'
[]
[core]
type = HexIDPatternedMeshGenerator
inputs = 'assembly dummy'
pattern_boundary = none
pattern = ' 1 0 1;
0 0 0 0;
1 0 0 0 1;
0 0 0 0;
1 0 1'
assign_type = 'cell'
id_name = 'assembly_id'
exclude_id = 'dummy'
[]
[del_dummy]
type = BlockDeletionGenerator
block = 2
input = core
new_boundary = core_out
[]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[AuxVariables]
[assembly_id]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[set_assembly_id]
type = ExtraElementIDAux
variable = assembly_id
extra_id_name = assembly_id
[]
[]
[Outputs]
exodus = true
execute_on = timestep_end
[]
(modules/heat_conduction/test/tests/postprocessors/ad_convective_ht_side_integral.i)
[Mesh]
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'thermal_conductivity'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./pronghorn_solid_material]
type = ADHeatConductionMaterial
temp = temperature
thermal_conductivity = 25
specific_heat = 1000
[../]
[./htc_material]
type = ADGenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = ADPiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ADConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ADConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ADConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest7.i)
# 2D, removal of a union of disjoint pieces
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox2
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = ${fparse 2 + rpv_core_gap_size}
rpv_outer_radius = ${fparse 2.5 + rpv_core_gap_size}
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 0 5'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = 'Tsolid'
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO '
'1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest2.i)
# 3D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder_mortar.i)
rpv_core_gap_size = 0.2
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_width = '${fparse rpv_outer_radius - rpv_inner_radius}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[gmg]
type = CartesianMeshGenerator
dim = 2
dx = '${core_outer_radius} ${rpv_core_gap_size} ${rpv_width}'
ix = '400 1 100'
dy = 1
iy = '5'
[]
[set_block_id1]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '${core_outer_radius} 1 0'
block_id = 1
location = INSIDE
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id1
primary_block = 1
paired_block = 0
new_boundary = 'core_outer'
[]
[set_block_id3]
type = SubdomainBoundingBoxGenerator
input = rename_core_bdy
bottom_left = '${rpv_inner_radius} 0 0'
top_right = '${rpv_outer_radius} 1 0'
block_id = 3
location = INSIDE
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id3
primary_block = 3
paired_block = 0
new_boundary = 'rpv_inner'
[]
# comment out for test without gap
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 0
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
coord_type = RZ
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'right' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'right' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
function = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[flux_from_core] # converges to ptot as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = core_outer
diffusivity = thermal_conductivity
[]
[flux_into_rpv] # converges to rpv_convective_out as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = rpv_inner
diffusivity = thermal_conductivity
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = Tsolid
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO '
'1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[../]
[./remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[../]
[./readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[../]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./temp]
initial_condition = 800.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 800
[../]
[./radiative_bc]
type = InfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[./right]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[../]
[./min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[../]
[./max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[../]
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_not_prepared.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[feg]
type = FancyExtruderGenerator
input = cmg
direction = '0 0 1'
heights = 1
num_layers = 1
[]
[bdg]
type = BlockDeletionGenerator
input = feg
block = '1 3'
new_boundary = 'new_external'
[]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest5.i)
# 2D, non-concave
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox2
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[../]
[rename]
type = RenameBlockGenerator
input = SubdomainBoundingBox
old_block = 1
new_block = 'my_name'
[]
[./ed0]
type = BlockDeletionGenerator
input = rename
block = 'my_name'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest3.i)
# 2D, interior
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 2
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 2
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./SubdomainBoundingBox3]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox2
block_id = 1
bottom_left = '2 2 1'
top_right = '3 3 2'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox3
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest4.i)
# 3D, interior
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
# Uses non-smoothed Mohr-Coulomb (via ComputeMultiPlasticityStress and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[]
[]
[Postprocessors]
[uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[]
[s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[]
[num_res]
type = NumResidualEvaluations
[]
[nr_its]
type = ElementAverageValue
variable = num_iters
[]
[max_nr_its]
type = ElementExtremeValue
variable = num_iters
[]
[runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[]
[zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[]
[]
[AuxVariables]
[mc_int]
order = CONSTANT
family = MONOMIAL
[]
[plastic_strain]
order = CONSTANT
family = MONOMIAL
[]
[num_iters]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[]
[plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[]
[num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[]
[]
[UserObjects]
[mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[]
[mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[]
[mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[]
[mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[]
[strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
dtmin = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
perf_graph = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/shock_tube_2D_cavity/hllc_sod_shocktube_2D.i)
rho_left = 1
E_left = 2.501505578
u_left = 1e-15
rho_right = 0.125
E_right = 1.999770935
u_right = 1e-15
x_sep = 35
[GlobalParams]
fp = fp
[]
[Mesh]
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '40 20'
ix = '200 100'
dy = '1 20 2 20 1'
iy = '4 100 10 100 4'
subdomain_id = '0 0
0 1
1 1
0 1
0 0'
[../]
[./wall]
type = SideSetsBetweenSubdomainsGenerator
input = cartesian
primary_block = 1
paired_block = 0
new_boundary = 'wall'
[../]
[./delete]
type = BlockDeletionGenerator
input = wall
block = 0
[../]
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[../]
[../]
[]
[Variables]
[./rho]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_v]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_E]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[AuxVariables]
[./Ma]
order = CONSTANT
family = MONOMIAL
[../]
[./p]
order = CONSTANT
family = MONOMIAL
[../]
[./v_norm]
order = CONSTANT
family = MONOMIAL
[../]
[./temperature]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./Ma_aux]
type = NSMachAux
variable = Ma
fluid_properties = fp
use_material_properties = true
[../]
[./p_aux]
type = ADMaterialRealAux
variable = p
property = pressure
[../]
[./v_norm_aux]
type = ADMaterialRealAux
variable = v_norm
property = speed
[../]
[./temperature_aux]
type = ADMaterialRealAux
variable = temperature
property = T_fluid
[../]
[]
[FVKernels]
[./mass_time]
type = FVTimeKernel
variable = rho
[../]
[./mass_advection]
type = CNSFVMassHLLC
variable = rho
[../]
[./momentum_x_time]
type = FVTimeKernel
variable = rho_u
[../]
[./momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[../]
[./momentum_y_time]
type = FVTimeKernel
variable = rho_v
[../]
[./momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[../]
[./fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[../]
[./fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[../]
[]
[FVBCs]
[./mom_x_pressure]
type = CNSFVMomImplicitPressureBC
variable = rho_u
momentum_component = x
boundary = 'left right wall'
[../]
[./mom_y_pressure]
type = CNSFVMomImplicitPressureBC
variable = rho_v
momentum_component = y
boundary = 'wall'
[../]
[]
[ICs]
[./rho_ic]
type = FunctionIC
variable = rho
function = 'if (x < ${x_sep}, ${rho_left}, ${rho_right})'
[../]
[./rho_u_ic]
type = FunctionIC
variable = rho_u
function = 'if (x < ${x_sep}, ${fparse rho_left * u_left}, ${fparse rho_right * u_right})'
[../]
[./rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (x < ${x_sep}, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[../]
[]
[Materials]
[./var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
fp = fp
[../]
[./sound_speed]
type = SoundspeedMat
fp = fp
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[]
[Postprocessors]
[./cfl_dt]
type = ADCFLTimeStepSize
c_names = 'sound_speed'
vel_names = 'speed'
[../]
[]
[Executioner]
type = Transient
end_time = 100
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl_dt
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[../]
[./ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i)
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = HeatConduction
variable = temperature
diffusion_coefficient = 'k_s'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./thermal]
type = GenericConstantMaterial
prop_names = 'k_s'
prop_values = '12'
[../]
[./htc_material]
type = GenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = PiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]