PorousFlowPointEnthalpySourceFromPostprocessor
PorousFlowPointEnthalpySourceFromPostprocessor
implements a point source that adds heat energy corresponding to adding fluid at a mass flux rate (computed by a postprocessor) at a specified temperature (computed by a postprocessor).
This object should be used in conjunction with (PorousFlowPointSourceFromPostprocessor)PorousFlowPointSourceFromPostprocessor that uses the same mass_flux
Postprocessor, so that the correct amount of fluid is injected into the system.
Note that the fluid property object used by this Dirac kernel should be the same one that used in the computational domain where this object is located.
Parameter "pressure" (along with "T_in") is used to calculate the injected fluid enthalpy. Most frequently, it is the PorousFlow pressure variable (the porepressure in the porous medium). This models the situation where fluid is injected at a specified rate and temperature (using this DiracKernel and a PorousFlowPointSourceFromPostprocessor) which potentially leads to changes in the porepressure. Alternately, it may be the pressure of the injected fluid, as fixed by an external agent (such as a pump) which is stored in an AuxVariable.
For instance:
[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)Note that the
execute_on
parameter is set to
timestep_begin
so that the correct value is being used within the timestep.
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[total_heat]
type = PorousFlowHeatEnergy
[]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux_in_fn
execute_on = 'initial timestep_end'
[]
[avg_temp]
type = ElementAverageValue
variable = temperature
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = T_in_fn
execute_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)pressure
C++ Type:std::vector<VariableName>
Controllable:No
Description:Pressure used to calculate the injected fluid enthalpy (measured in Pa)
T_in
C++ Type:PostprocessorName
Controllable:No
Description:The postprocessor name holding the temperature of injected fluid (measured in K)
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pressure]
[]
[temperature]
scaling = 1E-6
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1e6
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 400
[]
[]
[Kernels]
[P_time_deriv]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[P_flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '0 -9.8 0'
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
gravity = '0 -9.8 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Functions]
[mass_flux_in_fn]
type = PiecewiseConstant
direction = left
xy_data = '
0 0
100 0.1
300 0
600 0.1
1400 0
1500 0.2'
[]
[T_in_fn]
type = PiecewiseLinear
xy_data = '
0 400
600 450'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
at_nodes = true
[]
[fluid_props]
type = PorousFlowSingleComponentFluid
phase = 0
fp = simple_fluid
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = simple_fluid
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 830.0
density = 2750
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.0E-15 0 0 0 1.0E-15 0 0 0 1.0E-14'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[total_heat]
type = PorousFlowHeatEnergy
[]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux_in_fn
execute_on = 'initial timestep_end'
[]
[avg_temp]
type = ElementAverageValue
variable = temperature
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = T_in_fn
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 100
end_time = 2000
[]
[Outputs]
csv = true
execute_on = 'initial timestep_end'
file_base = hfrompps
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pressure]
[]
[temperature]
scaling = 1E-6
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1e6
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 400
[]
[]
[Kernels]
[P_time_deriv]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[P_flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '0 -9.8 0'
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
gravity = '0 -9.8 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Functions]
[mass_flux_in_fn]
type = PiecewiseConstant
direction = left
xy_data = '
0 0
100 0.1
300 0
600 0.1
1400 0
1500 0.2'
[]
[T_in_fn]
type = PiecewiseLinear
xy_data = '
0 400
600 450'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
at_nodes = true
[]
[fluid_props]
type = PorousFlowSingleComponentFluid
phase = 0
fp = simple_fluid
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = simple_fluid
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 830.0
density = 2750
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.0E-15 0 0 0 1.0E-15 0 0 0 1.0E-14'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[total_heat]
type = PorousFlowHeatEnergy
[]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux_in_fn
execute_on = 'initial timestep_end'
[]
[avg_temp]
type = ElementAverageValue
variable = temperature
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = T_in_fn
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 100
end_time = 2000
[]
[Outputs]
csv = true
execute_on = 'initial timestep_end'
file_base = hfrompps
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pressure]
[]
[temperature]
scaling = 1E-6
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1e6
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 400
[]
[]
[Kernels]
[P_time_deriv]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[P_flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '0 -9.8 0'
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
gravity = '0 -9.8 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Functions]
[mass_flux_in_fn]
type = PiecewiseConstant
direction = left
xy_data = '
0 0
100 0.1
300 0
600 0.1
1400 0
1500 0.2'
[]
[T_in_fn]
type = PiecewiseLinear
xy_data = '
0 400
600 450'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
at_nodes = true
[]
[fluid_props]
type = PorousFlowSingleComponentFluid
phase = 0
fp = simple_fluid
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = simple_fluid
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 830.0
density = 2750
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.0E-15 0 0 0 1.0E-15 0 0 0 1.0E-14'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[total_heat]
type = PorousFlowHeatEnergy
[]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux_in_fn
execute_on = 'initial timestep_end'
[]
[avg_temp]
type = ElementAverageValue
variable = temperature
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = T_in_fn
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 100
end_time = 2000
[]
[Outputs]
csv = true
execute_on = 'initial timestep_end'
file_base = hfrompps
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pressure]
[]
[temperature]
scaling = 1E-6
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1e6
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 400
[]
[]
[Kernels]
[P_time_deriv]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[P_flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '0 -9.8 0'
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temperature
gravity = '0 -9.8 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Functions]
[mass_flux_in_fn]
type = PiecewiseConstant
direction = left
xy_data = '
0 0
100 0.1
300 0
600 0.1
1400 0
1500 0.2'
[]
[T_in_fn]
type = PiecewiseLinear
xy_data = '
0 400
600 450'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
at_nodes = true
[]
[fluid_props]
type = PorousFlowSingleComponentFluid
phase = 0
fp = simple_fluid
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = simple_fluid
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 830.0
density = 2750
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.0E-15 0 0 0 1.0E-15 0 0 0 1.0E-14'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowPointSourceFromPostprocessor
variable = pressure
mass_flux = mass_flux_in
point = '0.5 0.5 0'
[]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[total_heat]
type = PorousFlowHeatEnergy
[]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux_in_fn
execute_on = 'initial timestep_end'
[]
[avg_temp]
type = ElementAverageValue
variable = temperature
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = T_in_fn
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 100
end_time = 2000
[]
[Outputs]
csv = true
execute_on = 'initial timestep_end'
file_base = hfrompps
[]
(modules/porous_flow/test/tests/jacobian/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[pressure]
[]
[temperature]
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 4
[]
[]
[Kernels]
[p_td]
type = TimeDerivative
variable = pressure
[]
[energy_dot]
type = TimeDerivative
variable = temperature
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[DiracKernels]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_test_err'
petsc_options_value = ' lu 1e-6'
[]
[]
[Postprocessors]
[mass_flux_in]
type = FunctionValuePostprocessor
function = 1
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = 1
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 1
num_steps = 1
[]