- fpfluid userobject
C++ Type:UserObjectName
Controllable:No
Description:fluid userobject
- pressurethe pressure
C++ Type:std::vector<VariableName>
Controllable:No
Description:the pressure
- temperaturethe temperature
C++ Type:std::vector<VariableName>
Controllable:No
Description:the temperature
RhoFromPTFunctorMaterial
Computes the density from coupled pressure and temperature variables
Overview
This object takes a fluid properties object and coupled pressure and temperature variables and provides a functor material property rho
that is evaluated with the local pressure and temperature as rho_from_p_T(_pressure(x), _temperature(x))
where x
represents a physical location, e.g. on an element or a face.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE, ELEMENT, SUBDOMAIN
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity-action.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot-action.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient-action.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[mixing_length]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
inactive = 'u_turb v_turb temp_turb'
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
[temp_turb]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
rho = rho
cp = cp
mixing_length = 'mixing_length'
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T_fluid
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[AuxKernels]
inactive = 'mixing_len'
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
delta = 0.5
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = ${l}
nx = 8
ny = 8
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rhie_chow_user_object = 'rc'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom top'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Modules]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = ${rho}
thermal_expansion = ${beta}
[]
[]
[]
[Materials]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_abs_tol = 1e-11
automatic_scaling = true
[]
[Postprocessors]
[rayleigh_1]
type = RayleighNumber
rho_min = rho_min
rho_max = rho_max
rho_ave = ${rho}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rayleigh_2]
type = RayleighNumber
T_cold = T_min
T_hot = T_max
rho_ave = ${rho}
beta = ${beta}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rho_min]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'min'
[]
[rho_max]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'max'
[]
[T_min]
type = ElementExtremeValue
variable = 'T'
value_type = 'min'
[]
[T_max]
type = ElementExtremeValue
variable = 'T'
value_type = 'max'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
rho='rho'
advected_interp_method='upwind'
velocity_interp_method='rc'
gamma=1.4
R=8.3145
molar_mass=29.0e-3
R_specific=${fparse R/molar_mass}
cp=${fparse gamma*R_specific/(gamma-1)}
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = sup_vel_x
pressure = pressure
porosity = porosity
[]
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = INSFVPressureVariable
[]
[sup_vel_x]
type = PINSFVSuperficialVelocityVariable
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[eps]
type = FunctionIC
variable = porosity
function = 'eps'
[]
[]
[FVKernels]
[mass_advection]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = sup_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = sup_vel_x
pressure = pressure
porosity = porosity
momentum_component = 'x'
force_boundary_execution = false
[]
[momentum_fn]
type = INSFVBodyForce
variable = sup_vel_x
functor = 'forcing_rho_ud'
momentum_component = 'x'
[]
[]
[FVBCs]
[mass]
variable = pressure
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = sup_vel_x
pressure = pressure
eqn = 'mass'
porosity = porosity
[]
[momentum]
variable = sup_vel_x
type = PINSFVFunctorBC
boundary = 'left right'
superficial_vel_x = sup_vel_x
pressure = pressure
eqn = 'momentum'
momentum_component = 'x'
porosity = porosity
[]
# help gradient reconstruction *and* create Dirichlet values for use in PINSFVFunctorBC
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = T_fluid
rho = ${rho}
[]
[]
[Functions]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[forcing_rho_ud]
type = ADParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity-action.i)
l = 10
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'weakly-compressible'
add_energy_equation = true
passive_scalar_names = 'scalar'
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
passive_scalar_diffusivity = 1.1
initial_velocity = '${inlet_velocity} 1e-15 0'
initial_temperature = '${inlet_temp}'
initial_pressure = '${outlet_pressure}'
initial_scalar_variables = 0.1
inlet_boundaries = 'left'
momentum_inlet_types = 'flux-velocity'
flux_inlet_pps = 'inlet_u'
energy_inlet_types = 'flux-velocity'
energy_inlet_function = 'inlet_T'
passive_scalar_inlet_types = 'flux-velocity'
passive_scalar_inlet_function = 'inlet_scalar_value'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip noslip'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${outlet_pressure}'
external_heat_source = 'power_density'
passive_scalar_source = 2.1
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k mu dcp_dt'
prop_values = '${cp} ${k} ${mu} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 64
ny = 64
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[rho_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[rho_out]
type = ADFunctorElementalAux
functor = 'rho'
variable = 'rho_out'
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = 1e5
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'alpha'
prop_values = '${alpha}'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
velocity_pp = 'inlet_u'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
velocity_pp = 0
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
line_search = 'none'
automatic_scaling = true
compute_scaling_once = false
off_diagonals_in_auto_scaling = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot-action.i)
l = 10
inlet_area = 1
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'weakly-compressible'
add_energy_equation = true
passive_scalar_names = 'scalar'
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
passive_scalar_diffusivity = 1.1
initial_velocity = '${inlet_velocity} 1e-15 0'
initial_temperature = '${inlet_temp}'
initial_pressure = '${outlet_pressure}'
initial_scalar_variables = 0.1
inlet_boundaries = 'left'
momentum_inlet_types = 'flux-mass'
flux_inlet_pps = 'inlet_mdot'
energy_inlet_types = 'flux-mass'
energy_inlet_function = 'inlet_T'
passive_scalar_inlet_types = 'flux-mass'
passive_scalar_inlet_function = 'inlet_scalar_value'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip noslip'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${outlet_pressure}'
external_heat_source = 'power_density'
passive_scalar_source = 2.1
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k mu dcp_dt'
prop_values = '${cp} ${k} ${mu} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = ${l}
nx = 16
ny = 16
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
steady_state_detection = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-5
optimal_iterations = 6
[]
nl_abs_tol = 1e-9
normalize_solution_diff_norm_by_dt = false
nl_max_its = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
velocity_pp = 0
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
boundary = 'left'
velocity_pp = 'inlet_u'
temperature_pp = 'inlet_T'
rho = 'rho'
cp = 'cp'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T
boundary = 'left'
energy_pp = 'inlet_Edot'
area_pp = 'surface_inlet'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_flux_pp = 'inlet_scalar_flux'
area_pp = 'surface_inlet'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_Edot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * 2530 * inlet_temp * inlet_area}
[]
[inlet_scalar_flux]
type = Receiver
default = ${fparse inlet_velocity * 0.2 * inlet_area}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = 1980
cp = 2530
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient-action.i)
l = 10
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'weakly-compressible'
add_energy_equation = true
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
initial_velocity = '${inlet_v} 1e-15 0'
initial_temperature = '${inlet_temp}'
initial_pressure = '${outlet_pressure}'
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '${inlet_v} 0'
energy_inlet_types = 'fixed-temperature'
energy_inlet_function = '${inlet_temp}'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip noslip'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${outlet_pressure}'
external_heat_source = 'power_density'
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt mu'
prop_values = '${cp} ${k} 0 ${mu}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = 'FINAL'
[]