- momentum_componentThe component of the momentum equation that this kernel applies to.
C++ Type:MooseEnum
Controllable:No
Description:The component of the momentum equation that this kernel applies to.
- pressureThe pressure
C++ Type:std::vector<VariableName>
Controllable:No
Description:The pressure
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
- variableThe name of the finite volume variable this kernel applies to
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the finite volume variable this kernel applies to
INSFVMomentumPressure
This object adds the term of the incompressible Navier Stokes momentum equation. The pressure is a Lagrange Multiplier that ensures the incompressibility constraint.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/variables/caching/3d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/diverging.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average.i)
- (modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-no-slip-walls.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-outflow-bcs.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/fluid-flow.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-rc-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/3d-rc-no-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/one-elem-wide-channel.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
- (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/plane-poiseuille-flow.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/1d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/no-slip-tris.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-extrapolated-outlet-pressure.i)
- (modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fv.i)
- (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/advection-schemes/test.i)
- (modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-ro.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/1d-average.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-average-no-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/rotated/rotated-pp-flow.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-symmetry.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/discontinuous-body-forces.i)
- (modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-rz-symmetry.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/3d-rc.i)
Child Objects
(modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
mu=1.1
rho=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 3
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = v
function = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(y)*sin(x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin(y)*sin(x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = 'mu*sin(y)*sin(x*pi) - (-x*pi^2*mu*sin(y)*sin(x*pi) + pi*mu*sin(y)*cos(x*pi))/x + (2*x*pi*rho*sin(y)^2*sin(x*pi)*cos(x*pi) + rho*sin(y)^2*sin(x*pi)^2)/x + (-1/2*x*pi*rho*sin(x)*sin(y)*sin(x*pi)*sin((1/2)*y*pi) + x*rho*sin(x)*sin(x*pi)*cos(y)*cos((1/2)*y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin(x)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*sin(x)*cos((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '(1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) + cos(y) - (-x*mu*sin(x)*cos((1/2)*y*pi) + mu*cos(x)*cos((1/2)*y*pi))/x + (x*pi*rho*sin(x)*sin(y)*cos(x*pi)*cos((1/2)*y*pi) + x*rho*sin(y)*sin(x*pi)*cos(x)*cos((1/2)*y*pi) + rho*sin(x)*sin(y)*sin(x*pi)*cos((1/2)*y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin(y)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin(x)*sin((1/2)*y*pi) + (x*pi*rho*sin(y)*cos(x*pi) + rho*sin(y)*sin(x*pi))/x'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 30 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/variables/caching/3d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
pressure_face_gradient_caching = true
velocity_face_gradient_caching = true
pressure_face_value_caching = true
velocity_face_value_caching = true
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 15
ny = 5
nz = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
w = w
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
cache_face_gradients = ${velocity_face_gradient_caching}
cache_face_values = ${velocity_face_value_caching}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
cache_face_gradients = ${velocity_face_gradient_caching}
cache_face_values = ${velocity_face_value_caching}
[]
[w]
type = INSFVVelocityVariable
initial_condition = 1e-6
cache_face_gradients = ${velocity_face_gradient_caching}
cache_face_values = ${velocity_face_value_caching}
[]
[pressure]
type = INSFVPressureVariable
cache_face_gradients = ${pressure_face_gradient_caching}
cache_face_values = ${pressure_face_value_caching}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[w_advection]
type = INSFVMomentumAdvection
variable = w
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'z'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = w
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = w
momentum_component = 'z'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'left'
variable = w
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = u
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = v
momentum_component = 'y'
[]
[walls-w]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = w
momentum_component = 'z'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Postprocessors]
[physical]
type = MemoryUsage
mem_type = physical_memory
value_type = total
# by default MemoryUsage reports the peak value for the current timestep
# out of all samples that have been taken (at linear and non-linear iterations)
execute_on = 'INITIAL TIMESTEP_END NONLINEAR LINEAR'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'asm 100 '
line_search = 'none'
nl_abs_tol = 1e-8
[]
[Outputs]
hide = 'physical'
perf_graph = true
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[total_viscosity]
type = MixingLengthTurbulentViscosityMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/diverging.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
file = diverging.msh
uniform_refine = 2
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
# we can think of the axis as a slip wall boundary, no normal velocity and no viscous shear
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
active = 'inlet-u inlet-v free-slip-wall-u free-slip-wall-v outlet-p axis-u axis-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-options_left'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
[]
[num_lin]
type = NumLinearIterations
outputs = 'console'
[]
[num_nl]
type = NumNonlinearIterations
outputs = 'console'
[]
[cum_lin]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_lin'
[]
[cum_nl]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_nl'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - 1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + (3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[wall_shear_stress]
type = WallFunctionWallShearStressAux
variable = wall_shear_stress
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[wall_yplus]
type = WallFunctionYPlusAux
variable = wall_yplus
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[total_viscosity]
type = MixingLengthTurbulentViscosityMaterial
u = 'u' #computes total viscosity = mu_t + mu
v = 'v' #property is called total_viscosity
mixing_length = mixing_len
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - 1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + (3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[secondary_interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'interface'
primary_block = 1
paired_block = 0
new_boundary = 'secondary_interface'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
[]
[v]
type = INSFVVelocityVariable
block = 0
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
block = 0
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
block = 0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
block = 0
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
block = 0
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
block = 0
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
block = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
block = 0
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
block = 0
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
block = 1
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
temp_solid = Ts
temp_fluid = T
subdomain1 = 0
subdomain2 = 1
bulk_distance = 0.3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left interface bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left interface top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = Ts
boundary = 'right'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 200
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-no-slip-walls.i)
mu=1.1
rho=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
two_term_boundary_expansion = true
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[ICs]
[u]
type = FunctionIC
function = 'exact_u'
variable = u
[]
[v]
type = FunctionIC
function = 'exact_v'
variable = v
[]
[pressure]
type = FunctionIC
function = 'exact_p'
variable = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[u_walls]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right'
function = 'exact_u'
[]
[v_walls]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right'
function = 'exact_v'
[]
[p]
type = INSFVOutletPressureBC
variable = pressure
function = 'exact_p'
boundary = 'top'
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
function = 'exact_u'
boundary = 'bottom'
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
function = 'exact_v'
boundary = 'bottom'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)*cos(y*pi)'
[]
[forcing_u]
type = ADParsedFunction
value = '2*pi^2*mu*sin(x*pi)*cos(y*pi) - 2*pi*rho*sin(x*pi)*sin(y*pi)*cos(1.3*x)*cos(y*pi) + 2*pi*rho*sin(x*pi)*cos(x*pi)*cos(y*pi)^2 + 1.5*cos(1.5*x)*cos(1.6*y)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(1.3*x)*cos(y*pi)'
[]
[forcing_v]
type = ADParsedFunction
value = '1.69*mu*cos(1.3*x)*cos(y*pi) + pi^2*mu*cos(1.3*x)*cos(y*pi) - 1.3*rho*sin(1.3*x)*sin(x*pi)*cos(y*pi)^2 - 2*pi*rho*sin(y*pi)*cos(1.3*x)^2*cos(y*pi) + pi*rho*cos(1.3*x)*cos(x*pi)*cos(y*pi)^2 - 1.6*sin(1.5*x)*sin(1.6*y)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin(1.5*x)*cos(1.6*y)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(1.3*x) + pi*rho*cos(x*pi)*cos(y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[p_avg]
type = ElementAverageValue
variable = pressure
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-outflow-bcs.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu=1
rho=1
k=1e-3
diff=1e-3
cp=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[scalar_coupled_source]
type = FVCoupledForce
variable = scalar
v = U
coef = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[]
[Materials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
velocity_pp = 'inlet_u'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
velocity_pp = 0
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
line_search = 'none'
automatic_scaling = true
compute_scaling_once = false
off_diagonals_in_auto_scaling = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/fluid-flow.i)
mu=1
rho=1
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method='average'
velocity_interp_method='rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[ax_out]
type = MooseVariableFVReal
[]
[ay_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[ax_out]
type = ADFunctorElementalAux
functor = ax
variable = ax_out
execute_on = timestep_end
[]
[ay_out]
type = ADFunctorElementalAux
functor = ay
variable = ay_out
execute_on = timestep_end
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[MultiApps]
[scalar]
type = FullSolveMultiApp
execute_on = 'timestep_end'
input_files = 'scalar-transport.i'
[]
[]
[Transfers]
[ax]
type = MultiAppCopyTransfer
source_variable = ax_out
variable = ax
execute_on = 'timestep_end'
to_multi_app = 'scalar'
[]
[ay]
type = MultiAppCopyTransfer
source_variable = ay_out
variable = ay
execute_on = 'timestep_end'
to_multi_app = 'scalar'
[]
[u]
type = MultiAppCopyTransfer
source_variable = u
variable = u
execute_on = 'timestep_end'
to_multi_app = 'scalar'
[]
[v]
type = MultiAppCopyTransfer
source_variable = v
variable = v
execute_on = 'timestep_end'
to_multi_app = 'scalar'
[]
[pressure]
type = MultiAppCopyTransfer
source_variable = pressure
variable = pressure
execute_on = 'timestep_end'
to_multi_app = 'scalar'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = '1 2'
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-rc-slip.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 10
nx = 10
ny = 50
[]
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
outputs = 'csv'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
outputs = 'csv'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*cos(x*pi)*cos(y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/3d-rc-no-slip.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 20
ny = 4
nz = 4
elem_type = TET4
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
w = w
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[w]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[w_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'z'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = w
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = w
momentum_component = 'z'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'left'
variable = w
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom front back'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom front back'
variable = v
function = 0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'top bottom front back'
variable = w
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type'
petsc_options_value = 'lu mumps NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
mu=1.1
rho=1.1
k=1.1
cp=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[axis-inlet-wall-t]
type = FVFunctionDirichletBC
boundary = 'left bottom right'
variable = temperature
function = 'exact_t'
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*cos(x*pi)*cos(y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
vars = 'rho'
vals = '${rho}'
[]
[exact_t]
type = ParsedFunction
value = 'sin(x*pi)*sin((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
value = '(1/4)*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) - (-x*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) + pi*k*sin((1/2)*y*pi)*cos(x*pi))/x + (3*x*pi*cp*rho*sin(x*pi)^2*sin((1/2)*y*pi)^2*cos(x*pi) + cp*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2)/x + (-x*pi*cp*rho*sin(x*pi)*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*cp*rho*sin(x*pi)*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x'
vars = 'k rho cp'
vals = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2t]
variable = temperature
function = exact_t
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/one-elem-wide-channel.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 5
ny = 1
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = u
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = v
momentum_component = 'y'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*cos(x*pi)*cos(y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = ${l}
nx = 16
ny = 16
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
steady_state_detection = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-5
optimal_iterations = 6
[]
nl_abs_tol = 1e-9
normalize_solution_diff_norm_by_dt = false
nl_max_its = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
mu = 1
rho = 1
k = 1
cp = 1
[GlobalParams]
velocity_interp_method = 'rc'
# Maximum cell Peclet number is ~.1 so energy transport is stable without upwinding
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[Pe]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[Pe]
type = PecletNumberFunctorAux
variable = Pe
speed = speed
thermal_diffusivity = 'thermal_diffusivity'
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = speed
[]
[thermal_diffusivity]
type = ThermalDiffusivityFunctorMaterial
k = ${k}
rho = ${rho}
cp = ${cp}
[]
[enthalpy]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = T
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
mu = 1
rho = 1
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rayleigh=1e3
hot_temp=${rayleigh}
temp_ref=${fparse hot_temp / 2.}
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
scaling = 1e-4
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = right
value = 0
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k'
prop_values = '${alpha} ${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = 'FINAL'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/plane-poiseuille-flow.i)
mu=0.5
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
two_term_boundary_expansion=true
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 10
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = '0.5*(1.0 - y^2)/mu'
vars = 'mu'
vals = '${mu}'
[]
[exact_rhou]
type = ParsedFunction
value = '0.5*rho*(1.0 - y^2)/mu'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '0'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = '0.0'
[]
[exact_rhov]
type = ParsedFunction
value = '0'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '0'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = '10.0 - x'
[]
[forcing_p]
type = ParsedFunction
value = '0'
vars = 'rho mu'
vals = '${rho} ${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/1d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '30 30'
subdomain_id = '1 2'
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/no-slip-tris.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
type = GeneratedMesh
nx = 4
ny = 4
xmax = 3.9
ymax = 4.1
elem_type = TRI3
dim = 2
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
# we can think of the axis as a slip wall boundary, no normal velocity and no viscous shear
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
active = 'inlet-u inlet-v free-slip-wall-u free-slip-wall-v outlet-p axis-u axis-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = vel_x
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = vel_y
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = vel_x
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = vel_y
momentum_component = 'y'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = vel_x
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = vel_y
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-options_left'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = vel_y
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = vel_y
boundary = 'top'
[]
[num_lin]
type = NumLinearIterations
outputs = 'console'
[]
[num_nl]
type = NumNonlinearIterations
outputs = 'console'
[]
[cum_lin]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_lin'
[]
[cum_nl]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_nl'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-no-slip-extrapolated-outlet-pressure.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
u = u
v = v
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
u = u
v = v
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVMassAdvectionOutflowBC
boundary = 'right'
variable = pressure
u = u
v = v
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fv.i)
mu=1
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[Reynolds]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[Reynolds]
type = ReynoldsNumberFunctorAux
variable = Reynolds
speed = speed
rho = ${rho}
mu = ${mu}
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = speed
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = ${l}
nx = 8
ny = 8
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rhie_chow_user_object = 'rc'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom top'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Modules]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = ${rho}
thermal_expansion = ${beta}
[]
[]
[]
[Materials]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_abs_tol = 1e-11
automatic_scaling = true
[]
[Postprocessors]
[rayleigh_1]
type = RayleighNumber
rho_min = rho_min
rho_max = rho_max
rho_ave = ${rho}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rayleigh_2]
type = RayleighNumber
T_cold = T_min
T_hot = T_max
rho_ave = ${rho}
beta = ${beta}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rho_min]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'min'
[]
[rho_max]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'max'
[]
[T_min]
type = ElementExtremeValue
variable = 'T'
value_type = 'min'
[]
[T_max]
type = ElementExtremeValue
variable = 'T'
value_type = 'max'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/advection-schemes/test.i)
mu=10
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'sou'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 11
ny = 11
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvkernels/flow_diode/friction.i)
mu = 1
rho = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5 1'
dy = '0.5 0.5'
ix = '8 5 8'
iy = '8 8'
subdomain_id = '0 1 2
1 2 1'
[]
[top_outlet]
type = ParsedGenerateSideset
input = cmg
combinatorial_geometry = 'x>2.499 & y>0.4999'
new_sideset_name = top_right
[]
[bottom_outlet]
type = ParsedGenerateSideset
input = top_outlet
combinatorial_geometry = 'x>2.499 & y<0.50001'
new_sideset_name = bottom_right
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[diodes_against_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '-1 0 0'
block = 1
momentum_component = 'x'
[]
[diode_free_flow]
type = INSFVFrictionFlowDiode
resistance = 100
variable = vel_x
direction = '1 0 0'
block = 2
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = 1
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[outlet]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = 1
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[mdot_top]
type = VolumetricFlowRate
boundary = 'top_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[mdot_bottom]
type = VolumetricFlowRate
boundary = 'bottom_right'
vel_x = vel_x
vel_y = vel_y
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = ${restricted_blocks}
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
velocity_pp = 0
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
boundary = 'left'
velocity_pp = 'inlet_u'
temperature_pp = 'inlet_T'
rho = 'rho'
cp = 'cp'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-ro.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_bad_ro]
type = FVBodyForce
variable = u
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T
boundary = 'left'
energy_pp = 'inlet_Edot'
area_pp = 'surface_inlet'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_flux_pp = 'inlet_scalar_flux'
area_pp = 'surface_inlet'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_Edot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * 2530 * inlet_temp * inlet_area}
[]
[inlet_scalar_flux]
type = Receiver
default = ${fparse inlet_velocity * 0.2 * inlet_area}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = 1980
cp = 2530
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
rho = 'rho'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[velocity_norm]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = 'rho'
[]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T'
speed = 'velocity_norm'
# even though we provide rho from the parameters, we
# want to get rho from the fluid properties
force_define_density = true
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 1
[]
[]
[AuxKernels]
[speed]
type = VectorMagnitudeAux
variable = 'velocity_norm'
x = u
y = v
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-12
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/rc.i)
mu=1.1
rho=1.1
[GlobalParams]
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'average'
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = 'average'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = 'average'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = v
function = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(y)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin(y)*cos((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = 'mu*sin(y)*cos((1/2)*x*pi) + (1/4)*pi^2*mu*sin(y)*cos((1/2)*x*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*y*pi)*cos((1/2)*x*pi) + rho*sin(x)*cos(y)*cos((1/2)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin(y)^2*sin((1/2)*x*pi)*cos((1/2)*x*pi) + sin(y)*cos(x)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin(x)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*sin(x)*cos((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = 'mu*sin(x)*cos((1/2)*y*pi) + (1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*x*pi)*cos((1/2)*y*pi) + rho*sin(y)*cos(x)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + sin(x)*cos(y)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin(x)*sin(y)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin(x)*sin((1/2)*y*pi) - 1/2*pi*rho*sin(y)*sin((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 30 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
variable = v
function = exact_v
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/1d-average.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[]
[FVBCs]
[inlet_u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/4)*pi^2*mu*sin((1/2)*x*pi) + pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi) - 1/2*pi*sin((1/2)*x*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos((1/2)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '(1/2)*pi*rho*cos((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 2
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
momentum_component = 'x'
rho = ${rho}
gravity = '0 -1 0'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
momentum_component = 'y'
rho = ${rho}
gravity = '0 -1 0'
[]
[]
[FVBCs]
[free_slip_x]
type = INSFVNaturalFreeSlipBC
variable = u
boundary = 'left right top bottom'
momentum_component = 'x'
[]
[free_slip_y]
type = INSFVNaturalFreeSlipBC
variable = v
boundary = 'left right top bottom'
momentum_component = 'y'
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = 1
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
temp_solid = Ts
temp_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'interface left'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'interface left'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'bottom_to_0'
function = 0
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'bottom_to_0'
function = 1
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'bottom_to_0'
value = 0.5
[]
[outlet]
type = INSFVMassAdvectionOutflowBC
variable = pressure
boundary = 'top_to_0'
u = u
v = v
rho = ${rho}
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'y'
rho = ${rho}
[]
[heater]
type = FVDirichletBC
variable = 'Ts'
boundary = 'right'
value = 10
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[max_T]
type = ElementExtremeValue
variable = T
block = 0
[]
[max_Ts]
type = ElementExtremeValue
variable = Ts
block = 1
[]
[mdot_out]
type = VolumetricFlowRate
boundary = 'top_to_0'
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[pin]
type = ExtraNodesetGenerator
input = gen
new_boundary = 'pin'
nodes = '0'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = 'u'
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
cp = 'cp'
dcp_dt = 0.0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 200
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-average-no-slip.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 4
nx = 10
ny = 40
[]
[]
[Problem]
fv_bcs_integrity_check = true
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/rotated/rotated-pp-flow.i)
mu=0.5
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
two_term_boundary_expansion=true
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 10
ny = 2
[]
[rotate]
type = TransformGenerator
input = gen
transform = 'rotate'
vector_value = '45 0 0'
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[AuxVariables]
[vel_exact_x][]
[vel_exact_y][]
[p_exact][]
[]
[AuxKernels]
[u_exact]
type = FunctionAux
variable = vel_exact_x
function = exact_u
[]
[v_exact]
type = FunctionAux
variable = vel_exact_y
function = exact_v
[]
[p_exact]
type = FunctionAux
variable = p_exact
function = exact_p
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = '0.25*sqrt(2)*(1.0 - 1/2*(-x + y)^2)/mu'
vars = 'mu'
vals = '${mu}'
[]
[exact_rhou]
type = ParsedFunction
value = '0.25*sqrt(2)*rho*(1.0 - 1/2*(-x + y)^2)/mu'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '0'
[]
[exact_v]
type = ParsedFunction
value = '0.25*sqrt(2)*(1.0 - 1/2*(-x + y)^2)/mu'
vars = 'mu'
vals = '${mu}'
[]
[exact_rhov]
type = ParsedFunction
value = '0.25*sqrt(2)*rho*(1.0 - 1/2*(-x + y)^2)/mu'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '0'
[]
[exact_p]
type = ParsedFunction
value = '-1/2*sqrt(2)*(x + y) + 10.0'
[]
[forcing_p]
type = ParsedFunction
value = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
mu=1
rho=1
k=1e-3
cp=1
alpha = 1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 16
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 100
alpha = 'alpha'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Postprocessors]
[temp]
type = ElementAverageValue
variable = T_fluid
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex.i)
mu=1.0
rho=1.0
[Problem]
coord_type = 'XYZ'
error_on_jacobian_nonzero_reallocation = true
[]
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
face_interp_method = 'skewness-corrected'
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
face_interp_method = 'skewness-corrected'
[]
[pressure]
type = INSFVPressureVariable
face_interp_method = 'skewness-corrected'
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = vel_x
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = 'skewness-corrected'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = vel_y
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_x
function = '0'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = '0'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
value = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
value = 'x*(1-x)-2/12'
[]
[forcing_u]
type = ADParsedFunction
value = '-4*mu/rho*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+4*x^3*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '4*mu/rho*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+4*y^3*x^2*(2*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'bjacobi 30 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
hide = lambda
[]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = vel_x
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = vel_y
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-symmetry.i)
mu=1.1
rho=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
two_term_boundary_expansion = true
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[ICs]
[u]
type = FunctionIC
function = 'exact_u'
variable = u
[]
[v]
type = FunctionIC
function = 'exact_v'
variable = v
[]
[pressure]
type = FunctionIC
function = 'exact_p'
variable = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[u_wall]
type = INSFVNoSlipWallBC
variable = u
boundary = 'right'
function = 'exact_u'
[]
[v_wall]
type = INSFVNoSlipWallBC
variable = v
boundary = 'right'
function = 'exact_v'
[]
[u_axis]
type = INSFVSymmetryVelocityBC
variable = u
boundary = 'left'
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[v_axis]
type = INSFVSymmetryVelocityBC
variable = v
boundary = 'left'
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[p_axis]
type = INSFVSymmetryPressureBC
variable = pressure
boundary = 'left'
[]
[p]
type = INSFVOutletPressureBC
variable = pressure
function = 'exact_p'
boundary = 'top'
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
function = 'exact_u'
boundary = 'bottom'
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
function = 'exact_v'
boundary = 'bottom'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)*cos(y*pi)'
[]
[forcing_u]
type = ADParsedFunction
value = '2*pi^2*mu*sin(x*pi)*cos(y*pi) - 2*pi*rho*sin(x*pi)*sin(y*pi)*cos(1.3*x)*cos(y*pi) + 2*pi*rho*sin(x*pi)*cos(x*pi)*cos(y*pi)^2 - 1.5*sin(1.5*x)*cos(1.6*y)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(1.3*x)*cos(y*pi)'
[]
[forcing_v]
type = ADParsedFunction
value = '1.69*mu*cos(1.3*x)*cos(y*pi) + pi^2*mu*cos(1.3*x)*cos(y*pi) - 1.3*rho*sin(1.3*x)*sin(x*pi)*cos(y*pi)^2 - 2*pi*rho*sin(y*pi)*cos(1.3*x)^2*cos(y*pi) + pi*rho*cos(1.3*x)*cos(x*pi)*cos(y*pi)^2 - 1.6*sin(1.6*y)*cos(1.5*x)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos(1.5*x)*cos(1.6*y)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(1.3*x) + pi*rho*cos(x*pi)*cos(y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[p_avg]
type = ElementAverageValue
variable = pressure
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/discontinuous-body-forces.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 9
[]
[subdomain]
type = SubdomainBoundingBoxGenerator
bottom_left = '5 -1 0'
top_right = '10 1 0'
block_id = 1
input = gen
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
inactive='u_friction_quad v_friction_quad'
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_friction_linear]
type = INSFVMomentumFriction
variable = u
linear_coef_name = friction_coefficient
momentum_component = 'x'
block = '1'
[]
[u_friction_quad]
type = INSFVMomentumFriction
variable = u
quadratic_coef_name = friction_coefficient
momentum_component = 'x'
block = '1'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_friction_linear]
type = INSFVMomentumFriction
variable = v
linear_coef_name = friction_coefficient
momentum_component = 'y'
block = '1'
[]
[v_friction_quad]
type = INSFVMomentumFriction
variable = v
quadratic_coef_name = friction_coefficient
momentum_component = 'y'
block = '1'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[friction_coefficient]
type = ADGenericFunctorMaterial
prop_names = 'friction_coefficient'
prop_values = '25'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
# This example demonstrates how the mixing length model can be tuned to match an
# established correlation for pressure drop in a smooth circular pipe.
# The primary input parameters for this example are the system Reynolds number
# and the von Karman constant for the mixing length model. These two parameters
# can be changed here:
Re = 1e5
von_karman_const = 0.22
# Note that for this model (using the wall-distance mixing length for the entire
# pipe) different von Karman constants are optimal for different Reynolds
# numbers.
# This model has been non-dimensionalized. The diameter (D), density (rho), and
# bulk velocity (bulk_u) are all considered unity.
D = 1
total_len = ${fparse 40 * D}
rho = 1
bulk_u = 1
# With those parameters set, the viscosity is then computed in order to reach
# the desired Reynolds number.
mu = ${fparse rho * bulk_u * D / Re}
# Here the DeltaP will be evaluted by using a postprocessor to find the pressure
# at a point that is 10 diameters away from the outlet. (The outlet pressure is
# set to zero.)
L = ${fparse 10 * D}
# We will use the McAdams correlation to find the Darcy friction factor. Note
# that this correlation is valid for fully developed flow in smooth circular
# tubes at 3e4 < Re < 1e6.
f = ${fparse 0.316 * Re^(-0.25)}
# The DeltaP can then be computed using this friction factor as,
ref_delta_P = ${fparse f * L / D * rho * bulk_u^2 / 2}
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${total_len}
ymin = 0
ymax = ${fparse 0.5 * D}
nx = 200
ny = 40
bias_y = ${fparse 1 / 1.2}
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
coord_type = 'RZ'
rz_coord_axis = 'X'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
# The upwind and Rhie-Chow interpolation schemes are used here.
advected_interp_method='upwind'
velocity_interp_method='rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'wall'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet_u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = u
function = ${bulk_u}
[]
[inlet_v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = v
function = '0'
[]
[walls_u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = u
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = v
function = 0
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Postprocessors]
[delta_P]
type = PointValue
variable = 'pressure'
point = '${fparse total_len - L} 0 0'
[]
[reference_delta_P]
type = Receiver
default = ${ref_delta_P}
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 64
ny = 64
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[rho_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[rho_out]
type = ADFunctorElementalAux
functor = 'rho'
variable = 'rho_out'
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = 1e5
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'alpha'
prop_values = '${alpha}'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[total_viscosity]
type = MixingLengthTurbulentViscosityMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
# Fluid properties
mu = 1.1
rho = 1.1
cp = 1.1
k = 1e-3
# Operating conditions
u_inlet = 1
T_inlet = 200
T_solid = 190
p_outlet = 10
h_fs = 0.01
# Numerical scheme
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 20
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${u_inlet}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-12
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_time]
type = INSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
dcp_dt = 0.0
rho = ${rho}
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
variable = T_fluid
coeff = ${k}
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = ${fparse u_inlet * rho * cp * T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${p_outlet}'
[]
[]
[Materials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv T_solid'
prop_values = '${h_fs} ${T_solid}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 7e-13
dt = 0.4
end_time = 0.8
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = vel_y
momentum_component = 'y'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
mu=1.1
rho=1.1
k=1.1
cp=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[inlet-and-walls-t]
type = FVFunctionDirichletBC
boundary = 'left top bottom'
variable = temperature
function = 'exact_t'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'k cp'
prop_values = '${k} ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
value = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_u]
type = ADParsedFunction
value = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - 1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
value = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[forcing_v]
type = ADParsedFunction
value = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + (3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[exact_t]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
value = '-pi*cp*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*cp*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + (1/4)*pi*cp*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + (5/16)*pi^2*k*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
vars = 'k rho cp'
vals = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2t]
variable = temperature
function = exact_t
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-rz-symmetry.i)
mu=1.1
rho=1.1
offset=0e0
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = ${offset}
xmax = ${fparse 1 + offset}
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
two_term_boundary_expansion = true
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[ICs]
[u]
type = FunctionIC
function = 'exact_u'
variable = u
[]
[v]
type = FunctionIC
function = 'exact_v'
variable = v
[]
[pressure]
type = FunctionIC
function = 'exact_p'
variable = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[u_wall]
type = INSFVNoSlipWallBC
variable = u
boundary = 'right'
function = 'exact_u'
[]
[v_wall]
type = INSFVNoSlipWallBC
variable = v
boundary = 'right'
function = 'exact_v'
[]
[p]
type = INSFVOutletPressureBC
variable = pressure
function = 'exact_p'
boundary = 'top'
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
function = 'exact_u'
boundary = 'bottom'
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
function = 'exact_v'
boundary = 'bottom'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin(x*pi)^2*cos(y*pi)'
[]
[forcing_u]
type = ADParsedFunction
value = 'pi^2*mu*sin(x*pi)^2*cos(y*pi) - 2*pi*rho*sin(x*pi)^2*sin(y*pi)*cos(x*pi)*cos(y*pi) - pi*sin(x*pi)*cos(1.6*y) + (4*x*pi*rho*sin(x*pi)^3*cos(x*pi)*cos(y*pi)^2 + rho*sin(x*pi)^4*cos(y*pi)^2)/x - (-2*x*pi^2*mu*sin(x*pi)^2*cos(y*pi) + 2*x*pi^2*mu*cos(x*pi)^2*cos(y*pi) + 2*pi*mu*sin(x*pi)*cos(x*pi)*cos(y*pi))/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'cos(x*pi)*cos(y*pi)'
[]
[forcing_v]
type = ADParsedFunction
value = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1.6*sin(1.6*y)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*cos(y*pi)^2 + 2*x*pi*rho*sin(x*pi)*cos(x*pi)^2*cos(y*pi)^2 + rho*sin(x*pi)^2*cos(x*pi)*cos(y*pi)^2)/x'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'cos(1.6*y)*cos(x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*cos(x*pi)*cos(y*pi) + rho*sin(x*pi)^2*cos(y*pi))/x'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[p_avg]
type = ElementAverageValue
variable = pressure
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
Re = 1e4
von_karman_const = 0.2
D = 1
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * D / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = ${fparse 0.5 * D}
nx = 20
ny = 10
bias_y = ${fparse 1 / 1.2}
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion_rans]
type = INSFVMixingLengthScalarDiffusion
variable = scalar
mixing_length = 'mixing_length'
u = vel_x
v = vel_y
schmidt_number = 1.0
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top bottom'
variable = 'mixing_length'
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[wall-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[wall-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[total_viscosity]
type = MixingLengthTurbulentViscosityMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = 'mixing_length'
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-friction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 10
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
inactive='u_friction_quad v_friction_quad'
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction_linear]
type = INSFVMomentumFriction
variable = vel_x
linear_coef_name = friction_coefficient
momentum_component = 'x'
[]
[u_friction_quad]
type = INSFVMomentumFriction
variable = vel_x
quadratic_coef_name = friction_coefficient
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction_linear]
type = INSFVMomentumFriction
variable = vel_y
linear_coef_name = friction_coefficient
momentum_component = 'y'
[]
[v_friction_quad]
type = INSFVMomentumFriction
variable = vel_y
quadratic_coef_name = friction_coefficient
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Materials]
[friction_coefficient]
type = ADGenericFunctorMaterial
prop_names = 'friction_coefficient'
prop_values = '25'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[mixing_length]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
inactive = 'u_turb v_turb temp_turb'
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
[temp_turb]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
rho = rho
cp = cp
mixing_length = 'mixing_length'
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T_fluid
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k dcp_dt'
prop_values = '${cp} ${k} 0'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[AuxKernels]
inactive = 'mixing_len'
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
delta = 0.5
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/3d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 21
ny = 7
nz = 7
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
w = w
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[w]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[w_advection]
type = INSFVMomentumAdvection
variable = w
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'z'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = w
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = w
momentum_component = 'z'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'left'
variable = w
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = u
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = v
momentum_component = 'y'
[]
[walls-w]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom front back'
variable = w
momentum_component = 'z'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_abs_tol = 1e-13
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/include/fvkernels/PINSFVMomentumPressure.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "INSFVMomentumPressure.h"
/**
* Introduces the coupled pressure term into the Navier-Stokes porous media momentum equation.
*/
class PINSFVMomentumPressure : public INSFVMomentumPressure
{
public:
static InputParameters validParams();
PINSFVMomentumPressure(const InputParameters & params);
protected:
ADReal computeQpResidual() override;
/// the porosity
const Moose::Functor<ADReal> & _eps;
};