- eqnThe equation you're solving.
C++ Type:MooseEnum
Controllable:No
Description:The equation you're solving.
- fpFluid userobject
C++ Type:UserObjectName
Controllable:No
Description:Fluid userobject
- variableThe name of the finite volume variable this kernel applies to
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the finite volume variable this kernel applies to
PCNSFVKT
Computes the residual of advective term using finite volume method.
Overview
This object implements the Kurganov-Tadmor (Kurganov and Tadmor, 2000) (KT) scheme for computing inter-cell advective fluxes for the Euler equations. We will outline some of the important equations below, drawing from (Greenshields et al., 2010). The KT flux is a second-order generalization of the Lax-Friedrichs flux. For a given face it can be written as
(1)
where represents the vector of advected quantities, and
where is the porosity, where , , and are the component particle velocities, and is the normal vector pointing from to . This definition of is slightly different from that in (Greenshields et al., 2010) in that it does not contain the face area. This is because here we are essentially describing the implementation in PCNSFVKT
while area multiplication happens in the base class FVFluxKernel
. is defined as
where
where is the locally computed speed of sound. The default method when computing and is Kurganov, Noelle, Petrova (Kurganov et al., 2001) (KNP) since it's reported (Greenshields et al., 2010) as being less diffusive (enabling sharper front capturing) than the KT method of computing and . is given by
Interpolation of is described in Limiters.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaries_to_forceThe set of boundaries to force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of boundaries to force execution of this FVFluxKernel on.
- boundaries_to_not_forceThe set of boundaries to not force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of boundaries to not force execution of this FVFluxKernel on.
- force_boundary_executionFalseWhether to force execution of this object on the boundary.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to force execution of this object on the boundary.
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- knp_for_omegaTrueWhether to use the Kurganov, Noelle, and Petrova method to compute the omega parameter for stabilization. If false, then the Kurganov-Tadmor method will be used.
Default:True
C++ Type:bool
Controllable:No
Description:Whether to use the Kurganov, Noelle, and Petrova method to compute the omega parameter for stabilization. If false, then the Kurganov-Tadmor method will be used.
- limiterupwindThe limiter to apply during interpolation.
Default:upwind
C++ Type:MooseEnum
Options:vanLeer, upwind, central_difference, min_mod, sou, quick
Controllable:No
Description:The limiter to apply during interpolation.
- momentum_componentThe component of the momentum equation that this kernel applies to.
C++ Type:MooseEnum
Options:x, y, z
Controllable:No
Description:The component of the momentum equation that this kernel applies to.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/scalar_advection/mass-frac-advection.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
Child Objects
References
- Christopher J Greenshields, Henry G Weller, Luca Gasparini, and Jason M Reese.
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows.
International journal for numerical methods in fluids, 63(1):1–21, 2010.[BibTeX]
@article{greenshields2010implementation, author = "Greenshields, Christopher J and Weller, Henry G and Gasparini, Luca and Reese, Jason M", title = "Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows", journal = "International journal for numerical methods in fluids", volume = "63", number = "1", pages = "1--21", year = "2010", publisher = "Wiley Online Library" }
- Alexander Kurganov, Sebastian Noelle, and Guergana Petrova.
Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton–jacobi equations.
SIAM Journal on Scientific Computing, 23(3):707–740, 2001.[BibTeX]
@article{kurganov2001semidiscrete, author = "Kurganov, Alexander and Noelle, Sebastian and Petrova, Guergana", title = "Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton--Jacobi equations", journal = "SIAM Journal on Scientific Computing", volume = "23", number = "3", pages = "707--740", year = "2001", publisher = "SIAM" }
- Alexander Kurganov and Eitan Tadmor.
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations.
Journal of Computational Physics, 160(1):241–282, 2000.[BibTeX]
@article{kurganov2000new, author = "Kurganov, Alexander and Tadmor, Eitan", title = "New high-resolution central schemes for nonlinear conservation laws and convection--diffusion equations", journal = "Journal of Computational Physics", volume = "160", number = "1", pages = "241--282", year = "2000", publisher = "Elsevier" }
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_mom_x]
type = FunctionIC
variable = sup_mom_x
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_mom_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_mom_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_mom_x_left]
type = FVFunctionDirichletBC
variable = sup_mom_x
function = exact_rho_ud
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
superficial_rhou = sup_mom_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_mom_x]
variable = sup_mom_x
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_ud]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[sup_vel_x]
type = FunctionIC
variable = rho_ud
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = rho
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = rho_ud
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = rho_ud
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = rho_et
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = rho
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = rho_ud
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = rho_et
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = rho
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = rho_ud
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = rho_et
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[rho_right]
type = FVFunctionDirichletBC
variable = rho
function = exact_rho
boundary = 'right'
[]
[rho_ud_left]
type = FVFunctionDirichletBC
variable = rho_ud
function = exact_rho_ud
boundary = 'left'
[]
[rho_et_left]
type = FVFunctionDirichletBC
variable = rho_et
function = exact_rho_et
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
superficial_rhou = rho_ud
rho_et = rho_et
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options = '-snes_linesearch_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_ud]
variable = rho_ud
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
p_initial=1.01e5
T=273.15
u_in=10
eps=1
superficial_vel_in=${fparse u_in * eps}
[GlobalParams]
fp = fp
limiter = 'vanLeer'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 10
nx = 100
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[superficial_vel_x]
type = MooseVariableFVReal
initial_condition = ${superficial_vel_in}
[]
[temperature]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[rho]
type = MooseVariableFVReal
[]
[superficial_rhou]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[superficial_rhou]
type = ADMaterialRealAux
variable = superficial_rhou
property = superficial_rhou
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = superficial_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = superficial_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = temperature
[]
[energy_advection]
type = PCNSFVKT
variable = temperature
eqn = "energy"
[]
[heat]
type = FVBodyForce
variable = temperature
value = 1e6
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = superficial_vel_x
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = temperature
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = superficial_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = temperature
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = temperature
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = superficial_vel_x
value = ${superficial_vel_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[superficial_vel_in]
type = ParsedVectorFunction
value_x = '${superficial_vel_in}'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = temperature
superficial_vel_x = superficial_vel_x
fp = fp
porosity = porosity
[]
[fluid_only]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 10
[]
steady_state_detection = false
steady_state_tolerance = 1e-12
abort_on_solve_fail = false
end_time = 100
nl_abs_tol = 1e-8
dtmin = 5e-5
automatic_scaling = true
compute_scaling_once = false
verbose = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -snes_linesearch_minlambda'
petsc_options_value = 'lu mumps NONZERO 1e-3 '
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'final'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_vel_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[sup_mom_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[sup_mom_y]
type = ADMaterialRealAux
variable = sup_mom_y
property = superficial_rhov
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PCNSFVMomentumFriction
variable = sup_vel_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_vel_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_vel_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_vel_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PCNSFVMomentumFriction
variable = sup_vel_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_vel_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_vel_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_vel_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_vel_x
value = 0
boundary = 'bottom left right'
[]
[sup_vel_y_walls]
type = FVDirichletBC
variable = sup_vel_y
value = 0
boundary = 'left right'
[]
[sup_vel_y_bottom]
type = FVDirichletBC
variable = sup_vel_y
value = ${u_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
superficial_vel_y = sup_vel_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/scalar_advection/mass-frac-advection.i)
rho_initial=1.29
p_initial=1.01e5
T=273.15
gamma=1.4
e_initial=${fparse p_initial / (gamma - 1) / rho_initial}
et_initial=${e_initial}
rho_et_initial=${fparse rho_initial * et_initial}
v_in=1
[GlobalParams]
fp = fp
# retain behavior at time of test creation
two_term_boundary_expansion = false
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 10
ny = 20
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
initial_condition = ${rho_initial}
[]
[rho_u]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[rho_v]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[rho_et]
type = MooseVariableFVReal
initial_condition = ${rho_et_initial}
scaling = 1e-5
[]
[mass_frac]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[]
[AuxVariables]
[U_x]
type = MooseVariableFVReal
[]
[U_y]
type = MooseVariableFVReal
[]
[pressure]
type = MooseVariableFVReal
[]
[temperature]
type = MooseVariableFVReal
[]
[courant]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[U_x]
type = ADMaterialRealAux
variable = U_x
property = vel_x
execute_on = 'timestep_end'
[]
[U_y]
type = ADMaterialRealAux
variable = U_y
property = vel_y
execute_on = 'timestep_end'
[]
[pressure]
type = ADMaterialRealAux
variable = pressure
property = pressure
execute_on = 'timestep_end'
[]
[temperature]
type = ADMaterialRealAux
variable = temperature
property = T_fluid
execute_on = 'timestep_end'
[]
[courant]
type = Courant
variable = courant
u = U_x
v = U_y
[]
[]
[FVKernels]
[mass_time]
type = FVPorosityTimeDerivative
variable = rho
[]
[mass_advection]
type = PCNSFVKT
variable = rho
eqn = "mass"
[]
[momentum_time_x]
type = FVTimeKernel
variable = rho_u
[]
[momentum_advection_and_pressure_x]
type = PCNSFVKT
variable = rho_u
eqn = "momentum"
momentum_component = 'x'
[]
[momentum_time_y]
type = FVTimeKernel
variable = rho_v
[]
[momentum_advection_and_pressure_y]
type = PCNSFVKT
variable = rho_v
eqn = "momentum"
momentum_component = 'y'
[]
[energy_time]
type = FVPorosityTimeDerivative
variable = rho_et
[]
[energy_advection]
type = PCNSFVKT
variable = rho_et
eqn = "energy"
[]
[mass_frac_time]
type = PCNSFVDensityTimeDerivative
variable = mass_frac
rho = rho
[]
[mass_frac_advection]
type = PCNSFVKT
variable = mass_frac
eqn = "scalar"
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${v_in}'
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rho_u_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_u
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_v_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_v
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_et
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[mass_frac_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = mass_frac
superficial_velocity = 'ud_in'
T_fluid = ${T}
scalar = 1
eqn = 'scalar'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho
pressure = ${p_initial}
eqn = 'mass'
[]
[rho_u_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_u
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_v_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_v
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_et
pressure = ${p_initial}
eqn = 'energy'
[]
[mass_frac_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = mass_frac
pressure = ${p_initial}
eqn = 'scalar'
[]
[momentum_x_walls]
type = PCNSFVImplicitMomentumPressureBC
variable = rho_u
boundary = 'left right'
momentum_component = 'x'
[]
[momentum_y_walls]
type = PCNSFVImplicitMomentumPressureBC
variable = rho_v
boundary = 'left right'
momentum_component = 'y'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
rho_et = rho_et
superficial_rhou = rho_u
superficial_rhov = rho_v
fp = fp
porosity = porosity
[]
[porosity]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ActuallyExplicitEuler
[]
steady_state_detection = true
steady_state_tolerance = 1e-12
abort_on_solve_fail = true
dt = 5e-4
num_steps = 25
[]
[Outputs]
[out]
type = Exodus
execute_on = 'initial timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_mom_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_mom_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_mom_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_mom_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PCNSFVMomentumFriction
variable = sup_mom_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_mom_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_mom_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_mom_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PCNSFVMomentumFriction
variable = sup_mom_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
velocity_function_includes_rho = true
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
velocity_function_includes_rho = true
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
velocity_function_includes_rho = true
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
velocity_function_includes_rho = true
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_mom_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_mom_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_mom_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_mom_x
value = 0
boundary = 'bottom left right'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_mom_y
value = 0
boundary = 'left right'
[]
[sup_mom_y_bottom]
type = FVDirichletBC
variable = sup_mom_y
value = ${sup_mom_y_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${sup_mom_y_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_mom_x
superficial_rhov = sup_mom_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/include/fvkernels/PCNSFVKTDC.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "PCNSFVKT.h"
#include <memory>
#include <unordered_map>
#include <utility>
namespace Moose
{
namespace FV
{
template <typename>
class Limiter;
}
}
class SinglePhaseFluidProperties;
class FaceInfo;
class PCNSFVKTDC : public PCNSFVKT
{
public:
static InputParameters validParams();
PCNSFVKTDC(const InputParameters & params);
void timestepSetup() override;
void residualSetup() override;
void jacobianSetup() override;
protected:
virtual ADReal computeQpResidual() override;
Real getOldFlux(bool upwind) const;
std::unique_ptr<Moose::FV::Limiter<ADReal>> _upwind_limiter;
std::unordered_map<std::pair<dof_id_type, unsigned int>, Real> & _old_upwind_fluxes;
/// Old high order fluxes
std::unordered_map<std::pair<dof_id_type, unsigned int>, Real> & _old_ho_fluxes;
std::unordered_map<std::pair<dof_id_type, unsigned int>, Real> & _current_upwind_fluxes;
/// Current high order fluxes
std::unordered_map<std::pair<dof_id_type, unsigned int>, Real> & _current_ho_fluxes;
const Real _ho_implicit_fraction;
};