ComputeFrictionalForceLMMechanicalContact

Computes the tangential frictional forces

This class represents a preliminary implementation of frictional mortar contact constraints intended to be used with Lagrange's multiplier interpolation with dual bases. The nonlinear complementarity constraints employed here are based on a primal-dual active set strategy (PDASS), see (Gitterle et al., 2010). These constraints capture nodes in sticking and slipping states on different solution branches, and can be written as:

is a Lagrange's multiplier that refers to the tangential contact pressure at node , is the weighted tangential velocity integrated forward in time, is the weighted normal gap, is a numerical parameter ( in ComputeWeightedGapLMMechanicalContact) and is a numerical parameter that can determine convergence properties but has no effect on the results.

The nodal, weighted tangential velocity is computed as

where denotes the secondary contact interface, is the j'th lagrange multiplier test function, and is the discretized version of the tangential velocity function.

This object automatically enforces normal contact constraints by making calls to its parent class ComputeWeightedGapLMMechanicalContact, see ComputeWeightedGapLMMechanicalContact for input parameters and details.

The preliminary recommendation is to select c to be on the order of the moduli of elasticity of the bodies into contact, and c_t to be a few orders of magnitude less than c. This selection of these purely numerical parameters can represent an initial difficulty when running new models, but they can be held constant once good convergence behavior has been attained.

Input Parameters

  • disp_xThe x displacement variable

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The x displacement variable

  • disp_yThe y displacement variable

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The y displacement variable

  • friction_lmThe frictional Lagrange's multiplier

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The frictional Lagrange's multiplier

  • muThe friction coefficient for the Coulomb friction law

    C++ Type:double

    Controllable:No

    Description:The friction coefficient for the Coulomb friction law

  • primary_boundaryThe name of the primary boundary sideset.

    C++ Type:BoundaryName

    Controllable:No

    Description:The name of the primary boundary sideset.

  • primary_subdomainThe name of the primary subdomain.

    C++ Type:SubdomainName

    Controllable:No

    Description:The name of the primary subdomain.

  • secondary_boundaryThe name of the secondary boundary sideset.

    C++ Type:BoundaryName

    Controllable:No

    Description:The name of the secondary boundary sideset.

  • secondary_subdomainThe name of the secondary subdomain.

    C++ Type:SubdomainName

    Controllable:No

    Description:The name of the secondary subdomain.

Required Parameters

  • c1e+06Parameter for balancing the size of the gap and contact pressure

    Default:1e+06

    C++ Type:double

    Controllable:No

    Description:Parameter for balancing the size of the gap and contact pressure

  • c_t1Numerical parameter for tangential constraints

    Default:1

    C++ Type:double

    Controllable:No

    Description:Numerical parameter for tangential constraints

  • compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to compute Lagrange Multiplier residuals

  • compute_primal_residualsTrueWhether to compute residuals for the primal variable.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to compute residuals for the primal variable.

  • correct_edge_droppingFalseWhether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

  • debug_meshFalseWhether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

  • disp_zThe z displacement variable

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The z displacement variable

  • epsilon1e-07Minimum value of contact pressure that will trigger frictional enforcement

    Default:1e-07

    C++ Type:double

    Controllable:No

    Description:Minimum value of contact pressure that will trigger frictional enforcement

  • friction_lm_dirThe frictional Lagrange's multiplier for an addtional direction.

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The frictional Lagrange's multiplier for an addtional direction.

  • ghost_point_neighborsFalseWhether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

  • interpolate_normalsTrueWhether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

  • normalize_cFalseWhether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).

  • periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • quadratureDEFAULTQuadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

    Default:DEFAULT

    C++ Type:MooseEnum

    Options:DEFAULT, FIRST, SECOND, THIRD, FOURTH

    Controllable:No

    Description:Quadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

  • variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

Input Files

References

  1. Markus Gitterle, Alexander Popp, Michael W Gee, and Wolfgang A Wall. Finite deformation frictional mortar contact using a semi-smooth newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 84(5):543–571, 2010.[BibTeX]